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Abstract. Hash Proof Systems were first introduced by Cramer and Shoup (Eurocrypt’02) as a
tool to construct efficient chosen-ciphertext-secure encryption schemes. Since then, they have found
many other applications, including password authenticated key exchange, oblivious transfer, and
zero-knowledge arguments. One of the aspects that makes hash proof systems so interesting and
powerful is that they can be seen as implicit proofs of membership for certain languages. As a result,
by extending the family of languages that they can handle, one often obtains new applications or new
ways to understand existing schemes. In this paper, we show how to construct hash proof systems
for the disjunction of languages defined generically over cyclic, bilinear, and multilinear groups.
Among other applications, this enables us to construct the most efficient one-time simulation-sound
(quasi-adaptive) non-interactive zero-knowledge arguments for linear languages over cyclic groups,
the first one-round group password-authenticated key exchange without random oracles, the most
efficient threshold structure-preserving chosen-ciphertext-secure encryption scheme, and the most
efficient one-round password authenticated key exchange in the UC framework.

Keywords. Hash Proof System, Non-Interactive Zero-Knowledge Proof, Group Password Authenti-
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1 Introduction

Hash Proof Systems or Smooth Projective Hash Functions (SPHFs), which can be seen as a kind
of implicit designated-verifier proofs of membership [ACP09,BPV12], were originally introduced
by Cramer and Shoup [CS02] as a way to build efficient chosen-ciphertext-secure (IND-CCA)
encryption schemes. Informally speaking, SPHFs are families of pairs of functions (Hash,ProjHash)
defined on a language L ⊂ X . These functions are indexed by a pair of associated keys (hk, hp),
where the hashing key hk and the projection key hp can be seen as the private and public
keys, respectively. When computed on a word C ∈ L , both functions should lead to the same
result: Hash(hk,L , C) with the hashing key and ProjHash(hp,L , C, w) with the projection key
and a witness w that C ∈ L . Of course, if C 6∈ L , such a witness does not exist, and the
smoothness property states that Hash(hk,L , C) is independent of hp. As a consequence, the
value Hash(hk,L , C) cannot be guessed even with the knowledge of hp.

Since their introduction, SPHFs have been used in various applications, including Password
Authenticated Key Exchange (PAKE) [KOY01,GL03,KV11], Oblivious Transfer [Kal05,ABB+13],
One-Time Relatively-Sound Non-Interactive Zero-Knowledge Arguments [JR12], Zero-Knowledge
Arguments [BBC+13], and Trapdoor Smooth Projective Hash Functions (TSPHFs) [BBC+13].
An SPHF for a language L also directly leads to a witness encryption scheme [GGSW13] for
the same language L : encrypting a message m for a word C consists in generating an hashing
key hk and a projection key hp and outputting hp together with m masked with the hash value
Hash(hk,L , C) of C under hk. If we know a witness w for C, we can compute this hash value
from hp, while if C /∈ L , this hash value statistically masks the message.

As explained in [BBC+13], several variants of SPHFs have been proposed over the years,
depending on whether the projection key hp is allowed to depend on C and whether the
smoothness holds even when C is chosen after having seen hp. For witness encryption schemes,
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for example, the weakest notion (hp depends on C) is sufficient, while for public-key encryption
schemes and one-round PAKE, the strongest notion (hp does not depend on C and C may be
chosen after hp in the smoothness property) is required. In this article, we focus on the strongest
notion of SPHF, also called KV-SPHF in [BBC+13], since it has more applications. However,
most parts of the paper could be adapted to use the weaker GL-SPHF notion.

Expressiveness of SPHFs. Due to the wide range of applications of SPHFs, one may wonder
what kind of languages can be handled by SPHFs. First, since SPHF implies statistical witness
encryption, it is important to remark that it is impossible to construct SPHF for any NP
language, unless the polynomial hierarchy collapses [GGSW13]. Nevertheless, as the many
different applications show, the class of languages supported by SPHFs can be very rich.

Diverse Groups and Diverse Vector Spaces. In [CS02], Cramer and Shoup showed that SPHFs
can handle any language based on what they call a diverse group. Most, if not all, constructions
of SPHF are based on diverse groups. However, in the context of languages over cyclic groups,
bilinear groups or even multilinear groups, diverse groups may appear slightly too generic. That
is why, in [BBC+13], Benhamouda et al. introduced a generic framework (later called diverse
vector space) encompassing most known SPHFs based over these kinds of groups. It can be seen as
particular diverse groups with more mathematical structure, namely using vector spaces instead
of groups. This idea is actually already present in Section 7.4.1 of the full version of [CS02]. In
this article, we are mainly interested on SPHFs based on diverse vector spaces.

Operations on SPHFs. In order to enrich the class of languages that can be handled by SPHFs,
Abdalla, Chevalier, and Pointcheval [ACP09] showed how to build SPHFs for languages that can
be described in terms of disjunctions and conjunctions of simpler languages for which SPHFs are
known to exist. Let L1 and L2 be two such languages. In the particular case of conjunctions,
when given SPHFs for L1 and L2, they showed how to build an SPHF for the conjunction
L = L1×L2, so that a word C = (C1, C2) ∈ L if and only if C1 ∈ L1 and C2 ∈ L2. Note that
this definition is a generalization of the “classical” conjunction: C1 ∈ L if and only if C1 ∈ L1
and C1 ∈ L2, which we can get by setting C1 = C2.

In the case of disjunctions, when given SPHFs for L1 and L2, Abdalla et al. showed how to
build an SPHF for language L = (L1 ×X2) ∪ (X1 ×L2), so that C = (C1, C2) ∈ L if and only
if C1 ∈ L1 or C2 ∈ L2. In particular, a witness for C = (C1, C2) ∈ L can be either a witness
w1 for C1 ∈ L1 or a witness w2 for C2 ∈ L2. As for conjunctions, by setting C1 = C2, one gets
the “classical” disjunction: C = (C1, C1) ∈ L if and only if C1 ∈ L1 or C1 ∈ L2.

Unfortunately, while the conjunction of two strong SPHFs in [ACP09] yields a strong SPHF,
the same is not true for disjunctions, where the projection key hp necessarily depends on C. And
this greatly limits its applications1.

1.1 Results

Disjunction of SPHFs. Our first main result is to show how to construct the disjunction of
two SPHFs for two languages based on diverse vector spaces. Essentially, the only requirement
for the construction is that it is possible to compute a pairing between an element of the first
language L1 and an element of the second language L2. Concretely, if we have a bilinear map
e : G1 ×G2 → GT where G1, G2 and GT are cyclic groups of some prime order p (we say that
(p,G1,G2,GT , e) is a bilinear group), and if L1 is defined over G1 and L2 over G2, then our
construction provides an SPHF for the disjunction of L1 and L2. Furthermore, this disjunction
can be repeated multiple times, if multilinear maps are available. The only limitation is that the
1 A reader familiar with [Gro06] may wonder why the methods in [Gro06] cannot be applied to provide a form of
disjunction, given that SPHFs exist for languages of quadratic pairing equations over commitments [BBC+13].
Unfortunately, this technique would not yield a real SPHF, since additional commitments would be required.
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complexity of our constructions grows exponentially with the number of repetitions, therefore
limiting the total number of disjunctions that we can compute.

Application: Constant-Size NIZK and One-Time Simulation-Sound NIZK. First, we
show how to use disjunctions of SPHFs to create efficient non-interactive zero-knowledge arguments
(NIZK) and even one-time simulation-sound NIZK, i.e., NIZK in which a dishonest (polynomial-
time) prover cannot produce a valid proof of a false statement, even when seeing one simulated
proof on a statement of its choice (which may be false). The proof size consists of only two
group elements, even for the one-time simulation-sound version, assuming the language we
are interested in can be handled by an SPHF over some group G1, where (p,G1,G2,GT ) is an
asymmetric bilinear group, and assuming DDH is hard in G2. The languages handled roughly
consist of languages defined by “linear” equations over G1, such as the DDH language, the
language of valid Cramer-Shoup [CS98] ciphertexts and many other useful languages as shown
in [BBC+13,JR13].

Our NIZK is slightly different from a usual NIZK, since the common reference string depends
on the language. Jutla and Roy called them quasi-adaptive NIZK in [JR13], and showed that
they can replace NIZK in several applications.

Our one-time simulation-sound NIZK yields a very efficient structure-preserving threshold
IND-CCA encryption scheme, with the shortest ciphertext size so far. Threshold means the
decryption key can be shared between parties and a ciphertext can be decrypted if and only if
enough parties provide a partial decryption of it using their key share, while structure-preserving
means it can be used in particular with Groth-Sahai NIZK [GS08] or our new NIZK construction.
In addition, this new encryption can be used in the one-round password authenticated key
exchange (PAKE) scheme in the UC model in [BBC+13] to obtain an improvement of up to 30%
in the communication complexity, under the same assumptions.

Other Applications. Another important application is the first one-round group password
authenticated key exchange (GPAKE) with n players, assuming the existence of a (n−1)-multilinear
map and the hardness of the n-linear assumption n-Lin without random oracles2. This was an
open problem. We remark, however, that our construction only works for small values of n since
the overall complexity of the protocol and the gap in the security reduction grows exponentially
in n. We note, however, that the tripartite PAKE which only requires pairings is reasonably
efficient since it consists of flows with 61 group elements for each user (5 for the Cramer-Shoup
ciphertext and 56 for the projection key).

A second application is a new construction for TSPHF, which supports slightly more languages
than the original one, but which is slightly less efficient. A TSPHF (Trapdoor Smooth Projective
Hash Function [BBC+13]) is a variant of an SPHF with a full-fledged zero-knowledge flavor:
there exists a trapdoor for computing the hash value of any word C ∈ X when only given C and
the projection key hp.

Finally, the unforgeability of the one-time linearly homomorphic structure-preserving signa-
ture scheme of Libert et al. [LPJY13] can be explained by the smoothness of some underlying
SPHF, which can be seen as the disjunction of two SPHFs. This new way of seeing their signature
scheme directly shows how to extend it to other assumptions, such as SXDH, κ-Lin, or even any
MDDH assumption [EHK+13] secure in bilinear groups.

Pseudo-Random Projective Hash Functions (PrPHFs) and More Efficient Applica-
tions. For our NIZK and our new TSPHF, the construction essentially consists in the disjunction
of an SPHF for the language in which we are interested, and another SPHF for a language which
is used to provide extra features (zero-knowledge and “public verifiability” for our NIZK and
2 At the time the first version of this paper was made public, the multilinear map construction by Coron et
al. [CLT13] seemed to be a plausible candidate. However, as recently shown by Cheon et al. [CHL+14], this is
no longer the case. Unfortunately, no current candidate multilinear map construction is known to work for our
framework for n ≥ 3.
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trapdoor for our TSPHF). This second language L2 is supposed to be a hard subset membership
one, i.e., it is hard to distinguish a random word C2 ∈ L2 from a random word C2 ∈ X2 \L2.

To get more efficient applications, we introduce the notion of pseudo-random projective hash
functions (PrPHFs) which are particular SPHFs over trivial languages, i.e., languages L = X ,
where all words are in the language. Of course, smoothness becomes trivial, in this case. That is
why PrPHFs are supposed to have another property called pseudo-randomness, which ensures that
if the parameters of the language L and the word C are chosen at random, given a projection
key hp (and no witness for C), the hash value H of C appears random.

We then show that we can replace the second hard subset membership language in our NIZK
and our TSPHF by a trivial language with a PrPHF, assuming a certain property over the first
language L1 (which is almost always verified). This conversion yields slightly shorter proofs (for
our NIZK and our one-time simulation-sound NIZK) or slightly shorter projection keys (for our
TSPHF).

Related Work. Until now, the most efficient NIZK for similar languages was the one of Jutla
and Roy [JR14], and the most efficient one-time simulation-sound NIZK was the unbounded
simulation-sound NIZK of Libert et al. [LPJY14]. Even though all these constructions have
constant-size proofs, our second NIZK is slightly more efficient for κ-linear assumptions, with
κ ≥ 2, while our one-time simulation-sound NIZK is about ten times shorter. Moreover, our
construction might be simpler to understand due to its modularity. We provide a detailed
comparison in Section 7.3.

1.2 Organization

In the next section, we give the high level intuition for all our constructions and their applications.
Then, after recalling some preliminaries in Section 3, we give the details of our construction of
disjunctions of SPHFs in Section 4, which is one of our main contributions. We then show how
to build efficient NIZK and one-time simulation-sound NIZK from it in Section 5. After that, we
introduce the notion of PrPHF in Section 6 and show in Section 7 how this can improve some
of our previous applications. These last two sections are much more technical: although the
underlying ideas are similar to the ones in previous sections, the proofs are more complex. Due
to lack of space, details of our two other applications, namely one-round GPAKE and TSPHF,
are presented in Appendix D, but an overview is available in Section 2.3.

2 Overview of Our Constructions

2.1 Disjunction of Languages

Intuition. From a very high point of view, the generic framework [BBC+13] enables us to
construct an SPHF for any language L which is a subspace of the vector space of all words X .

It is therefore possible to do the conjunction of two languages L1 and L2 supported by this
generic framework by remarking that L1 ×L2 is a subspace of the vector space X1 ×X2. This
construction of conjunctions is an “algebraic” version of the conjunction proposed in [ACP09].

Unfortunately, the same approach cannot be directly applied to the case of disjunctions,
because (L1 ×X2)∪ (X1 ×L2) is not a subspace of X1 ×X2, and the subspace generated by the
former union of sets is X1 × X2. In this article, we solve this issue by observing that, instead
of using X = X1 × X2, we can consider the tensor product of X1 and X2: X = X1 ⊗ X2. Then
the disjunction of L1 and L2 can be seen as the subspace L of X generated by: L1 ⊗X2 and
X1 ⊗L2. Notice that (L1 ⊗ X2) ∪ (X1 ⊗L2) is not a subspace and so L is much larger than
this union of sets. But we can prove that if C1 ⊗ C2 ∈ L , then C1 ∈ L1 or C2 ∈ L2.

Before providing more details about these constructions, let us first briefly recall the main
ideas of the generic framework for constructing SPHFs.
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Generic Framework for SPHFs. The generic framework for SPHFs in [BBC+13] uses a
common formalization for cyclic groups, bilinear groups, and even multilinear groups3 (of prime
order p), called graded rings4.

Basically, graded rings enable us to use a ring structure over these groups: the addition and
the multiplication of two elements u and v, denoted u+ v and u • v, respectively, correspond to
the addition and the multiplication of their discrete logarithms. For example, if g is a generator
of a cyclic group G, and a and b are two scalars in Zp, a+ b = a+ b, a • b = a · b (because the
“discrete logarithm” of a scalar is the scalar itself), ga + gb = ga+b, and ga • gb = ga·bT , with gT a
generator of another cyclic group GT of order p.

Of course, computing ga • gb = ga·bT requires a bilinear map e : G×G→ GT , if the discrete
logarithms of ga and gb are not known. And if such a bilinear map exists, we can compute ga • gb
as e(ga, gb). For a similar reason, the multiplication of three group elements via • would require
a trilinear map. Therefore, graded rings can be seen as the ring Zp with some limitations on
the multiplication. Here, to avoid technicalities, the group of each element is implicit, and we
suppose that above constraints on the multiplications are satisfied. Formal details are left to the
following sections.

From a high level point of view, in this framework, we suppose there exists a map θ from the
set of words X to a vector space X̂ of dimension n, together with a subspace L̂ of X̂ , generated
by a family of vectors (Γi)ki=1, such that C ∈ L if and only if θ(C) ∈ L̂ . When the function θ
is clear from context, we often write Ĉ := θ(C).

A witness for a word C ∈ L is a vector λ = (λi)ki=1 so that Ĉ = θ(C) =
∑k
i=1 λi • Γi. In

other words, it consists of the coefficients of a linear combination of (Γi)ki=1 equal to Ĉ.
Then, a hashing key hk is just a random linear form hk := α ∈ X̂ ∗ (X̂ ∗ being the dual vector

space of X̂ , i.e., the vector space of linear maps from X̂ to Zp), and the associated projection
key is the vector of its values on Γ1, . . . ,Γk:

hp := γ = (γi)ki=1 = (α(Γi))ki=1.

The hash value of a word C is then H := α(Ĉ). If λ is a witness for C ∈ L , then the latter can
also be computed as:

H = α(Ĉ) = α

(
k∑
i=1

λi • Γi

)
=

k∑
i=1

λi • α(Γi) =
k∑
i=1

λi • γi,

which only depends on the witness λ and the projection key hp. The smoothness comes from
the fact that, if C /∈ L , then Ĉ /∈ L̂ and Ĉ is linearly independent from (Γi)ki=1. Hence, α(Ĉ)
looks random even given hp = (α(Γi))ki=1.

For a reader familiar with [CS02], the generic framework is similar to a diverse group, but
with more structure: a vector space instead of a simple group. When θ is the identity function,
(X ∗,X ,L ,Zp) is a diverse group. We remark, however, that one does not need to know diverse
groups to understand our paper.

Example 1 (SPHF for DDH). Let us illustrate this framework for the DDH language: let g, h be
two generators of a cyclic group G of prime order p, let X = G2 and L = {(gr, hr)ᵀ ∈ X | r ∈ Zp}.
We set X̂ = X , L̂ = L and θ the identify function so that C = Ĉ = (u, v)ᵀ. L̂ is generated
by the column vector Γ1 = (g, h)ᵀ. The witness for C = (gr, hr)ᵀ is λ1 = r. The hashing key
3 In this work, we need a multilinear map for which DDH, κ-Lin, or any MDDH assumption [EHK+13] hold
in the multilinear groups. Unfortunately, as explained in Footnote 2, no current candidate multilinear map
construction is known to work for our framework.

4 Graded rings were named after graded encodings systems [GGH13] and are unrelated to the mathematical
notion of graded rings.
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hk = α $← X̂ ∗ can be represented by a row vector α = (α1, α2) ∈ Z1×2
p and

hp = γ1 = α(Γ1) = α • Γ1 = gα1 · hα2

H = α(Ĉ) = α • Ĉ = uα1 · vα2 = γ1 • r = γr1 .

This is exactly the original SPHF of Cramer and Shoup for the DDH language in [CS02].

Remark on the Notation of Vectors (Transposition) and Link with [EHK+13]. Com-
pared to [BBC+13], in this paper, we transposed all the vectors and matrices: elements of X
are now column vectors, while hashing keys (elements of X ∗) are row vectors. This seems more
natural and makes our notation closer to the one of Escala et al. [EHK+13].

Warm up: Conjunction of Languages. As a warm up, let us first construct the conjunction
L = L1 ×L2 of two languages L1 ⊂ X1 and L2 ⊂ X2 supported by the generic framework, in
a more algebraic way than the one in [ACP09]. We can just set:

X̂ := X̂1 × X̂2 n := n1 + n2

L̂ := L̂1 × L̂2 k := k1 + k2

θ((C1, C2)) = Ĉ :=
(
θ1(C1)
θ2(C2)

)
(Γi)ki=1 :=

(Γ (1)
i

0

)k1

i=1
,

(
0
Γ

(2)
i

)k2

i=1


This is what is implicitly done in all conjunctions of SPHFs in [BBC+13], for example.

Example 2 (SPHF for Conjunction of DDH). Let g1, h1, g2, h2 be four generators of a cyclic
group G of prime order p. Let X1 = X2 = G2 and Li = {(grii , h

ri
i )ᵀ ∈ Xi | ri ∈ Zp} for i = 1, 2.

We set X̂i = Xi, L̂i = Li and θi the identify function so that Ci = Ĉi = (ui, vi)ᵀ, for i = 1, 2. L̂i

is generated by the column vector Γ (i)
1 = (gi, hi)ᵀ. The witness for Ci = (grii , h

ri
i )ᵀ is λ(i)

1 = ri.
Then, the SPHF for the conjunction of L1 and L2 is defined by:

X̂ := X̂1 × X̂2 = G4 n = 4 k = 2
L̂ := L̂1 × L̂2 = {(gr1

1 , h
r1
1 , g

r2
2 , h

r2
2 )ᵀ | r1, r2 ∈ Zp}

Γ1 := (g1, h1, 1, 1)ᵀ ∈ G4 Γ2 := (1, 1, g2, h2)ᵀ ∈ G4

θ(C) := Ĉ := (u1, v1, u2, v2)ᵀ ∈ G4 for C = (C1, C2) = ((u1, v1)ᵀ, (u2, v2)ᵀ)

The hashing key hk = α $← X̂ ∗ can be represented by a row vector α = (α1, α2, α3, α4) ∈ Z1×4
p

and

hp =
(
γ1
γ2

)
=
(
α • Γ1
α • Γ2

)
=
(
gα1

1 · h
α2
1

gα3
2 · h

α4
2

)
H = α(Ĉ) = α • Ĉ = uα1

1 · v
α2
1 · u

α3
2 · v

α4
2 = γ1 • r1 + γ2 • r2 = γr1

1 · γ
r2
2 .

Disjunction of Languages.We first remark we cannot naively extend the previous construction
by choosing X̂ = X̂1 × X̂2 and L̂ = (L̂1 × X̂2) ∪ (X̂1 × L̂2), because, in this case L̂ is not a
subspace, and the subspace generated by L̂ is X̂1 × X̂2. That is why we use tensor products of
vector spaces instead of direct product of vector spaces. Concretely, we set

X̂ := X̂1 ⊗ X̂2 n := n1n2

L̂ := 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉 k := k1n2 + n1k2

θ(C) = Ĉ := Ĉ1 ⊗ Ĉ2
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where the notation 〈V 〉 is the vector space generated by V . The vectors Γi are described in
detail in the core of the paper. This construction works since, if Ĉ1 ⊗ Ĉ2 ∈ L̂ then, thanks to
properties of the tensor product, Ĉ1 ∈ L̂1 or Ĉ2 ∈ L̂2.

It is important to remark that computing a tensor product implies computing a multiplication.
So if Ĉ1 in X̂1 and Ĉ2 in X̂2 are over some cyclic groups G1 and G2, we need a bilinear map
e : G1×G2 → GT to actually be able to compute Ĉ1⊗ Ĉ2. More generally, doing the disjunction
of K languages over cyclic groups requires a K-way multilinear map. This can be seen in the
following example and we formally deal with this technicality in the core of the paper.

Example 3 (SPHF for Disjunction of DDH). Let us use the same notation as in Example 2,
except that this time (p,G1,G2,GT , e) is an asymmetric bilinear group (e is a bilinear map:
G1 × G2 → GT ), g1, h1 are generators of G1, g2, h2 are generators of G2, and Xi = X̂i = G2

i

(instead of G2) for i = 1, 2.
The disjunction of L1 and L2 is defined by

X̂ := X̂1 ⊗ X̂2 = G4
T n := 4

L̂ := 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉 k := 4

Γ1 :=
(
g1
h1

)
⊗
(

1 ∈ Zp
0 ∈ Zp

)
=


g1

1
g0

1
h1

1
h0

1

 =


g1
1
h1
1

 ∈ G4
1

Γ2 :=
(
g1
h1

)
⊗
(

0 ∈ Zp
1 ∈ Zp

)
=


g0

1
g1

1
h0

1
h1

1

 =


1
g1
1
h1

 ∈ G4
1

Γ3 :=
(

1 ∈ Zp
0 ∈ Zp

)
⊗
(
g2
h2

)
=


g1

2
h1

2
g0

2
h0

2

 =


g2
h2
1
1

 ∈ G4
2

Γ4 :=
(

0 ∈ Zp
1 ∈ Zp

)
⊗
(
g2
h2

)
=


g0

2
h0

2
g1

2
h1

2

 =


1
1
g2
h2

 ∈ G4
2

θ(C) = Ĉ := Ĉ1 ⊗ Ĉ2 = (u1 • u2, u1 • v2, v1 • u2, v1 • v2)ᵀ

= (e(u1, u2), e(u1, v2), e(v1, u2), e(v1, v2))ᵀ ∈ G4
T ,

for C = (C1, C2) = ((u1, v1), (u2, v2)). The generating family of L̂ we used here is (Γ1,Γ2,Γ3,
Γ4). As seen after, if we know the witness r1 for C1, we can use Γ1 and Γ2 to compute the hash
value of C = (C1, C2), while if we know the witness r2 for C2, we can use Γ3 and Γ4 to compute
the hash value of C. Obviously this generating family is not free, since L̂ has dimension 3 and
this family has cardinality 4.

The witnesses λ for a word C = (C1, C2) are{
(r1 • u2, r1 • v2, 0, 0) if (u1, v1) = (gr1 , hr1) (i.e., if r1 is a witness for C1)
(0, 0, r2 • u1, r2 • v1) if (u2, v2) = (gr2 , hr2) (i.e., if r2 is a witness for C2),
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the hashing key hk = α $← X̂ ∗ can be represented by a row vector α = (α1, α2, α3, α4) ∈ Z1×4
p

and

hp = (γ1, γ2, γ3, γ4)ᵀ = (gα1
1 · h

α3
1 , gα2

1 · h
α4
1 , gα1

2 · h
α2
2 , gα3

2 · h
α4
2 )ᵀ ∈ G2

1 ×G2
2

H = α(Ĉ) = Ĉ •α = e(u1, u2)α1 · e(u1, v2)α2 · e(v1, u2)α3 · e(v1, v2)α4

=
{
r1 • u2 • γ1 + r1 • v2 • γ2 = e(γ1, u2)r1e(γ2, v2)r1 , if (u1, v1) = (gr1

1 , h
r1
1 )

r2 • u1 • γ3 + r2 • v1 • γ4 = e(u1, γ3)r2e(v1, γ4)r2 , if (u2, v2) = (gr2
2 , h

r2
2 )

The last equalities, which show the way the projection hashing works, explain the choice of the
generating family (Γi)i.

2.2 Main Application: One-Time Simulation-Sound NIZK Arguments
The language of the NIZK is L1, while L2 is a hard subset membership language used to build
the NIZK. For the sake of simplicity, we suppose that L2 = L̂2, X2 = X̂2, and θ2 is the identity
function. We will consider the SPHF of the disjunction of L1 and L2, so we need to suppose that
it is possible to build it. For this high level overview, let us just suppose that (p,G1,G2,GT , e)
is a bilinear group and that L1 is defined over G1, L2 over G2. If DDH holds in G2, L2 can just
be the DDH language in G2 recalled in Example 1.

The common reference string is a projection key hp for the disjunction of L1 and L2, while
the trapdoor (to simulate proofs) is the hashing key. Essentially, a proof π = (πi2)i2 for a
statement C1 is just a vector of the hash values of (C1, e2,i2) where (e2,i2)i2 are the scalar
vectors of the canonical base of X̂2. These hash values are πi2 = α(Ĉ1 ⊗ e2,i2), and can also be
computed from the projection key hp and a witness for Ĉ1.

The basic idea is that a valid proof for a word C1 ∈ L1 enables us to compute the hash value
H ′ of (C1, C2) for any word C2 ∈ X̂2, by linearly combining elements of the proof, since any
word C2 can be written as a linear combination of (e2,i2)i2 :

H ′ :=
∑
i2

πi2 • C2,i2 =
∑
i2

α(Ĉ1 ⊗ (C2,i2 • e2,i2)) = α(Ĉ1 ⊗ C2),

if C2 =
∑
i2 C2,i2 • e1,i2 . Hence, for any word C2 ∈ L2 for which we know a witness, we can

compute the hash value of (C1, C2), either using a valid proof for C1 (as H ′ above), or directly
using the witness of C2 and the projection key hp (as for any SPHF for a disjunction).

To check a proof, we basically check that for any word C2 ∈ L2, these two ways of computing
the hash value of (C1, C2) yields the same result. Thanks to the linearity of the language
L2, it is sufficient to make this test for a family of words C2 which generate L2, such as
the words Γ (2)

j (for j = 1, . . . , k2). We recall that the witness for Γ (2)
j is the column vector

(0, . . . , 0, 1, 0, . . . , 0)ᵀ ∈ Zk2
p , where the j-th coordinate is 1.

The trapdoor, i.e., the hashing key, clearly enables us to simulate any proof, and the resulting
proofs are perfectly indistinguishable from normal ones, hence the perfect zero-knowledge
property. Moreover, the soundness comes from the fact that a proof for a word C1 /∈ L1 can be
used to break the hard subset membership in L2.

More precisely, let us consider a soundness adversary which takes as input the projection
key hp and which outputs a word C1 /∈ L1 and a valid proof π for C1. On the one hand, such
a valid proof enables us to compute the hash value H ′ of (C1, C2) for any word C2 ∈ L2, by
linearly combining elements of the proofs (as seen above), and the validity of the proof ensures
the resulting value H ′ is correct if C2 ∈ L2. On the other hand, we can also compute a hash
value H of (C1, C2) for any C2 ∈ X2 using the hashing key hk. Then, if C2 ∈ L2, necessarily
H = H ′, while if C2 /∈ L2, the smoothness ensures that H looks completely random when
given only hp. Since H ′ does not depend on hk but only on hp, it is different from H with
overwhelming probability. Therefore, we can use such an adversary to solve the hard subset
membership problem in L2 (namely, the DDH in G2 in the example below).
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Example 4 (NIZK for DDH in G1, assuming DDH in G2). Using the SPHF in Example 3, the
proof for a word C1 = (u1 = gr1, v1 = hr1) ∈ G2

1 is the vector π = (π1, π2) ∈ G2
1 where: π1 is

the hash value of (C1, (1, 0)ᵀ) ∈ G2
1 × Z2

p and π2 is the hash value of (C1, (0, 1)ᵀ) ∈ G2
1 × Z2

p.
Concretely we have:

π1 = γ1 • r = γr1 ∈ G1 π2 = γ2 • r = γr2 ∈ G1.

This proof is valid if and only if:

e(π1, g2) · e(π2, h2) = π1 • g2 + π2 • h2
?= u1 • γ3 + v1 • γ4 = e(u1, γ3) · e(v1, γ4).

This check can be done using the common reference string hp = (γ1, γ2, γ3, γ4).
Finally, to simulate a proof for C1 = (u1, v1) without knowing any witness for C1 but knowing

the trapdoor hk = α = (α1, α2, α3, α4) ∈ Z1×4
p , we compute π1 and π2 as follows:

π1 := u1 • α1 + v1 • α3 = uα1
1 · v

α3
1 π2 := u1 • α2 + v1 • α4 = uα2

1 · v
α4
1 .

To get a one-time simulation-sound NIZK, we replace the SPHF over L1 by a stronger kind
of SPHF for which, roughly speaking, the hash value of a word C /∈ L1 appears random even if
we are given the projection key hp and the hash value of another word C ∈ X1 of our choice. We
show that it is always possible to transform a normal SPHF into this stronger variant, assuming
the existence of collision-resistant hash functions5.

2.3 Other Applications

TSPHF. A TSPHF is an extension of an SPHF, with an additional CRS and an associated
trapdoor, where the latter provides a way to efficiently compute the hash value of any word
C knowing only the projection key hp. Since hp now needs to contain enough information to
compute the hash value of any word in X , the smoothness property of TSPHFs is no longer
statistical but computational. As shown in [BBC+13], TSPHFs can be used to construct two-round
zero-knowledge protocols and the most efficient one-round PAKE in the standard model.

TSPHF is a direct application of disjunctions of SPHFs: as for NIZK, the language we are
interested in is L1, while L2 is a hard subset membership language. The common reference
string contains a word C2 ∈ L2, and the trapdoor is just a witness w2 for this word. The hash
value of some C1 ∈ X1, is the hash value of (C1, C2) for the disjunction of L1 and L2, which can
be computed in two or three ways: using hk, or using hp and w1 (classical projection hashing
— possible only when C1 ∈ L1 and w1 is a witness for it), or using hp and w2 (trapdoor). The
smoothness comes from the hard subset membership property of L2 (which says that this
common reference string is indistinguishable from a word C2 /∈ L2) and the fact that when
C2 /∈ L2, the hash value of (C1, C2) appears random by smoothness when C1 /∈ L1, given only
hp.

The resulting TSPHF is slightly less efficient than the construction in [BBC+13]: if L2
corresponds to the DDH language (Example 1), the projection key contains less than twice more
elements than the original construction. But it has the advantage of handling more languages,
since contrary to the original construction, there is no need to have a trapdoor Tcrs for crs
which enables us to compute the discrete logarithms of all entries of Γ1 (a property called
witness-samplability in [JR13])6.
5 Actually, the use of collision-resistant hash functions could be avoided, but that would make the construction
much less efficient.

6 However, due to the definition of computational smoothness of TSPHF in [BBC+13], it is still required to
have such a trapdoor Tcrs enabling to check whether a word C1 is in L1 or not. It may be possible to change
definitions to avoid that, but in all applications we are aware of, this is never a problem.
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One-Time Linearly Homomorphic Structure-Preserving Signature. We can obtain the
one-time linearly homomorphic structure-preserving signature scheme of messages in Gn1

1 of Libert
et al. [LPJY13] and extend it to work under any hard-subset membership language assumption,
such as the DDH language in Example 1 but also DLin or any MDDH assumption [EHK+13] as
seen later (instead of just DLin as in the original paper). The construction is very similar to our
NIZK construction.

Let L2 = L̂2 ⊂ X2 = X̂2 be a hard membership language and X1 = X̂1 = Gn1
1 (the language

L1 = L̂1 will be defined later). The secret key is the hashing key hk = α of the SPHF of the
disjunction of L1 and L2 (notice that it does not depend on the language L̂1 but only on X̂1),
while the public key is the associated projection key when L1 = L̂1 = {0}. The signature of
a message M ∈ X̂1 = Gn1

1 is the vector of the hash values of (M , e2,i2) where (e2,i2)i2 are
the scalar vectors of the canonical base of X̂2. It can be computed using the secret key hk.
Actually, this corresponds to the NIZK proof of M (computed using the trapdoor hk), in our
NIZK scheme above. Checking the signature can be done by checking the validity of the proof
using the projection key hp when L̂1 = {0}.

Finally, to prove the one-time unforgeability, we just need to remark that knowing signatures
ofM1, . . . ,Mn ∈ X̂1 actually can be seen as knowing a projection key hp′ associated to hk when
L̂1 is the subspace generated by Γ1 := M1, . . . ,Γn := Mn. Therefore, generating a signature
of a message M linearly independent of these messages means generating an NIZK proof for a
statement M /∈ L̂1, which has been shown to be hard thanks to the smoothness property of the
SPHF and the hard subset membership property of L2.

One-Round GPAKE. A one-round group password-based authenticated key exchange (GPAKE)
is a protocol enabling n users sharing a password pw to establish a common secret key sk in
only one round: just by sending one flow. For such protocols, online dictionary attacks, which
consist in guessing the password of an honest user and running honestly the protocol with this
guessed password, are unavoidable. As a result, the best security that one can hope for is to
limit the adversary to at most one password guess per interaction with an honest party. In order
to capture this intuition, the formal security model of Abdalla et al. [ABCP06], which is recalled
in Appendix D.2, essentially guarantees that, in a secure GPAKE scheme, no adversary having
at most q interactions with honest parties can win with probability higher than q/N , where N
is the number of possible passwords. Here, winning means distinguishing a real key (generated
by an honest user following the protocol, controlled by the challenger) from a random key sk.

Our construction is a non-trivial extension of the one-round PAKE of Benhamouda et al.
in [BBC+13], which is an efficient instantiation of the Katz-Vaikuntanathan framework [KV11].
Basically, a user Ui (1 ≤ i ≤ n) sends an extractable commitment Ci (i.e., an encryption for some
public key ek in the common reference string) of his password pw together with a projection key
hpi for the disjunction of n− 1 languages of valid commitments of pw (words in this disjunction
are tuple Ci = (Cj)j 6=i of n− 1 commitments where at least one of them is a valid commitment
of pw). Each partner Uj of this user Ui can compute the hash value Hi of the tuple Ci, with
hpi, just by additionally knowing the witness (the random coins) of his commitment Cj onto pw,
while Ui uses hki. The resulting secret key K is just the XOR of all these hash values (one per
hashing key, i.e., one per user): sk = H1 xor · · · xor Hn.

At a first glance, one may wonder why our construction relies on a disjunction and not on
a conjunction: intuitively, as a user, we would like that every other user commits to the same
password as ours. Unfortunately, in this case, nobody would be able to compute the hash value
of the expected conjunction, except for the user who generated the hashing key. This is because
this computation would require the knowledge of all the witnesses and there is no way for a user
to know the witness for a commitment of another user. However, by relying on a disjunction,
each user is only required to know the witness for his own commitment.

To understand why this is a secure solution, please note that the challenger (in the security
game) can make dummy commitments for the honest players he controls. Then, if no corrupted



11

user (controlled by the adversary) commits to a correct password, the tuple of the n− 1 other
commitments would not be a valid word in the disjunction language (no commitment would be
valid) for any of the honest users. Hence, the hash value would appear random to the adversary.
The complete proof is a very delicate extension of the proof of the one-round PAKE of Katz and
Vaikuntanathan in [KV11], and may be of independent interest.

Due to recent results by Cheon et al. [CHL+14], currently no concrete instantiation of our
GPAKE is known for n ≥ 4 (see Footnote 2 on page 3). For n = 3, our scheme only relies on
bilinear groups and is practical

2.4 Pseudo-Random Projective Hash Functions and More Efficient Applications

Pseudo-Random Projective Hash Functions. As already explained in Section 1.1, for our
(one-time simulation-sound) NIZK and our TSPHF, the second language L2 is used to provide
extra features. Security properties come from its hard subset membership property. However,
hard subset membership comes at a cost: the dimension k2 of L̂2 has to be at least 1 to be
non-trivial, and so the dimension n2 of X̂2 is at least 2, otherwise L̂2 = X̂2. This makes the
projection key of the disjunction of L1 and L2 of size k1n2 + n1k2 ≥ 2k1 + n1.

Intuitively, what we would like is to be able to have a language L2 where n2 = k2 = 1. Such
a language would clearly not be hard subset membership, and the smoothness property of SPHF
would be completely trivial, since X̂2 \ L̂2 would be empty. That is why we introduce the notion
of pseudo-randomness which says that the hash value of a word C2 chosen at random in X2 (and
for implicit languages parameters crs2 chosen at random), the hash value of C2 looks random,
given only the projection key.

Under DDH in G2, we can simply choose crs2 = g2 a random generator in G2, X2 = X̂2 =
L2 = L̂2 = G2, and θ2 the identity function. The witness for a word C2 ∈ G2 is just its discrete
logarithm in base g2, and so L̂2 is seen as generated by the vector Γ (2)

1 = (g2). An hashing key
hk is just a random scalar α ∈ Zp, the associated projection key is hp = gα2 . Finally the hash
value is H = Cα2 . It can also be computed using hp if we know the discrete logarithm of C2. The
DDH assumption says that if g2, hp = gα2 , C2 are chosen uniformly at random in G2, it is hard to
distinguish H = Cα2 from a random group element H ∈ G2; hence the pseudo-randomness.

Mixed Pseudo-Randomness. In all our applications, we are not really interested in the SPHF
on L2 but in the SPHF on the disjunction L of L1 and L2. Of course, this SPHF would be
smooth, but that property is again trivial, since all words (C1, C2) are in L . We therefore again
need a stronger property called mixed pseudo-randomness which roughly says that if hk is a
random hashing key, if C1 /∈ L1 and if C2 is chosen at random, the hash value of (C1, C2) ∈ L
appears random to any polynomial-time adversary, even given access to the projection key hp.

The proof of this property is quite technical and requires that it is possible to generate
parameters of L1 so that we know the discrete logarithm of the generators (Γ (1)

i1
)
i1

of L̂1. This
last property is verified by most languages in which we are interested.

Applications. Using the mixed pseudo-randomness property, we easily get more efficient NIZK
and TSPHF, just by replacing L2 by a language L2 with a pseudo-random Projective Hash
Function. Getting a more efficient one-time simulation-sound NIZK is slightly more complex and
is only detailed in the core of the paper. The resulting TSPHF construction actually corresponds
to the original construction in [BBC+13]. But seeing it as a disjunction of an SPHF for the
language we are interested in and of a pseudo-random projective hash function sheds new light
on the construction and make it easier to understand, in our opinion.
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3 Preliminaries

3.1 Notation

As usual, all the players and the algorithms will be possibly probabilistic and stateful. Namely,
adversaries can keep a state st during the different phases, and we denote by $← the outcome of a
probabilistic algorithm or the sampling from a uniform distribution. The statement y $← A(x; r)
denotes the operation of running A with input x and random tape r and storing the result in y.
For the sake of clarity, we will sometimes omit the random tape r in A(x; r).

The qualities of adversaries will be measured by their successes and advantages in certain
experiments Expsec or Expsec−b (between the cases b = 0 and b = 1), denoted Succsec(A,K) and
Advsec(A,K) respectively, where K is the security parameter. Formal definition of all of this and
of statistical distance can be found in Appendix A.1.

3.2 Definition of SPHF

Let (Lcrs)crs be a family of NP languages indexed by crs with witness relation Rcrs, namely
Lcrs = {x ∈ Xcrs | ∃w, Rcrs(x,w) = 1}, where (Xcrs)crs is a family set. The value crs is generated
by a polynomial-time algorithm Setupcrs taking as input the unary representation of the security
parameter K, and is usually a common reference string. The description of the underlying group
or graded ring is implicit and not part of crs. We suppose that membership in Xcrs and Rcrs can
be checked in polynomial time (in K).

Finally, we suppose that Setupcrs also outputs a trapdoor Tcrs associated to crs. This trapdoor
is empty ⊥ in most cases, but for some applications (namely NIZK constructions from Section 7),
we require that Tcrs contains enough information to decide whether a word C ∈ X is in L or not
(or slightly more information). We notice that for most, if not all, languages (we are interested
in), it is easy to make Setupcrs output such a trapdoor, without changing the distribution of crs.
In the sequel, crs is often dropped to simplify notation.

An SPHF over (Lcrs) is defined by four polynomial-time algorithms:

– HashKG(crs) generates a hashing key hk;
– ProjKG(hk, crs) derives a projection key hp from hk;
– Hash(hk, crs, C) outputs the hash value from the hashing key, for any crs and for any word
C ∈ X ;

– ProjHash(hp, crs, C, w) outputs the hash value from the projection key hp, and the witness
w, for a word C ∈ Lcrs (i.e., Rcrs(C,w) = 1).

The set of hash values is called the range and is denoted Π. It is often a cyclic group. We always
suppose that its size is super-polynomial in the security parameter K so that the probability to
guess correctly a uniform hash value is negligible.

An SPHF has to satisfy two properties:

– Perfect correctness. For any crs and any word C ∈ Lcrs with witness w (i.e., such that
Rcrs(C,w) = 1), for any hk $← HashKG(crs) and for hp← ProjKG(hk, crs), Hash(hk, crs, C) =
ProjHash(hp, crs, C, w);

– Perfect smoothness. The hash value of a word outside the language looks completely random.
More precisely, an SPHF is 0-smooth or perfectly smooth if for any crs and any C /∈ Lcrs,
the following two distributions are identical:{

(hp, H) | hk $← HashKG(crs); hp← ProjKG(hk, crs);H ← Hash(hk, crs, C)
}

{
(hp, H) | hk $← HashKG(crs); hp← ProjKG(hk, crs);H $← Π

}
.
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As shown in Appendix A.4, this definition of SPHF actually corresponds to a strong version
of KV-SPHF [BBC+13] with perfect smoothness7. In particular, it is stronger than the definition
of SPHF given in [CS02], where the smoothness is not perfect and is actually defined only for
random elements C ∈ X \Lcrs. This is also slightly stronger than the 1-universal hash proof
systems also defined in [CS02], since the hash value is supposed to look completely random and
not just having some minimal entropy.

We restrict ourselves to this very strong form of SPHFs for the sake of simplicity and because
most applications we consider require KV-SPHF. However, the construction of disjunctions of
SPHFs can still easily be extended to weaker forms of SPHFs.

3.3 Hard Subset Membership Languages

A family of languages (Lcrs ⊆ Xcrs)crs is said to be a hard subset membership family of languages,
if it is hard to distinguish between a word randomly drawn from inside Lcrs from a word
randomly drawn from outside Lcrs (i.e., from Xcrs \Lcrs). This definition implicitly assumes the
existence of a distribution over Xcrs and a way to sample efficiently words from Lcrs and from
Xcrs \Lcrs. More formally, this property is defined by the experiments Expsubset-memb-b depicted
in Fig. 6 on page 29, and holds when the advantage of a polynomial-time adversary against these
experiments is negligible.

3.4 Bilinear Groups, Graded Rings and Assumptions

All our concrete constructions are based on bilinear groups, which are extensions of cyclic groups.
Even though groups should be generated by an appropriate setup algorithm taking the security
parameter as input, our definitions below use fixed groups for simplicity.

Cyclic Groups and Bilinear Groups. (p,G, g) denotes a (multiplicative) cyclic group G of
order p and of generator g. When (p,G1, g1), (p,G2, g2), and (p,GT , gT ) are three cyclic groups,
(p,G1,G2,GT , e, g1, g2) or (p,G1,G2,GT , e) is called a bilinear group if e : G1 ×G2 → GT is a
bilinear map (called a pairing) efficiently computable and such that e(g1, g2) = gT is a generator
of GT . It is called a symmetric bilinear group if G1 = G2 = G. In this case, we denote it
(p,G,GT , e) and we suppose g = g1 = g2. Otherwise, if G1 6= G2, it is called an asymmetric
bilinear group.

Graded Rings. To understand the constructions in the article, it is sufficient to see a graded
ring as a way to use ring operations (+, •) over cyclic groups, bilinear groups, or even multilinear
groups, as explained at the beginning of Section 2.1. In the sequel, we will often consider two
multiplicatively compatible sub-graded rings G1 and G2 of some graded ring G: this basically
means that it is possible to compute the product • of any element of G1 with any element of
G2, and the result is in G. Concretely, as a first approach, it is possible to consider that G is a
bilinear group (p,G1,G2,GT , e), and that G1 and G2 corresponds to G1 and G2: if u1 ∈ G1 and
u2 ∈ G2, u1 • u2 = e(u1, u2). General and formal definitions are given in Appendix B.1.

Assumptions. The assumption we use the most is the SXDH assumption The SXDH assumption
over a bilinear group (p,G1,G2,GT , e, g1, g2) says the DDH assumption holds both in (p,G1, g1)
and (p,G2, g2), where the DDH assumption is defined as follows:

Definition 5 (Decisional Diffie-Hellman (DDH)). The Decisional Diffie-Hellman assump-
tion says that, in a cyclic group (p,G, g), when we are given (ga, gb, gc) for unknown random
a, b $← Zp, it is hard to decide whether c = ab mod p (a DH tuple) or c $← Zp (a random tuple).
7 The reader familiar with [BBC+13] may remark that in our definition, there is no parameter aux in addition to

crs. This parameter is indeed useless in the context of KV-SPHFs (contrary to GL-SPHFs), as it can be included
in the word C.



14

We also propose constructions under weaker assumptions than SXDH or DDH, namely κ-Lin,
defined as follows:

Definition 6 (κ-Lin). The κ-Linear assumption says that, in a cyclic group (p,G, g) , when we
are given (ga1 , . . . , gaκ , ga1b1 , . . . , gaκbκ , gc) for unknown a1, . . . , aκ, b1, . . . , bκ

$← Zp, it is hard to
decide whether c = b1 + · · ·+ bκ (a κ-Lin tuple) or c $← Zp (a random tuple).

The 1-Lin assumption is exactly DDH. One advantage of κ-Lin with κ ≥ 2 is that it can hold
even in symmetric bilinear groups (where G1 = G2) while DDH or SXDH do not. 2-Lin is also
denoted DLin, and κ-Lin often means κ-Lin in G1 and in G2. Actually, our constructions can
easily be tweaked to support any MDDH assumption [EHK+13]. MDDH assumptions generalize
κ-Lin assumptions.

4 Smooth Projective Hash Functions for Disjunctions

4.1 Generic Framework and Diverse Vector Spaces

Let us now recall the generic framework for SPHFs. We have already seen the main ideas of this
framework in Section 2.1. These ideas were stated in term of generic vector space. Even though
using generic vector spaces facilitates the explanation of high level ideas, it is better to use an
explicit basis when it comes to details. As already explained in Section 2.1 on page 6, compared
to [BBC+13], all vectors and matrices are transposed.

Let G be a graded ring. We now set X̂ = Gn, so that any vector Ĉ ∈ X̂ is a n-dimensional
column vector. We denote by (ei)ni=1 the canonical basis of X̂ . The dual space of X̂ is isomorphic8

to Z1×n
p , and the hashing key α ∈ X̂ ∗ corresponds to the row vector α = (αi)ni=1, with αi = α(ei).

We denote by Γ the matrix with columns (Γi)ki=1, where the family (Γi) generates the subspace
L̂ of X̂ . Finally, we assume that for each coordinate of the vector θ(C) ∈ Gn, the group in
which this coordinate lies (called the index of the coordinate, in the formal description of graded
rings in Appendix B.1) is independent of C.

We suppose that, a word C ∈ X is in L if and only if there exists λ ∈ Gk such that:

Ĉ := θ(C) = Γ • λ.

We also assume the latter equality holds if and only if it would hold by only looking at the
discrete logarithms (and not at the groups or indexes of entries or coordinates)9. In addition, we
suppose that λ can be computed easily from any witness w for C; and in the sequel we often
simply consider that w = λ. By analogy with diverse groups [CS02], as explained in Section 2.1,
we say that a tuple V = (X ,L ,R,G, n, k, Γ, θ) satisfying the above properties is a diverse vector
space.

A summary of diverse vector spaces and the construction of SPHF over them can be found
in Fig. 1. It is straightforward to see (and this is proven in [BBC+13]) that any SPHF defined
by a discrete vector space V as in Fig. 1 is correct and smooth.

4.2 Disjunctions of SPHFs

As explained in Section 2.1, an SPHF for the disjunction of two languages L1 and L2 roughly
consists in doing the tensor product of their related vector spaces X̂1 and X̂2. However, our
vector spaces are not classical vector spaces, since they are over graded rings. In particular,
multiplication of scalars is not always possible, and so tensor product may not be always possible
either. This is why we first introduce the notion of tensor product of vector spaces over graded
rings. Then we give the detailed construction of disjunctions of SPHFs.
8 Here we consider X̂ as Znp , for the sake of simplicity.
9 Formal requirements can be found in Appendix B.2.
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Diverse Vector Space V = tuple (X ,L ,R,G, n, k, Γ, θ) where

– n, k are two positive integers;
– L ⊂ X is an NP-language, defined by a witness relation R (and implicitely indexed by

crs):
Lcrs = {x ∈ Xcrs | ∃λ ∈ Gk, Rcrs(x,λ) = 1}

– G is a graded ring;
– θ is a function from L to Gn; notation: Ĉ := θ(C);
– Γ is a matrix in Gn×k;

such that for C ∈ X and λ ∈ Gk:

R(x,λ) = 1 ⇐⇒ Ĉ := θ(C) = Γ • λ,

plus some additional technical assumptions on groups or indexes of coefficients of θ(C) and Γ
(see text or Appendix B.2).
Notation: L̂ is the vector space generated by the columns of Γ ;

SPHF for V = (X ,L ,R,G, n, k, Γ, θ):
HashKG(crs) outputs a random row vector hk := α

$← Z1×n
p

ProjKG(hk, crs) outputs hp := γ = α • Γ ∈ G1×k

Hash(hk, crs, C) outputs H := α • Ĉ ∈ G
ProjHash(hp, crs, C,λ) outputs H ′ := γ • λ ∈ G

Fig. 1. Diverse Vector Space and Smooth Projective Hash Function (SPHF)

Tensor Product of Vector Spaces over Graded Rings. Let us very briefly recall notations
for tensor product and adapt them to vector spaces over graded rings. Let G1 and G2 be two
multiplicatively compatible sub-graded rings of G. Let V1 be a n1-dimensional vector space over
G1 and V2 be a n2-dimensional vector space over G2. Let (e1,i)n1

i=1 and (e2,i)n2
i=1 be bases of

V1 and V2 respectively. Then the tensor product V of V1 and V2, denoted V = V1 ⊗ V2 is the
n1n2-dimensional vector space over G generated by the free family (e1,i ⊗ e2,j)i=1,...,n1

j=1,...,n2

. The

operator ⊗ is bilinear, and if u =
∑n1
i=1 ui • e1,i and v =

∑n2
j=1 vj • e2,j , then:

u⊗ v =
n1∑
i=1

n2∑
j=1

(ui • vj) • (e1,i ⊗ e2,j).

More generally, we can define the tensor product of two matricesM ∈ Gk×m
1 andM ′ ∈ Gk′×m′

2 ,
T = M ⊗M ′ ∈ Gkk′×mm′ by

T(i−1)k′+i′,(j−1)m′+j′ = Mi,j •M ′i′,j′ for
{
i = 1, . . . , k, i′ = 1, . . . , k′,
j = 1, . . . ,m, j′ = 1, . . . ,m′.

And if M ∈ Gk×m
1 , M ′ ∈ Gk′×m′

2 , N ∈ Gm×n
1 and N ′ ∈ Gm′×n′

2 , and if M •N and M ′ •N ′ are
well-defined (i.e., are different than ⊥, using the notation defined in Appendix B.1), then we
have

(M ⊗M ′) • (N ⊗N ′) = (M •N)⊗ (M ′ •N ′).

Finally, this definition can be extended to more than 2 vector spaces.

Disjunctions of SPHFs. In Fig. 2, we show the construction of the disjunction of two diverse
vector spaces, over two multiplicatively sub-graded rings G1 and G2 of some graded ring G.
In applications, we will often have G1 = G1 and G2 = G2 where (p,G1,G2,GT , e, g1, g2) is a
bilinear group.
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Diverse vector space V = (X ,L ,R,G, n, k, Γ, θ) disjunction of diverse vector spaces V1 =
(X1,L1,R1,G1, n1, k1, Γ1, θ1) and V2 = (X2,L2,R2,G2, n2, k2, Γ2, θ2):

– G1 and G2 are two multiplicatively compatible sub-graded rings of G;
– n = n1n2 k = k1n2 + n1k2;
– X = X1 ×X2 L = (L1 ×X2) ∪ (X1 ×L2)
– Γ =

(
Γ (1) ⊗ Idn2 Idn1 ⊗ Γ (2)

)
θ((C1, C2)) = Ĉ1⊗ Ĉ2;

– Witnesses λ for C = (C1, C2) ∈ L (i.e., vectors λ ∈ Gk such that R(C,λ) = 1) are:

λ =


(
λ1 ⊗ Ĉ2

0 ∈ Zn1k2
p

)
when R1(C1,λ1) = 1(

0 ∈ Zk1n2
p

Ĉ1 ⊗ λ2

)
when R2(C2,λ2) = 1

for any C = (C1, C2) ∈ X and any λ ∈ Gn.

Notation: Due to the form of witnesses, we split the vector γ = α • Γ ∈ Gk1n2+n1k2 (of
the resulting SPHF, with hashing key hk = α ∈ Z1×n1n2

p , see Fig. 1) in two parts: γ(1) =
α • (Γ (1) ⊗ Idn2 ) ∈ G1×k1n2 which corresponds to the first k1n2 columns of γ, and γ(2) =
α • (Idn1 • Γ (2)) ∈ G1×n1k2 which corresponds to the last k2n1 columns of γ.

Fig. 2. Disjunction of Diverse Vector Spaces

Let us explain this construction. First, the rows of Γ generate the following subspace of
X̂ = G1×n = X̂1 ⊗ X̂2:

L̂ = 〈(L̂1 ⊗ X̂2) ∪ (X̂1 ⊗ L̂2)〉,

where X̂1 = Gn1
1 , X̂2 = Gn2

2 , L̂1 is the subspace of X̂1 generated by the rows of Γ (1) and L̂2 is
the subspace of X̂2 generated by the rows of Γ (2). So this construction corresponds exactly to
the one sketched in the Section 2.1.

Then, we need to prove that V is really a diverse vector space, namely that C ∈ L if and only
if θ(C) ∈ L̂ . Clearly, if C = (C1, C2) ∈ L , then Ĉ1 ∈ L̂1 or Ĉ2 ∈ L̂2 and so Ĉ = Ĉ1⊗Ĉ2 ∈ L̂ .
Now, let us prove the converse. Let C = (C1, C2) /∈ L . So, Ĉ1 /∈ L̂1 and Ĉ2 /∈ L̂2. Let H1
and H2 be supplementary vector spaces of L̂1 and L̂2 (in X̂1 and X̂2, respectively). Then X̂1
is the direct sum of L̂1 and H1, while X̂2 is the direct sum of L̂2 and H2. Therefore, L̂1 ⊗ X̂2
is the direct sum of L̂1 ⊗ L̂2 and L̂1 ⊗H2, while X̂1 ⊗ L̂2 is the direct sum of L̂1 ⊗ L̂2 and
H1 ⊗ L̂2. So finally, L̂ is the direct sum of L̂1 ⊗ L̂2, L̂1 ⊗H2 and H1 ⊗ L̂2; and H1 ⊗H2 is a
supplementary of L̂ . Since 0 6= Ĉ1 ⊗ Ĉ2 ∈ H1 ⊗H2, θ(C) = Ĉ1 ⊗ Ĉ2 /∈ L̂ .

Besides showing the correctness of the construction, this proof helps to better understand
the structure of L̂ . In particular, it shows that L̂ has dimension l1l2 + (n1− l1)l2 + l1(n2− l2) =
l1n2 + n1l2 − l1l2, if L̂1 has dimension l1 and L̂2 has dimension l2. If the rows of Γ (1) and Γ (2)

are linearly independent, l1 = k1 and l2 = k2, L̂ has dimension k1n2 + n1k2 − k1k2, which is
less than k1n2 + n1k2, the number of rows of Γ . Therefore the rows of Γ are never linearly
independent. Actually, this last result can directly be proven by remarking that if Ĉ1 ∈ L̂1 and
Ĉ2 ∈ L̂2, then Ĉ1 ⊗ Ĉ2 ∈ (L̂1 ⊗ X̂2) ∩ (X̂1 ⊗ L̂2). For the sake of completeness, detailed and
concrete equations are detailed in Appendix B.3.

5 One-Time Simulation-Sound NIZK from Disjunctions of SPHFs

In this section, we present our construction of NIZK and one-time simulation-sound NIZK from
disjunctions of SPHFs. The latter requires the use of a new notion: 2-smooth projective hash
functions. We suppose the reader is familiar with NIZK and one-time simulation-sound NIZK.
Formal definitions can be found in Appendix A.5.
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5.1 NIZK from Disjunctions of SPHFs

Construction. In Fig. 3, we show how to construct a NIZK for any family of languages
L1 such that there exist two diverse vector spaces V1 = (X1,L1,R1,G1, n1, k1, Γ

(1), θ1) and
V2 = (X2,L2,R2,G2, n2, k2, Γ

(2), θ2) over two multiplicatively-compatible sub-graded rings G1
and G2 of some graded ring G, such that the second diverse vector space corresponds to a hard
subset membership language. In particular, this construction works for any diverse vector space
V1 where G1 = G1 is a cyclic group of some bilinear group (p,G1,G2,GT , e), where SXDH holds,
by using as V2 the discrete vector space for DDH over G2 (Example 1).

NIZK for V1 = (X1,L1,R1,G1, n1, k1, Γ1, θ1), using V2 = (X2,L2,R2,G2, n2, k2, Γ2, θ2), with
L2 a hard subset membership language:

– V = (X ,L ,R,G, n, k, Γ, θ) disjunction of V1 and V2;
– Setup: computes hk = α

$← Z1×n
p , hp = γ = (γ(1),γ(2)) = α • Γ (with γ(1) = α • (Γ (1) ⊗

Idn2 ) and γ(2) = α • (Idn1 • Γ (2)), see Fig. 2), and outputs trapdoor T := hk, and CRS
σ := (crs2, hp);

– Proof π of C1 ∈ L1 with witness λ1 ∈ Gk1 :

π := γ(1) • (λ1 ⊗ Idn2 ) ∈ G1×n2
1 ;

– Verification of proof π for C1:

π • Γ (2) ?= γ(2) • (Ĉ1 ⊗ Idk2 ), (1)

– Simulation of proof π for C1 knowing T = hk:

π := α • (Ĉ1 ⊗ Idn2 ).

Fig. 3. NIZK from Disjunctions of Diverse Spaces

The proof π of a word C1 can just be seen as the hash values of rows10 of Ĉ1 ⊗ Idn2 . Let us
now show that our NIZK is complete, zero-knowledge and sound.
Completeness. If the proof π has been generated correctly, the left hand side of the verification
equation (Eq. (1)) is equal to

γ(1) • (λ1 ⊗ Idn2) • Γ (2) = (α • (Γ (1) ⊗ Idn2)) • (λ1 ⊗ Idn2) • (Id1 ⊗ Γ (2))
= α • (Γ (1) ⊗ Idn2) • ((λ1 • Id1)⊗ (Idn2 • Γ (2)))
= α • (Γ (1) ⊗ Idn2) • (λ1 ⊗ Γ (2))
= α • ((Γ (1) • λ1)⊗ (Idn2 • Γ (2))),

while the right hand side is always equal to:

γ(2) • (Ĉ1 ⊗ Idk2) = α • (Idn1 ⊗ Γ (2)) • (Ĉ1 ⊗ Idk2) = α • ((Idn1 • Ĉ1)⊗ (Γ (2) • Idk2)),

which is the same as the left hand side, since Γ (1) • λ1 = Idn1 • Ĉ1 and Idn2 • Γ (2) = Γ (2) • Idk2 .
Hence the completeness. Another way to see it, is that the row i2 of the right hand side is the
hash value of “(Ĉ1, Γ

(2) • e2,i2)” computed using the witness λ2 = e2,i2 , while the row i2 of the
left hand side is this hash value computed using the witness λ1.
Zero-Knowledge. The (perfect) unbounded zero-knowledge property comes from the fact that
the normal proof π for C1 ∈ L1 with witness λ1 is:

π = γ(1) • (λ1 ⊗ Idn2) = α • (Γ (1) ⊗ Idn2) • (λ1 ⊗ Idn2) = α • ((Γ (1) • λ1)⊗ (Idn2 • Idn2)),
10 This is not quite accurate, since rows of Ĉ1 ⊗ Idn1 are not words in X but in X̂ . But to give intuition, we will

often make this abuse of notation.
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which is equal to the simulated proof for C1, as Ĉ1 = Γ (1) • λ1 and Idn2 • Idn2 = Idn2 .

Soundness. It remains to prove the soundness property, under the hard subset membership of
L2. We just need to show that if the adversary is able to generate a valid proof π for a word
C1 /∈ L1, then we can use π to check if a word C2 is in L2 or not. More precisely, let C2 ∈ X2,
let H be the hash value of (C1, C2) computed using hk, and let us define H ′ := π • Ĉ2.

On the one hand, if C2 ∈ L2, there exists a witness λ2 such that Ĉ2 = Γ (2) • λ2 and so,
thanks to Eq. (1):

H ′ = π • Γ (2) • λ2 = γ(2) • (Ĉ1 ⊗ Idk2) • λ2 = γ(2) • (Ĉ1 ⊗ λ2) = H,

the last equality coming from the correctness of the SPHF and the fact the last-but-one expression
is just the hash value of (C1, C2) computed using ProjHash and witness λ2.

On the other hand, if C2 /∈ L2, then (C1, C2) /∈ L . So H looks completely random by
smoothness and the probability that H ′ = H is at most 1/|Π|.

Toward One-Time Simulation Soundness. The previous proof does not work anymore if
the adversary is allowed to get even one single simulated proof of a word C1 /∈ L1. Indeed, in
this case, the smoothness does not hold anymore, in the above proof of soundness. That is why
we need a stronger form of smoothness for SPHF, called 2-smoothness.

5.2 2-Smooth Projective Hash Functions

Definition. In order to define the notion of 2-smoothness, let us first introduce the notion of
tag-SPHF. A tag-SPHF is similar to an SPHF except that Hash and ProjHash now take a new
input, called a tag tag ∈ Tags. Similarly a tag diverse vector space is a diverse vector space where
the function θ also takes as input a tag tag ∈ Zp. The vector λ is now allowed to depend on tag,
but the matrix Γ is independent of tag.

A 2-smooth SPHF is a tag-SPHF for which the hash value of a word C ∈ X for a tag tag
looks random even if we have access to the hash value of another word C ′ ∈ X for a different tag
tag′ 6= tag. Formally, a tag-SPHF is perfectly 2-smooth, if for any crs, any C ′ ∈ X , any distinct
tags tag, tag′, and any C /∈ Lcrs, the following two distributions are identical:{

(hp, H ′, H)
∣∣∣∣∣ hk $← HashKG(crs); hp← ProjKG(hk, crs);
H ′ ← Hash(hk, crs, (C ′, tag′)); H ← Hash(hk, crs, (C, tag))

}
{

(hp, H ′, H)
∣∣∣∣∣ hk $← HashKG(crs); hp← ProjKG(hk, crs);
H ′ ← Hash(hk, crs, (C ′, tag′)); H $← Π

}
.

A weaker (statistical instead of perfect) definition is proposed in Appendix B.4. The 2-
smoothness property is similar to the 2-universality property in [CS02]. There are however two
minor differences, the first being the existence of an explicit tag, and the second being that the
hash value of a word outside the language is supposed to be uniformly random instead of just
having some entropy. This slightly simplifies its usage in our constructions, in our opinion.

Canonical Construction from Diverse Vector Spaces. Let V = (X ,L ,R,G, n, k, Γ, θ) be
a diverse vector space. If we set ñ = 2n, k̃ = 2k, and:

Γ̃ =
(
Γ 0
0 Γ

)
λ̃ =

(
λ

tag • λ

)
θ̃(C, tag) =

(
Ĉ

tag • Ĉ

)
,

where λ̃ is the witness for a word C ∈ L and a tag tag, then Ṽ = (X ,L ,R,G, ñ, k̃, Γ̃ , θ̃) is a
2-smooth diverse vector space. It is clear that C ∈ L if and only if ˜̂

C = θ̃(C, tag) is a linear
combination of rows of Γ .
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To prove the 2-smoothness property, let C ′ ∈ X and C ∈ X \L , and let tag′ and tag be two
distinct tags. We have

˜̂
C ′ =

(
Ĉ ′

tag′ • Ĉ ′

)
and ˜̂

C =
(

Ĉ

tag • Ĉ

)
.

We just need to prove that ˜̂
C is not in the subspace generated by the rows of Γ and ˜̂

C ′, or
in other words that it is not in L̂ ′ = 〈L̂ ∪ { ˜̂

C ′}〉. Indeed, in that case, H ′ could just be seen
as a part of the projection key for the language L̂ ′, and by smoothness, we get that H looks
uniformly random.

So it remains to prove that linear independence of ˜̂
C. By contradiction, let us suppose there

exists λ̃ ∈ Z2k
p and µ such that:

˜̂
C =

(
Ĉ

tag • Ĉ

)
= Γ̃ • λ̃+ ˜̂

C ′ • µ =
(
Γ 0
0 Γ

)
• λ̃+

(
Ĉ ′

tag′ • Ĉ ′

)
• µ.

Therefore ˜̂
C + µ • ˜̂

C ′ and tag • ˜̂
C + tag′ • µ • ˜̂

C ′ are both linear combination of rows of Γ , and
so is

tag′ • ( ˜̂
C + µ • ˜̂

C ′) + (tag • ˜̂
C + tag′ • µ • ˜̂

C ′) = (tag′ − tag) • ˜̂
C.

As tag′ − tag 6= 0, this implies that ˜̂
C is also a linear combination of rows of Γ , hence C ∈ L ,

which is not the case.

5.3 One-Time Simulation-Sound Zero-Knowledge Arguments from SPHF

Let us now replace the first diverse vector space by its canonical 2-smooth version in the NIZK
construction of Section 5.1. The resulting construction is a one-time simulation-sound NIZK, if
Ĉ1 is computed as θ1(C1, tag) where tag is the hash value of (C1, `) under some collision-resistant
hash function H: tag = H((C1, `)).

Completeness and perfect zero-knowledge can be proven the same way. It remains to prove
the one-time simulation soundness. The proof is similar to the one in Section 5.1, except for the
final step: proving that the hash value H of (C1, C2) with tag tag = H((C1, `)) looks random
even if the adversary sees a simulated NIZK π′ for a word C ′1 ∈ X1 and label `′.

We first remark that the tag tag′ can be supposed distinct from the tag tag for the NIZK π
created by the adversary, thanks to the collision-resistance of H. We recall that π′ is the hash
values of the rows of Ĉ ′1 ⊗ Idn2 . So to prove that the hash value of (C1, C2) with tag tag looks
random even with access to π′, we just need to remark that Ĉ1 ⊗ Ĉ2 is linearly independent of
rows of Γ and Ĉ ′1 ⊗ Idn2 . The proof is similar to the proof of 2-smoothness.

Remark 7. It would be easy to extend this construction to handle N -time simulation-sound
NIZK, for any constant N . The NIZK CRS σ size would just be N times larger compared to the
NIZK construction of Section 5.1, and the proof size would remain constant.

5.4 Concrete Instantiation

If V1 is a diverse vector space over G1 and V2 is the diverse vector space for DDH in G2, where
(p,G1,G2,GT , e, g1, g2) is a bilinear group where DDH is hard in G2, then we get a NIZK and a
one-time simulation sound NIZK whose proof is composed of only n2 = 2 group elements in G1.

More generally, we can use as V2, any diverse vector space from any MDDH assump-
tion [EHK+13]. In particular, for κ-Lin, we would get: X2 = X̂2 = Gκ+1

2 , crs2 = (g2, ζ1, . . . ,
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ζκ) $← Gκ+1
2 , θ2 is the identity function and L̂2 = L2 is defined by the following matrix:

Γ2 =


ζ1 1 . . . 1
1 ζ2 . . . 1
...

... . . . ...
1 1 . . . ζκ
g2 g2 . . . g2

 ,

where 1 is the element g0
2 ∈ G2. A word C2 = Ĉ2 = (Ĉ2,1, . . . , Ĉ2,κ+1)ᵀ ∈ X2 is in L2 if and

only if (ζ1, . . . , ζκ, Ĉ2,1, . . . , Ĉ2,κ, Ĉ2,κ+1) is a κ-Lin-tuple (see Section 3.4). This yields a proof
consisting of only n2 = κ+ 1 group elements, under κ-Lin. The DDH case corresponds to κ = 1.

Languages handled are exactly languages for which there exists such a diverse vector space
V1 over G1. That corresponds to languages handled by Jutla and Roy NIZK [JR13], which they
call linear subspaces (assuming θ is the identity function), if we forget the fact that in [JR13], it
is supposed that crs can be generated in such a way that discrete logarithms of Γ is known (that
is what they call witness-samplable languages). That encompasses DDH, κ-Lin, and languages
of ElGamal, Cramer-Shoup or similar ciphertexts whose plaintexts verify some linear system
of equations, as already shown in [BBC+13]. Concrete comparison with previous work can be
found in Section 7.3.

5.5 Application: Threshold Cramer-Shoup-like Encryption Scheme

The Cramer-Shoup public-key encryption scheme [CS98] is one of the most efficient IND-CCA
encryption schemes with a proof of security in the standard model. We remark here that, if we
replace the last part of a Cramer-Shoup ciphertext (the 2-universal projective hash proof or w
in our notations in Appendix A.3) by a one-time simulation-sound NIZK on the DDH language,
we can obtain an IND-CCA scheme supporting efficient threshold decryption. Intuitively, this
comes from the fact that the resulting scheme becomes “publicly verifiable”, in the sense that,
after verifying the NIZK (which is publicly verifiable), one can obtain the underlying message
via “simple” algebraic operations which can easily be “distributed”.

Previous one-time simulation-sound NIZK were quite inefficient and the resulting scheme
would have been very inefficient compared to direct constructions of threshold IND-CCA en-
cryption schemes. However, in our case, our new one-time simulation-sound NIZK based on
disjunctions of SPHF only adds one group element to the ciphertext (compared to original
Cramer-Shoup encryption scheme; see Appendix D.1 for details). In addition, both the encryp-
tion and the decryption algorithms only require to perform operations in the first group G1. A
detailed comparison is given in Section 7.4, where we also introduce a more efficient version of
that threshold encryption scheme, for which the ciphertexts have the same size as the ciphertexts
of the original Cramer-Shoup encryption scheme.

6 Pseudo-Random Projective Hash Functions and Disjunctions

In this section, we sometimes make explicit use of crs (or crs1, or crs2), the language parameters
of the diverse vector space V (respectively of V1, and V2), to provide clearer definitions. We
recall that we suppose there exists an algorithm Setupcrs which can generate crs together with a
trapdoor Tcrs. Contrary to construction in previous sections, where Tcrs =⊥, the security of the
constructions in this section will depend on some properties of Tcrs.

6.1 Pseudo-Randomness

Definition. An SPHF is said to be pseudo-random, if the hash value of a random word C in
Lcrs looks random to an adversary only knowing the projection key hp and ignoring the hashing
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Expps-rnd-b(A,K)
(crs, Tcrs) $← Setupcrs(1K)
hk $← HashKG(crs)
hp← ProjKG(hk, crs)
C

$← Lcrs
if b = 0 then

H ← Hash(hk, crs, C)
else H $← Π
return A(crs, C, hp, H)

Expmixed-ps-rnd-b(A,K)
(crs = (crs1, crs2), (Tcrs1 , Tcrs2 )) $← Setupcrs(1K)
hk $← HashKG(crs); hp← ProjKG(hk, crs)
C2

$← L2,crs2

(C1, st) $← A(crs, Tcrs1 , hp, C2); C ← (C1, C2)
if b = 0 or C1 ∈ L1,crs1 then

H ← Hash(hk, crs, C)
else H $← Π
return A(st, H)

Fig. 4. Experiments Expps-rnd-b and Expmixed-ps-rnd-b for pseudo-randomness and mixed pseudo-randomness

key hk and a witness for the word C. More precisely, this property is defined by the experiments
Expps-rnd-b depicted in Fig. 4. Contrary to smoothness, this property is computational. A
projective hashing function which is pseudo-random is called a PrPHF. A PrPHF is not necessarily
smooth.
Link with Hard Subset Membership Languages. It is easy to see that an SPHF over a
hard subset membership family of languages is pseudo-random. This yields a way to create PrPHF
under DDH using Example 1. However, this is inefficient since, in this case X has dimension 2,
while we would prefer to have X of dimension 1. Actually, since for hard subset membership
languages, Lcrs 6= X , any SPHF based on diverse vector space for these languages is such that X
has dimension at least 2. More generally, as shown in Section 5.4, for a hard subset membership
language based on κ-Lin, X = G1×(κ+1) and Lcrs has dimension κ. That is why we introduce
another way to construct PrPHF, still based on diverse vector spaces, but not using hard subset
membership languages.

6.2 Canonical PrPHF under κ-Lin

Let us construct a diverse vector space (X ,L ,R,G, n, k, Γ, θ) which yields a pseudo-random
SPHF under κ-Lin in the cyclic group G.

We set X = Lcrs = {⊥} and X̂ = L̂crs = Gκ. For DDH = 1-Lin, we get a PrPHF with X of
dimension 1, which is the best we can do using diverse vector spaces. Even though the resulting
projective hash function will be smooth, the smoothness property is completely trivial, since
Lcrs \ X is empty, and does not imply the pseudo-randomness property. We will therefore need
to manually prove the pseudo-randomness.

The “language” is defined by crs = (ζ1, . . . , ζκ) $← Gκ and the PrPHF by:

Γ :=


ζ1 0 . . . 0
0 ζ2 . . . 0
...

... . . . ...
0 0 . . . ζκ

 ∈ Gκ×κ λ :=


ζ̂1
ζ̂2
...
ζ̂κ

 ∈ Zκp θ(⊥) :=


g
g
...
g

 ∈ Gκ

hk := α $← Z1×κ
p hp := (γ1, . . . , γκ)ᵀ = (ζα1

1 , . . . , ζακκ )ᵀ ∈ Gκ

H :=
n∏
i=1

gαi = g
∑n

i=1 αi =
n∏
i=1

γ ζ̂ii =: H ′,

where λ is the witness for C =⊥, with ζi = g1/ζ̂i . The pseudo-randomness directly comes from
the hardness of κ-Lin.

6.3 Disjunction of an SPHF and a PrPHF

Let V1 = (X1,L1,R1,G1, n1, k1, Γ
(1), θ1) and V2 = (X2,L2,R2,G2, n2, k2, Γ

(2), θ2) be two di-
verse vector spaces over two multiplicatively sub-graded rings G1 and G2 of some graded ring
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G. Let V = (X ,L ,G, n, k, Γ, θ) be the vector space corresponding to the disjunction of the
two previous languages. We have already seen that this vector space corresponds to a smooth
projective hash function.

But, if the second language is the canonical PrPHF under κ-Lin, the smoothness brings nothing,
since X = L . Therefore, we need to prove a stronger property called mixed pseudo-randomness.

Definition of Mixed Pseudo-Randomness. The resulting SPHF is said mixed pseudo-
random, if the hash value of a word C = (C1, C2) looks random to the adversary, when C1 /∈ L1
is chosen by the adversary, while C2 is chosen at random in L2. More precisely, the mixed
pseudo-randomness property is defined by the experiments Expmixed-ps-rnd-b depicted in Fig. 4.

Proof of Mixed Pseudo-Randomness. The proof of mixed pseudo-randomness is actually
close to the one for computational soundness of trapdoor smooth projective functions in [BBC+13].
It requires that Tcrs1 contains enough information to be able to compute the discrete logarithm
of elements of Γ (1), denoted L(Γ (1)).

The proof reduces the pseudo-randomness property to the mixed pseudo-randomness property.
The detailed proof is quite technical and can be found in Appendix C. Basically, we choose a
random hashing key ε and we randomize it using a basis of the kernel of L(Γ (1)) and projection
keys given by the pseudo-randomness game (for some fixed word C2, using an hybrid method).
Then we show how to compute from that, a valid projection key hp for the language of the
disjunction together with a hash value H of (C1, C2), for C1 /∈ L1. This value H is the correct
hash value, if the hash values of C2, given by the challenger of the hybrid pseudo-randomness
game, were valid; and it is a random value, otherwise. That proves that an adversary able to
break the mixed pseudo-randomness property also breaks the pseudo-randomness property.

7 One-Time Simulation-Sound NIZK from Disjunctions of an SPHF and a
PrPHF

7.1 NIZK from Disjunctions of an SPHF and a PrPHF

The construction is identical to the one in Section 5.1, except that the second diverse vector
space V2 is just supposed to be a PrPHF, and no more supposed to be related to a hard subset
membership language L2. However, we suppose that the disjunction of V1 and V2 yields a mixed
pseudo-random SPHF, which is the case if Tcrs contains enough information to compute the
discrete logarithm of elements of Γ (1).

Completeness and zero-knowledge can be proven exactly in the same way. It remains therefore
to prove the soundness property, under the mixed pseudo-randomness. The proof is very similar
to the one in Section 5.1: if π is a proof of some word C1 /∈ L1, then it is possible to compute
the hash value of any word (C1, C2) with C2 ∈ L2 as H ′ := π • Ĉ2. This comes from the fact
that if C2 ∈ L2, then there exists λ2 such that Ĉ2 = λ2 • Γ (2), hence:

H ′ = π • Γ (2) • λ2 = γ(2) • (Ĉ1 ⊗ Idk2) • λ2 = γ(2) • (Ĉ1 ⊗ λ2),

which is the hash value of (C1, C2) computed using ProjHash and witness λ2. But the mixed
pseudo-randomness property ensures that this value looks uniformly random when C2 is chosen
randomly in L2. That proves the soundness property.

7.2 One-Time Simulation-Sound NIZK

Unfortunately, for the one-time simulation-sound variant, this is not as easy: the construction
in Section 5.3 seems difficult (if at all possible) to prove sound. The main problem is that the
security proof of mixed pseudo-randomness is not statistical, so we do not know hk = α, but
only some representation of α, which does not allow computing the proof π′ of a word C ′1 for a
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tag tagC′1 . Directly adapting the proof with a 2-smooth V1 would require to choose from the
beginning π′ (as is chosen hp from the beginning), but that is not possible since C ′1 and tag′
(the tag for C ′1) are not known at the beginning of the game.

Our solution is to use the tag bit-by-bit. So we just need to guess which bit is different between
tagC1 and tagC′1 . This idea is inspired from [CW13]. Details can be found in Appendix B.5.

7.3 Concrete Instantiation and Comparison with Previous Work

If V1 is a diverse vector space over G1 (for which Tcrs1 gives enough information to compute
the discrete logarithm of Γ (1)) and V2 is the canonical PrPHF under DDH in Section 6.2, where
(p,G1,G2,GT , e) is a bilinear group where DDH is hard in G2, then we get an NIZK and a
one-time simulation sound NIZK whose proof is composed of only n2 = 1 group element in
G1. More generally, if V2 is canonical PrPHF under κ-Lin, then the proof consists of only κ
group elements, one less than our first construction in Section 5.4. However, this encompasses
slightly fewer languages than this first construction, due to the restriction on L1 and Tcrs1 . More
precisely, our NIZK handles the same languages as Jutla-Roy NIZK in [JR13,JR14].

Table 1 compares NIZK for linear subspaces as Jutla and Roy call it in [JR13], i.e., any
language over G1 (first group of some bilinear group) for which there exists a diverse vector
space V1 (assuming θ is the identity function and a witness is λ ∈ Zkp). Some of the entries
of this table were derived from [JR14] and from [LPJY14]. The DDH (in G2) variant requires
asymmetric bilinear groups, while the κ-Lin variant for κ ≥ 2 could work on symmetric bilinear
groups.

First of all, as far as we know, our one-time simulation-sound NIZK is the most efficient such
NIZK with a constant-size proof: the single-theorem relatively-sound construction of Libert et
al. [LPJY14] is weaker than our one-time simulation-sound NIZK and requires at least one group
element more in the proof, while their universal simulation-sound construction is much more
inefficient. A direct application of our construction is our efficient structure-preserving threshold
IND-CCA encryption scheme, under DDH.

Second, the DLin version of our NIZK in Section 5.1 is similar to the one by Libert et
al. [LPJY14], but our DLin version of our NIZK in Section 7.1 is more efficient (the proof has
2 group elements instead of 3). Furthermore, the ideas of the constructions in [LPJY14] seem
quite different.

Third, our NIZK in Section 7.1 is similar to the one by Jutla and Roy in [JR14] for DDH.
However, in our opinion, our construction seems to be more modular and simpler to understand.
In addition, under κ-Lin, with κ ≥ 2, our construction is slightly more efficient in terms of CRS
size and verification time.

7.4 Application: Threshold Cramer-Shoup-like Encryption Scheme (Variant)

In the construction of Section 5.5, we can replace the previous one-time simulation-sound NIZK
by this new NIZK. This yields a threshold encryption where the ciphertext size only consists of 4
group elements as the original Cramer-Shoup encryption scheme, at the expense of having a
public key size linear in the security parameter.

Our two schemes are threshold and structure-preserving [AFG+10]: they are “compatible”
with Groth-Sahai NIZK, in the sense that we can do a Groth-Sahai NIZK to prove that we know
the plaintext of a ciphertext for our encryption schemes. In addition, normal decryption does
not require any pairings, which still are very costly, compared to exponentiations. A detailed
comparison with existing efficient IND-CCA encryption schemes based on cyclic or bilinear groups
is given in Appendix D.1. To summarize, to the best of our knowledge, our two constructions
are the most efficient threshold and structure-preserving IND-CCA encryption schemes.
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Table 1. Comparison of NIZK for linear subspaces

DDH (in G2) DLin (in G1 = G2 = G)

WS Proof |π| CRS |σ| Pairings Proof |π| CRS |σ| Pairings

[GS08] n+ 2k 5 2n(k + 2) 2n+ 3k 6 3n(k + 3)
[JR13] 3 n− k 2k(n− k) + 2 (n− k)(k + 2) 2n− 2k 4k(n− k) + 3 2(n− k)(k + 2)
[LPJY14] 3 2n+ 3k + 3 2n+ 4
[LPJY14] RSS 4 4n+ 8t+ 5 2n+ 6
[LPJY14] USS 20 2n+ 3t+ 3ν + 10 2n+ 30
[JR14] 3 1 n+ k + 1 n+ 1 2 2(n+ k + 2) 2(n+ 2)
§5.1 2 n+ 2k + 1 n+ 2 3 2n+ 3k + 2 2n+ 3
§7.1 3 1 n+ k + 1 n+ 1 2 2n+ 2k + 2 2n+ 2
§5.3 OTSS 2 2(n+ 2k) + 1 2n+ 2 3 2(2n+ 3k) + 2 4n+ 3
§7.2 OTSS 3 1 2ν(2n+ 3k) + 2 νn+ 2 2 2ν(2n+ 3k) + 2 2νn+ 2

– n = n1, k = k1, and ν = 2K; pairings: number of pairings required to verify the proof;
– sizes | · | are measured in term of group elements (G1 and G2, or G if the bilinear group is symmetric). Generators

g1 ∈ G1 and g2 ∈ G2 (for DDH in G2) or g ∈ G (for DLin) are not counted in the CRS;
– OTSS : one-time simulation-soundness; RSS : single-theorem relative simulation-soundness [JR12] (weaker than OTSS);

USS : universal simulation-soundness (stronger than OTSS);
– WS: witness-samplability in [JR13], generation of crs so that Tcrs1 enables us to compute the discrete logarithms of

Γ1. This slightly restricts the set of languages which can be handled.
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A Formal Definitions

A.1 Distances, Advantage and Success

Statistical Distance. Let D0 and D1 be two probability distributions over a finite set S and
let X0 and X1 be two random variables with these two respective distributions. The statistical
distance between D0 and D1 is also the statistical distance between X0 and X1:

Dist(D0,D1) = Dist(X0, X1) =
∑
x∈S
|Pr [X0 = x ]− Pr [X1 = x ]| .

If the statistical distance between D0 and D1 is less than or equal to ε, we say that D0 and D1
are ε-close or are ε-statistically indistinguishable. If the D0 and D1 are 0-close, we say that D0
and D1 are perfectly indistinguishable.

Success/Advantage. When one considers an experiment Expsec(A,K) in which adversary
A plays a security game SEC, we denote Succsec(A,K) = Pr [ Expsec(A,K) = 1 ] the success
probability of this adversary. We additionally denote Succsec(t,K) = maxA≤t{Succsec(A,K)},
the maximal success any adversary running within time t can get. As in the whole paper,
the time-complexity t of an experiment should include the maximum execution time of the
experiment plus the size of the code for the adversary, all in some fixed RAM model.

When one considers a pair of experiments Expsec-b(A,K), for b = 0, 1, in which adversary A
plays a security game SEC, we denote

Advsec(A,K) = Pr
[

Expsec−0
A (K) = 1

]
− Pr

[
Expsec−1

A (K) = 1
]
,

the advantage of this adversary. We additionally denote Advsec(t,K) = maxA≤t{Advsec(A,K)},
the maximal advantage any adversary running within time t can get. In an equivalent way, we
can consider the experiment Expsec(A,K) where we first choose a random bit b and then run
experiment Expsec-b(A,K). Then the advantage is

Advsec(A,K) = 2 · Pr [ Expsec(A,K) = b ]− 1.

A.2 Formal Definition of the Primitives

Hash Function Family. A hash function family (HFK)K is an ensemble (indexed by K, the
security parameter) of families of functions H from {0, 1}∗ to a fixed-length output, either {0, 1}k
or Zp. Such a family is said collision-resistant if any polynomial-time adversary A on a random
function H $← HF cannot find a collision with non-negligible probability (on K). More precisely,
we denote

Succcoll(A,K) = Pr
[
H $← HFK, (m0,m1)← A(H) : H(m0) = H(m1)

]
.

Labeled Encryption Scheme. A labeled public-key encryption scheme E is defined by four
algorithms:

– SetupE(1K), where K is the security parameter, generates the global parameters param of
the scheme;

– KGE(param) generates a pair of keys, the encryption key ek and the decryption key dk;
– Encrypt(`, ek,m; r) produces a ciphertext C on the input message m under the label ` and

encryption key ek, using the random coins r;
– Decrypt(`, dk, C) outputs the plaintext m encrypted in C under the label `, or ⊥.

The first algorithm is often forgotten, to simplify notations. An encryption scheme E should
satisfy the following properties
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– Correctness: for all key pairs (ek, dk), all labels `, all random coins r and all messages m,

Decrypt(`, dk,Encrypt(`, ek,m; r)) = m.

– Indistinguishability under chosen-ciphertext attacks: this security notion (IND-CCA) can be
formalized by the security game in Fig. 5, where the adversary A keeps some internal state
between the various calls FIND and GUESS, and makes use of the oracle ODecrypt:
• ODecrypt(`, C): This oracle outputs the decryption of C under the label ` and the

challenge decryption key dk. The input queries (`, C) are added to the list CTXT.

Expind-cca−b
E (A,K)
param← SetupE(1K)
(ek, dk)← KGE(param)
(`∗,m0,m1)← A(FIND : ek,ODecrypt(·, ·))
C∗ ← Encrypt(`∗, ek,mb)
b′ ← A(GUESS : C∗,ODecrypt(·, ·))
if (`∗, C∗) ∈ CTXT then return 0
else return b′

Fig. 5. Experiments Expind-cca−n
E for the IND-CCA security

The advantages are

Advind-cca
E (A) = Pr[Expind-cca−1

E (A,K) = 1]− Pr[Expind-cca−0
E (A,K) = 1]

Advind-cca
E (t, qd) = max

A≤t,qd
{Advind-cca

E (A)},

where we bound the adversaries to work within time t and to ask at most qd decryption
queries.

In some cases, indistinguishability under chosen-plaintext attacks (IND-CPA) is enough. This
notion is similar to the above IND-CCA except that the adversary has no decryption-oracle
ODecrypt access:

Advind-cpa
E (A) = Pr[Expind-cpa−1

E (A,K) = 1]− Pr[Expind-cpa−0
E (A,K) = 1]

Advind-cpa
E (t) = max

A≤t
{Advind-cpa

E (A)},

where we bound the adversaries to work within time t: Advind-cpa
E (t) = Advind-cca

E (t, 0).

A.3 Concrete Instantiations

IND-CPA Encryption: ElGamal. The ElGamal encryption scheme [ElG84] is defined as
follows:

– SetupE(1K) generates a group G of order p, with a generator g;
– KGE(param) generates dk = z $← Zp, and sets, ek = h = gz;
– Encrypt(ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext is
C = (u = gr, v = M · hr);

– Decrypt(dk, C): one computes M = v/uz and outputs M .

This scheme is indistinguishable against chosen-plaintext attacks (IND-CPA), under the DDH
assumption.

IND-CCA Encryption: Cramer-Shoup (CS). The Cramer-Shoup encryption scheme (pro-
posed in [CS98]) can be turned into a labeled public-key encryption scheme:
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– SetupE(1K) generates a group G of order p, with a generator g;
– KGE(param) generates (g1, g2) $← G2, dk = (x1, x2, y1, y2, z) $← Z5

p, and sets, C = gx1
1 gx2

2 ,
d = gy1

1 g
y2
2 , and h = gz1 . It also chooses a collision-resistant hash function H in a hash

family HF (or simply a Universal One-Way Hash Function). The encryption key is ek =
(g1, g2, c, d, h,H);

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, the ciphertext is C =
(`, u1 = gr1, u2 = gr2, v = M · hr, w = (cdξ)r), where v is computed after ξ = H((`, u1, u2, v)).

– Decrypt(`, dk, C): one first computes ξ = H((`, u1, u2, v)) and checks whether ux1+ξy1
1 ·

ux2+ξy2
2

?= v. If the equality holds, one computes M = v/uz1 and outputs M . Otherwise, one
outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks (IND-CCA), under the DDH
assumption and if one uses a collision-resistant hash function H.

IND-CCA Encryption under DLin: Linear Cramer-Shoup. The Linear Cramer-Shoup
encryption scheme [Sha07] is a variant of Cramer-Shoup IND-CCA under DLin, instead of DDH.
So this scheme can be used with symmetric pairings. Here is the scheme:

– SetupE(1k) generates a group G of order p, with three independent generators (g1, g2, g3) $←
G3;

– KGE(param) generates dk = (x1, x2, x3, y1, y2, y3, z1, z2, z3) $← Z9
p, and sets, for i = 1, 2,

ci = gxii g
x3
3 , di = gyii g

y3
3 , and hi = gzii g

z3
3 . It also chooses a hash function H in a collision-

resistant hash family HF (or simply a Universal One-Way Hash Function). The encryption
key is ek = (c1, c2, d1, d2, h1, h2,H).

– Encrypt(`, ek,M ; r, s), for a messageM ∈ G and two random scalars r, s $← Zp, the ciphertext
is C = (u1 = gr1, u2 = gs2, u3 = gr+s3 , v = M · hr1hs2, w = (c1d

ξ
1)r(c2d

ξ
2)s), where v is computed

afterwards with ξ = H((`, u1, u2, u3, v)).
– Decrypt(`, dk, C = (u1, u2, u3, v, w)): one first computes ξ = H((`, u1, u2, u3, v)) and checks

whether ux1+ξy1
1 ·ux2+ξy2

2 ·ux3+ξy3
3

?= v. If the equality holds, one computesM = v/(uz1
1 u

z2
2 u

z3
3 )

and outputs M . Otherwise, one outputs ⊥.

This scheme is indistinguishable against chosen-ciphertext attacks, under the DLin assumption
and if one uses a collision-resistant hash function H.

A.4 Smooth Projective Hash Functions and Hard Subset Membership Problems

In Section 3.2, we define the notion of perfect smoothness or 0-smoothness. This can be generalized
to the notion of (statistical) ε-smoothness as follows. An SPHF is ε-smooth if for any crs, and any
function (not necessarily computable in polynomial time) f from the set of projection keys to
Xcrs, so that C = f(hp) is such that C /∈ Lcrs, the two following distributions are ε-statistically
close: {

(hp, H)
∣∣∣∣∣ hk $← HashKG(crs); hp← ProjKG(hk, crs);
C ← f(hp); H ← Hash(hk, crs, C)

}
{

(hp, H)
∣∣∣∣∣ hk $← HashKG(crs); hp← ProjKG(hk, crs);
C ← f(hp); H $← Π

}
.

An SPHF is smooth if it is ε-smooth with ε negligible (in the security parameter K). When ε = 0,
this definition is equivalent to the definition in Section 3.2, because, when the two distributions
are identical, the fact that C can depend on hp gives no advantage to the adversary.
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Expsubset-memb-b(A,K)
(crs, Tcrs) $← Setupcrs(1K);
if b = 0 then C

$← Lcrs
else C $← Xcrs \Lcrs

return A(crs, C)

Fig. 6. Experiments Expsubset-memb-b for hard subset membership

A.5 (Quasi-Adaptive) Non-Interactive Zero-Knowledge Proofs

Let us first recall some definitions from [Gro06, JR13], extended to the case of labeled non-
interactive proof systems. We consider the quasi-adaptive setting of Jutla and Roy [JR13], where
the common reference string (CRS) may depend on the language considered. In addition, the
soundness property is only computational, so our NIZK is actually an argument and not a proof.
However, this setting, though slightly weaker than usual settings, is sufficient for most cases.
Non-Interactive Proof System. Intuitively a proof system is a protocol which enables a
prover to prove to a verifier that a given word or statement x is in a given NP-language. We are
interested in non-interactive proofs, i.e., proofs such that the prover just sends one message.

More formally, as for SPHF, let Lcrs be a family of NP languages with witness relation Rcrs,
i.e., Lcrs = {x | ∃w, Rcrs(x,w) = 1}. The CRS σ for the NIZK (denoted by ψ in [JR13]) may
depend on crs (denoted by ρ in [JR13]). We suppose that crs is generated by an algorithm
Setupcrs (which may or may not also generate a trapdoor Tcrs associated to crs, see Section 3.2).
The trapdoor Tcrs is only here to formalize properties like witness-samplabiblity [JR13], and
is only used in proofs. A labeled non-interactive proof system for (Lcrs) is defined by a tuple
Π = (Setup,Prove,Ver,L), such that:
– L is a set of labels. For a classical non-interactive proof system, L = {⊥} (and in this case,

the labels can be forgotten) and for a labeled one, L = {0, 1}∗;
– Setup is a probabilistic polynomial time algorithm which takes as input crs and outputs a

common reference string (CRS) σ; crs is implicitly supposed to be contained in σ;
– Prove is a probabilistic polynomial time algorithm which takes as input a CRS σ $← Setup(crs),

crs, a label ` ∈ L, a word x ∈ L and a witness w for x (such that Rcrs(x,w) = 1), and
outputs a proof π that x is in L , for label `;

– Ver is a deterministic algorithm which takes as input the CRS σ, crs, a label ` ∈ L, a word
x and a proof π and outputs 1 to indicate acceptance and 0 otherwise;

and such that it verifies the two following properties:
– Quasi-adaptive completeness. A non-interactive proof is complete if a honest prover

knowing a statement x ∈ Lcrs and a witness w for x can convince an honest verifier that x
is in Lcrs, for any label. More formally, Π is said perfectly complete, if for any adversary11

A, we have

Pr
[
(crs, Tcrs) $← Setupcrs(1K);σ $← Setup(crs); (`, x, w, π) $← A(σ);

R(x,w) = 0 and Ver(σ, crs, `, x,Prove(σ, crs, `, x, w)) = 1
]

= 0;

– Quasi-adaptive soundness. A non-interactive proof is said to be sound, if no polynomial
time adversary A can prove a false statement with non-negligible probability. More formally,
Π is (t, ε)-sound if for any adversary A running in time at most t:

Pr
[
(crs, Tcrs) $← Setupcrs(1K);σ $← Setup(crs); (`, x, π) $← A(σ);

Ver(σ, crs, `, x, π) = 1 and x /∈ Lcrs
]
≤ ε.

11 Unlike [JR13], we use a statistical definition for completeness.
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Non-Interactive Zero-Knowledge Proof (NIZK). An (unbounded) NIZK (non-interactive
zero-knowledge proof) is a non-interactive proof system with two simulators Sim1 and Sim2,
which can simulate Setup and Prove, but such that Sim2 does not need any witness. More formally
a NIZK is defined by a tuple Π = (Setup,Prove,Ver, Sim1, Sim2) such that (Setup,Prove,Ver) is
a non-interactive proof system, and:

– Sim1 is a probabilistic algorithm which takes as input crs and generates a CRS σ and a
trapdoor T , such that Sim2 can use T to simulate proofs under σ;

– Sim2 is a probabilistic algorithm which takes as input the CRS σ, a corresponding trapdoor
T , crs, a label `, a word x (not necessarily in L ), and outputs a (fake or simulated) proof π
for x;

and such that it verifies the following property, for any crs:

– Quasi-adaptive (unbounded) zero-knowledge A NIZK is said (unbounded) zero-know-
ledge if simulated proofs are indistinguishable from real proofs. More formally, Π is (t, ε)-
unbounded-zero-knowledge if, for any adversary running in time at most t:∣∣∣Pr

[
(crs, Tcrs) $← Setupcrs(1K);σ $← Setup(crs);A(σ)Prove(σ,crs,·,·,·) = 1

]
−

Pr
[

(crs, Tcrs) $← Setupcrs(1K); (σ, T ) $← Sim1(1K);A(σ)Sim′(σ,T ,crs,·,·,·) = 1
] ∣∣∣ ≤ ε

where Sim′(σ, T , crs, `, x, w) = Sim2(σ, T , crs, `, x), if Rcrs(x,w) = 1, and ⊥ otherwise.

We are also interested in the following additional property:

– One-Time Simulation Soundness. A NIZK is said to be one-time simulation-sound if the
adversary cannot prove a false statement, even if he can see one simulated proof for a word
x of its choice. More formally, Π is (t, ε)-one-time-simulation-sound if, for any adversary
running in time at most t:

Pr
[
(crs, Tcrs) $← Setupcrs(1K); (σ, T ) $← Sim1(1K); (x, `, π) $← ASim2(σ,T ,crs,·,·)(σ);

Ver(σ, `, x, π) = 1, (`, x, π) /∈ S and x /∈ Lcrs
]
≤ ε

where Sim2 can be queried at most one time, and S is the set of (`, x, π) queried to Sim2
(either S is empty or S contains the only query to Sim2).

B Additional Details

B.1 Graded Rings, Sub-Graded Rings, and Multiplicative Compatibility

Let us first recall the notion of graded ring introduced in [BBC+13]. Graded rings are a
generalization of bilinear groups and can be used as a practical abstraction of multilinear maps
coming from the framework of Garg, Gentry and Halevi [GGH13].

Although, in this article, we focus on bilinear groups, all we do can easily be extended to ideal
multilinear groups. Unfortunately, as explained in Footnote 2, no current candidate multilinear
map construction is known to work for our framework. Another advantage of using graded rings
is that it also enables us to simplify notations.

Indexes Set. Let us consider a finite set of indexes Λ = {0, . . . , κ}τ ⊂ Nτ . In addition to
considering the addition law + over Λ, we also consider Λ as a bounded lattice, with the two
following laws:

sup(ṽ, ṽ′) = (max(ṽ1, ṽ
′
1), . . . ,max(ṽτ , ṽ′τ )) inf(ṽ, ṽ′) = (min(ṽ1, ṽ

′
1), . . . ,min(ṽτ , ṽ′τ )).
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We also write ṽ < ṽ′ (resp. ṽ ≤ ṽ′) if and only if for all i ∈ {1, . . . , τ}, ṽi < ṽ′i (resp. ṽi ≤ ṽ′i).
Let 0̄ = (0, . . . , 0) and > = (κ, . . . , κ), be the minimal and maximal elements.

Graded Ring. The (κ, τ)-graded ring over a commutative ring R is the set G = Λ × R =
{[ṽ, x] | ṽ ∈ Λ, x ∈ R}, where Λ = {0, . . . , κ}τ , with two binary operations (+, •) defined as
follows:

– for every u1 = [ṽ1, x1], u2 = [ṽ2, x2] ∈ G: u1 + u2 := [sup(ṽ1, ṽ2), x1 + x2];
– for every u1 = [ṽ1, x1], u2 = [ṽ2, x2] ∈ G: u1 • u2 := [ṽ1 + ṽ2, x1 · x2] if ṽ1 + ṽ2 ∈ Λ, or ⊥

otherwise, where ⊥ means the operation is undefined and cannot be done.

We remark that • is only a partial binary operation and we use the following convention:
⊥ + u = u + ⊥ = u • ⊥ = ⊥ • u = ⊥, for any u ∈ G ∪ {⊥}. Let Gṽ be the additive group
{u = [ṽ′, x] ∈ G | ṽ′ = ṽ} of graded ring elements of index ṽ.

Both + and • are associative and commutative, over G ∪ {⊥}. More precisely, for any
u1, u2, u3 ∈ G∪{⊥}: u1+(u2+u3) = (u1+u2)+u3, u1•(u2•u3) = (u1•u2)•u3, u1+u2 = u2+u1,
and u1•u2 = u2•u1. In particular, if u1•(u2•u3) 6= ⊥ (i.e., if this expression is well-defined), then
(u1 •u2)•u3 6= ⊥. In addition, the operation • is distributive over +: for any u1, u2, u3 ∈ G∪{⊥},
u1 • (u2 + u3) = u1 • u2 + u1 • u3.

Thanks to the previous properties, we can make natural use of vector and matrix operations
over graded ring elements. In particular, we say that Gn and G1×n are vector spaces over the
graded ring G. The canonical basis (ei)ni=1 of G1×n is defined as usual, except the vectors of the
canonical basis are of index 0̄ (i.e., can be considered as “scalars”). Finally, if F is a family of
vectors, 〈F 〉 denotes the vector space generated by F .

Sub-Graded Ring and Multiplicative Compatibility. A sub-graded ring of a graded ring
G is a subset G≤ṽ = {u = [ṽ′, x] ∈ G | ṽ′ ≤ ṽ} of G. A sub-graded ring is itself a graded ring (or
more precisely, is isomorphic to a graded ring). Two sub-graded ring G1 = G≤ṽ1 and G2 = G≤ṽ2

are said to be multiplicatively compatible if ṽ1 + ṽ2 ∈ Λ, or in other words, if it is possible to
multiply any element in G≤ṽ1 by an element in G≤ṽ2 .

Cyclic Groups, Asymmetric Bilinear Groups, and Notations. Let us now show that
cyclic groups and bilinear groups of order p can be seen as graded rings over R = Zp:

Cyclic groups: κ = τ = 1. More precisely, elements [0, x] of index 0 correspond to scalars
x ∈ Zp and elements [1, x] of index 1 correspond to group elements gx ∈ G.

Asymmetric bilinear groups (p,G1,G2,GT , e, g1, g2): κ = 1 and τ = 2. More precisely, we
can consider the following map: [(0, 0), x] corresponds to x ∈ Zp, [(1, 0), x] corresponds to
gx1 ∈ G1, [(0, 1), x] corresponds to gx2 ∈ G2 and [(1, 1), x] corresponds to e(g1, g2)x ∈ GT .
The two non-trivial sub-graded rings of this bilinear group are G≤(1,0) and G≤(0,1). These
two sub-graded rings are multiplicatively compatible, since (1, 0) + (0, 1) = (1, 1). By abuse
of notation, we often call these sub-graded rings: G1 and G2.

Symmetric bilinear groups (p,G,GT , e, g): κ = 2 and τ = 1. More precisely, we can consider
the following map: [0, x] corresponds to x ∈ Zp, [1, x] corresponds to gx ∈ G, and [2, x]
corresponds to e(g, g)x ∈ GT .
The non-trivial sub-graded ring of this bilinear group is G≤1. This sub-graded ring is
multiplicatively compatible with itself, since 1 + 1 = 2 = κ. By abuse of notation, we often
call this sub-graded ring: G.

We have chosen an additive notation for the group law in Gṽ, due to the fact that it simplifies
the description of our constructions in the generic framework. Unfortunately, this choice of
notation also makes it is somewhat cumbersome when dealing with bilinear groups. Hence, when
we provide an example with a bilinear group (p,G1,G2,GT , e), we use multiplicative notation ·
for the law in G1, G2 and GT , and additive notation + for the law in Zp, as soon as it is not too
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complicated. Therefore, for any x, y ∈ Zp, u1, v1 ∈ G1, u2, v2 ∈ G2 and uT , vT ∈ GT , we have:

x+ y = x+ y x • y = x · y = xy

u1 + v1 = u1 · v1 = u1v1 x • u1 = ux1

u2 + v2 = u2 · v2 = u2v2 x • u1 = ux1

uT + vT = uT · vT u1 • u2 = e(u1, u2) x • uT = uxT .

B.2 Technical Conditions for Diverse Vector Spaces

Let us write I(u) and L(u), the index and the discrete logarithm (respectively) of an element
u ∈ G: if u = [ṽ, x], I(u) = ṽ ∈ Λ and L(u) = x ∈ Zp. These notations can be extended to
vectors of elements in G.

In this appendix, we detail the technical condition on indexes of θ(C) and Γ sketched in
Section 4.1, to ensure that:

– the indexes of coordinates of θ(C) are independent of C;
– there exists λ ∈ Gk such that

Ĉ := θ(C) = Γ • λ,

if and only if there exists µ ∈ Zkp such that

L(Ĉ) = L(θ(C)) = L(Γ ) · µ.

The technical condition states that there exists a vector of indexes ṽθ = (ṽθ,i)ki=1 ∈ Λ
k so

that:

– for any C ∈ X and any i = 1, . . . , k, I(Ĉi) = ṽθ,i, with Ĉ = θ(C);
– for any i = 1, . . . , k and j = 1, . . . , n, I(Γi,j) ≤ ṽθ,i.

B.3 Concrete Equations for Disjunction of SPHFs

If we write down all equations, we get:

hk = α $← Z1×n
p

hp = (γj)j with γj =



n1∑
l=1

α(l−1)n2+i2 • Γ
(1)
i1,l

when j = (i1 − 1)n2 + i2

n2∑
l=1

α(i1−1)n2+l • Γ
(2)
i2,l

when j = k1n2 + (i1 − 1)k2 + i2

H =
n1∑
i1=1

n2∑
i2=1

αi1n2+i2 • Ĉ1,i1 • Ĉ1,i2

H ′ =



n1∑
i1=1

n2∑
i2=1

λ1,i1 • Ĉ2,i2 • γ(i1−1)n2+i2 if Γ (1) • λ1 = Ĉ1

n1∑
i1=1

n2∑
i2=1

λ2,i2 • Ĉ1,i1 • γk1n2+(i1−1)k2+i2 if Γ (2) • λ2 = Ĉ2.

These equations are not required to understand the paper and are essentially here for the sake
of completeness.
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B.4 2-Smoothness

For the sake of completeness, here is a definition of statistical 2-smoothness, which is a slight
extension of the definition in Section 5.2 and which is still sufficient for our purpose.

A tag-SPHF is ε-2-smooth if for any crs, for all functions f ′ and f from the set of projection
keys to X × Tags, so that (C ′, tag′) = f ′(hp) and (C, tag) = f(hp) are such that C /∈ Lcrs and
tag′ 6= tag, the two following distributions are ε-statistically close:(hp, H ′, H)

∣∣∣∣∣∣∣
hk $← HashKG(crs); hp← ProjKG(hk, crs);
(C ′, tag′)← f ′(hp) H ′ ← Hash(hk, crs, (C ′, tag′));
(C, tag)← f(hp); H ← Hash(hk, crs, (C, tag))

(hp, H ′, H)

∣∣∣∣∣∣∣
hk $← HashKG(crs); hp← ProjKG(hk, crs);
(C ′, tag′)← f ′(hp); H ′ ← Hash(hk, crs, (C ′, tag′));
(C, tag)← f(hp); H $← Π

 .
In practice the tag tagC of a word C will often be its hash value from a collision-resistant hash
function.

B.5 One-Time Simulation-Sound NIZK

The basic idea for this construction compared to the one in Section 5.3 is to use the tag bit-by-bit.
So we just need to guess which bit is different between tagC1 and tagC′1 . This idea is inspired
from [CW13].

More precisely, we show how to transform V1 into another diverse vector space Ṽ1 such that
the disjunction of Ṽ1 and V2 yields a one-time simulation-sound NIZK.

Let us suppose tags are binary strings of length ν: Tags = {0, 1}ν . tagi represents the bit
i ∈ {1, . . . , ν} of tag ∈ Tags. We transform the original diverse vector space V1 for L1 (not the
2-smooth one) into Ṽ1 = (X1,L1,R1,G1, ñ1, k̃1,

˜Γ (1), θ̃1) with:

Γ̃ =


Γ 0 . . . 0
0 Γ . . . 0
...

... . . . ...
0 0 . . . Γ

 ∈ Gñ1×k̃1 θ̃(C, tag) =



(1− tag1) • Ĉ
tag1 • Ĉ

...
(1− tagν) • Ĉ

tagν • Ĉ


∈ Zk̃1

p

ñ1 = 2νn1

k̃1 = 2νk1.

Now, we can construct a one-time simulation NIZK exactly as the NIZK from disjunction of an
SPHF and a PrPHF in Section 7.1, except that V1 is replaced by Ṽ1. Completeness and perfect
unbounded zero-knowledge are straightforward. Let us now prove that the one-time simulation
soundness property.

We suppose that the adversary asks for a simulated proof π′ for some word C ′1 and some label
`′, and we write tag′ = H((C ′1, `′)); then the adversary submits a proof π for a word C ′1 /∈ L1
and some label `, and we write tag = H((C1, `)). Thanks to the collision resistance of H, we can
assume that tag′ 6= tag.

We then remark that we can write any hashing key h̃k for the disjunction of Ṽ1 and V2 as the
concatenation of 2ν hashing keys for the disjunction of V1 and V2: ĥk1, . . . , ĥk2ν and that the
hash value of C for tag and h̃k is just the product of the hash values of C for all the ĥk2i+tagi−1.
Therefore, we guess an index i and a bit b such that tagi = b but tag′i = 1− b. If this guess is
wrong, we just abort the reduction. Our guess will be correct with probability at least 1/(2ν)
which makes our reduction polynomial time. Finally, we just need to remark that the mixed
pseudo-randomness ensures that the hash value H of C for tag under ĥk2i+tagi−1 looks random,
since ĥk2i+tagi−1 is only used to compute H and nothing else: the simulated proof π′ is the hash
value of Ĉ ′1 ⊗ Idn2 with tag′i 6= b, so ĥk2i+tagi−1 is not used to compute it. This shows that H is
uniformly random. We conclude as in the proof of one-time simulation soundness in Section 5.3.
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C Proof of Mixed-Randomness

We suppose that Tcrs1 contains enough information to be able to compute the discrete logarithm
of elements of Γ (1), denoted L(Γ (1)).

Let m = n1− dim L̂1. First, let us remark that using hybrid methods on pseudo-randomness
of L2, we can prove that the two following distributions of the tuple U = (C2, (hp2,j , H2,j)mj=1)
are computationally indistinguishable:

– normal distribution: C2
$← L2 and for each j, hp2,j is a valid projection key γ(2,j) =

(γ(2,j)
l )

k2

l=1 corresponding to some hashing key hk2,j = α(2,j) ∈ Z1×n2
p , and H2,j is the hash

value of C2 under hk2,j ;
– random distribution: C2, hp2,j and hk2,j are defined the same way, but the values H2,j are

picked independently and uniformly at random.

The whole proof consists in constructing a valid projection key hp = (γj)k1n2+k2n1
j=1 and a

hash value H, given (hp2,j , H2,j)mj=1, so that, if the previous tuple U comes from the normal
distribution, H is a valid hash value, while otherwise it is uniformly random.

Let ∆ ∈ Zn1×m
p be a matrix such that the solutions of the linear equation X • L(Γ (1)) = 0

(with unknown X ∈ Z1×n1
p ) are exactly the vectors δ •∆ for δ ∈ Zmp . In other words, the rows of

∆ form a basis of the left kernel of L(Γ (1)). ∆ can be obtained by doing a Gaussian elimination
over L(Γ (1)).

We set the row vector γ′(2) ∈ G1×mk2
2 to be the concatenation of the row vectors γ(2,j), the

row vector α′(2) ∈ Z1×mn2
p to be the concatenation of α(2,j) (for j = 1, . . . ,m), and the row

vector H2 ∈ G1×m
2 to be H2 = (H2,j)mj=1. We then have:

γ′(2) = α′(2) • (Idm ⊗ Γ (2)), (2)

and, if U is from the normal distribution:

H2 = α′(2) • (Idm ⊗ Ĉ2), (3)

and otherwise it is random, and we can write it as:

H2 = α′′(2)(Idm ⊗ Ĉ2), (4)

with α′′(2) a random row vector in Z1×mn2
p (independent of α′(2)).

We then pick a random column vector ε ∈ Zn1n2
p , and we set:

γ(1) := ε • (Γ (1) ⊗ Idn2) (5)
γ(2) := γ′(2) • (∆⊗ Idn2) + ε • (Idn1 ⊗ Γ (2)) (6)
H := H2 •∆ • Ĉ1 + ε • (Ĉ1 ⊗ Ĉ2) (7)

Let us now prove that hp := (γ(1),γ(2)) is a valid projection key for some random vector α,
and that H is the correct hash value of (C1, C2) if the tuple U is distributed normally, and a
random value otherwise.

For that purpose, let us set:

α := α′(2) • (∆⊗ Idn2) + ε. (8)

This vector is uniformly random due do ε. In addition, from Eq. (5), we get:

α • (Γ (1) ⊗ Idn2) = α′(2) • ((∆ • Γ (1))⊗ Idn2) + ε • (Γ (1) ⊗ Idn2) = γ(1),
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since ∆ • Γ (1) = 0 by definition of ∆. So γ(1) is the correct first part of the projection key
associated to α. And, from Eqs. (2) and (6), we get:

α • (Idn1 ⊗ Γ (2)) = α′(2) • (∆⊗ Γ (2)) + ε • (Idn1 ⊗ Γ (2)) = γ(2),

because

α′(2) • (∆⊗ Γ (2)) = α′(2) • (Idm ⊗ Γ (2)) • (∆⊗ Idn2) = γ′(2) • (∆⊗ Idn2),

so that γ(2) is the correct second part of the projection key associated to α, and hp is the
projection key associated to α.

– If U is from the normal distribution, Eqs. (3) and (7), we get:

H = α′(2) • (Idm ⊗ Ĉ2) •∆ • Ĉ1 + ε • (Ĉ1 ⊗ Ĉ2)
= α′(2) • ((∆ • Ĉ1)⊗ Ĉ2) + ε • (Ĉ1 ⊗ Ĉ2)
= α′(2) • (∆⊗ Idn2) • (Ĉ1 ⊗ Ĉ2) + ε • (Ĉ1 ⊗ Ĉ2).

and so by definition of α (Eq. (8)), we have:

H = α • (Ĉ1 ⊗ Ĉ2),

hence H is the hash value of (C1, C2) under the hashing key of α. In this case, everything
has been generated as in the mixed pseudo-randomness experiment Expmixed-ps-rnd-b (Fig. 4)
for b = 0.

– if U is from the random distribution, as previously, from Eqs. (4) and (7), we get that:

H = α′ • (Ĉ1 ⊗ Ĉ2),

where
α′ = α′′(2) •∆+ ε.

Since α′′(2) is random and independent of everything else, and by definition of ∆, α′ can be
seen as an independent hashing key chosen uniformly at random among the keys verifying:

α′ • (Γ (1) ⊗ Idn2) = ε • (Γ (1) ⊗ Idn2).

Since C1 /∈ L1, Ĉ1 is linearly independent from rows of Γ (1), and Ĉ1 ⊗ Ĉ2 is linearly
independent from rows of Γ (1) ⊗ Idn2 , hence H = α′ • (Ĉ1 ⊗ Ĉ2) looks uniformly random.
Therefore, in this case, where U is from the random distribution, everything has been
generated as in the mixed pseudo-randomness experiment Expmixed-ps-rnd-b (Fig. 4) for b = 1.

Since the normal distribution of U is computationally indistinguishable from the random
one, this proves the mixed pseudo-randomness property.

D Application Details

D.1 Threshold Cramer-Shoup-like Encryption Schemes

In this appendix, we give some details on our constructions of threshold Cramer-Shoup-like
encryption schemes. We first give the non-threshold schemes together with an IND-CCA proof
and then we show that these schemes can easily be decrypted in a threshold way.

(Non-Threshold) Constructions. Our two encryption schemes in Section 5.5 and Section 7.4
work as follows:
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– SetupE(1K) generates an asymmetric bilinear group (p,G1,G2,GT , e, g1, g2);
– KGE(param) generates crs1 = (g1,1, g1,2) $← (G1 \ {1})2 together with a CRS σ for a one-time

simulation-sound NIZK for the language defined by the following witness relation:

R1,crs1((u1, u2), r) = 1 if and only if u1 = gr1,1 and u2 = gr1,2;

then it chooses z $← Zp and sets h← gz1,1. It also chooses a hash function H in a collision-
resistant hash familyHF . The encryption key is ek = (g1,1, g1,2, h, σ,H), while the decryption
key is dk = (z, σ,H);

– Encrypt(`, ek,M ; r), for a message M ∈ G and a random scalar r ∈ Zp, outputs the following
ciphertext C = (`, u1 = gr1,1, u2 = gr1,2, v = M · hr,π = Prove(σ, (g1,1, g1,2), ξ, (u1, u2), r),
where ξ = H((`, u1, u2, v)).

– Decrypt(`, dk, C) first computes ξ = H((`, u1, u2, v)) and checks whether the proof π is valid
(Ver(σ, (g1,1, g1,2), ξ, (u1, u2),π) ?= 1). If the equality holds, it computes M = v/uz1 and
outputs M . Otherwise, it outputs ⊥.

First Construction. Here is the concrete first construction of one-time simulation-sound NIZK,
following the construction in Section 5.3:
– Setup(crs1) picks a random group element h2 ∈ G2 and a random vector α ∈ Z8

p and sets:

Γ (1) :=


g1,1 1
g1,2 1
1 g1,1
1 g1,2


Γ (2) :=

(
g2
h2

)

γ(1) := α •
(
Γ (1) ⊗ Id2

)
= α •



g1,1 1 1 1
1 g1,1 1 1
g1,2 1 1 1
1 g1,2 1 1
1 1 g1,1 1
1 1 1 g1,1
1 1 g1,2 1
1 1 1 g1,2



γ(2) := α •
(
Id4 ⊗ Γ (2)

)
= α •



g2 1 1 1
h2 1 1 1
1 g2 1 1
1 h2 1 1
1 1 g2 1
1 1 h2 1
1 1 1 g2
1 1 1 h2


;

(where 1 is the group element 1 ∈ G1). The CRS is σ := (γ(1),γ(2)), while the trapdoor is
T = α.

– Prove(σ, crs1, ξ, (u1, u2), r) just sets tag = ξ and outputs the proof12

π ← γ(1) •
((

r
rξ

)
⊗ Id2

)
= γ(1) •


r 0
0 r
rξ 0
0 rξ

 , (9)

12 In the original construction tag would be the hash value of ξ and (u1, u2) under some collision-resistant hash
function, but here ξ already “contains” (u1, u2) so we can slightly simplify the construction by choosing tag = ξ.
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which is a column vector of two elements in G1.
– Ver(σ, crs1, ξ, (u1, u2),π) checks whether:

π • Γ (2) ?= γ(2) •


u1
u2
uξ1
uξ2

 . (10)

If we know the trapdoor T of the NIZK, namely the hashing key α of the SPHF, the verification
of the NIZK can be performed as follows:

π ?= α •



u1
u2
uξ1
uξ2

⊗ Id2

 = α •



u1 1
1 u1
u2 1
1 u2
uξ1 1
1 uξ1
uξ2 1
1 uξ2


. (11)

Indeed, Eq. (11) is just Eq. (10) multiplied by the matrix Γ (2), so this verification method
will always reject when the original one rejects, and the one-time simulation-soundness still
holds. It just remains to check that using this stronger verification method does not break the
completeness: the completeness still holds because Eq. (9) implies:

π = α • (Γ (1) ⊗ Id2) •
((

r
rξ

)
⊗ Id2

)
= α •

((
Γ (1) •

(
r
rξ

))
⊗ (Id2 • Id2)

)

= α •



u1
u2
uξ1
uξ2

⊗ Id2

 .
Second Construction. The second construction follows the construction in Section 7.2. It is very
similar to the first one. The only difference is that the tag tag = ξ is used bit by bit, instead of
all at once, and that the matrix Γ (1) can be seen as a block diagonal matrix with ν = |ξ| blocks
equal to the above matrix Γ (1). Moreover, we remark that, as for the first construction, knowing
the trapdoor T of the NIZK enables us to decrypt without performing any pairing computations.

IND-CCA Security Proof. The proof is quite straightforward and basically uses ideas in the
security proof of the Cramer-Shoup encryption scheme [CS98]. Here is a sketch of a sequence of
games proving the IND-CCA property:

Game G0: This is the game for Expind-cca−b
E for b = 0 (see Appendix A.2).

Game G1: In this game, we generate g1,2 as gt1,1 (with t $← Zp) and reject all ciphertexts
C = (u1, u2, v,π) submitted to the decryption oracle for which u2 6= ut1. This game is
indistinguishable from the previous one under the soundness of the NIZK, which ensures
that if the proof π is not rejected, (g1,1, g1,2, u1, u2) is a DDH tuple.

Game G2: In this game, we generate h as h = gz1
1,1g

z2
1,2 (with z1, z2

$← Zp) instead of h = gz1,1.
In addition, we decrypt ciphertexts C = (u1, u2, v,π) by first rejecting if π is not a valid
proof or u2 6= ut1 (as before) and then outputting v/(uz1

1 u
z2
2 ) (instead of v/uz1). This game is

perfectly indistinguishable from the previous one, because h can be written h = gz1+tz2
1,1 and

uz1
1 u

z2
2 = uz1+tz2

1 .
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Game G3: In this game, we do not check anymore that u2 = ut1 and we generate g1,2 directly
as a random group element in G1. This game is indistinguishable from the previous one
under the soundness of the NIZK.

Game G4: In this game, for the challenge ciphertext C∗ = (u∗1, u∗2, v∗,π∗), we compute v∗
as v∗ = u∗1

z1u∗2
z2 , instead of hr, where u1 = gr1,1 and u2 = gr1,2. This game is perfectly

indistinguishable from the previous one.
Game G5: In this game, we simulate the proof π∗ in the challenge ciphertext C∗ = (u∗1, u∗2,

v∗,π∗). This game is indistinguishable from the previous one under the zero-knowledge
property of the NIZK. In addition, in this game, knowledge of r in C∗ is no longer required.

Game G6: In this game, we replace (u∗1, u∗2) which was a DDH tuple in basis (g1,1, g1,2) by
a random tuple. This game is indistinguishable from the previous one under the DDH
assumption.

Game G7: In this game, we again generate g1,2 as gt1,1 (with t $← Zp) and reject all ciphertexts
C = (u1, u2, v,π) submitted to the decryption oracle for which u2 6= ut1. This game is
indistinguishable form the previous one under the one-time simulation-soundness of the
NIZK.

Game G8: As in Cramer-Shoup’s proof [CS98], it is easy to show that the only information
(from an information theoretic point of view) the adversary sees of z1 and z2 except from C∗

is z1 + tz2. So u∗1z1u∗2
z2 looks completely random to the adversary if (u1, u2) is not a DDH

tuple in basis (g1,1, g1,2) (which happens with probability 1− 1/p). Therefore we can replace
v∗ by a random value, and this game is statistically indistinguishable from the previous one.
Finally, we can redo all the previous games in the reverse order and sees that Expind-cca−b

E
with b = 0 is indistinguishable from Expind-cca−b

E with b = 1.

Threshold Version. The validity of the ciphertext can be verified publicly, just knowing ek
(or more precisely σ), and not dk, and then after this test has been performed, we just need to
compute v/uz1, to get the message. We often say in this case that the ciphertext is “publicly
verifiable”, though it is not clear that a proper definition exists.

In any case, this property just means that to threshold decrypt the ciphertext, we just need
to use Shamir’s threshold secret sharing over Zp [Sha79], exactly as in [SG02]. If in addition,
we want to be able to verify decryption shares without random oracle, we can replace the
Fiat-Shamir-based NIZK in [SG02] by one of ours in Section 5.1.
Comparison with Existing Schemes. A comparison with existing efficient IND-CCA encryp-
tion schemes based on cyclic or bilinear groups is given in Table 2, whose entries have been
partially derived from similar tables in [BMW05,Kil06].

The two other efficient threshold and structure-preserving IND-CCA encryption schemes
are those based on the Canetti-Halevi-Katz [CHK04] transform, the one of Boyen, Mei and
Waters [BMW05] and the one of Kiltz [Kil06]. But for all except the one of Kiltz, the plaintext
and one element of the ciphertext has to be in GT , which limits usage of Groth-Sahai NIZK. In
addition, elements in GT have a much longer representation than elements in G, G1 or G2. And,
even though our second encryption scheme uses exactly the same number of group elements
as Kiltz’s encryption scheme [Kil06], these groups elements are about 50% smaller in practice,
since we use an asymmetric pairing while Kiltz’s scheme uses a symmetric one. So even our first
construction is more efficient (regarding ciphertext size) than Kiltz’s construction.

D.2 One-Round Group Password Authenticated Key Exchange

In this appendix, we give some details on our one-round group password authenticated key
exchange (GPAKE). We first give our construction, then recall the formal model and finally prove
the security of our protocol.
Protocol. We first describe the protocol for 3 players for the sake of simplicity. But, it can
easily be extended to n players using (n− 1)-way symmetric multilinear maps. However, since
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Table 2. Efficiency comparison for IND-CCA encryption schemes over cyclic or bilinear groups

Time Complexitya Ciphertext Overhead

Scheme Assumption Encryption Decryption Public key Hybrid SPb Thres.c

KD DDH 0 + [1,2,0] 0 + [1,0,0] 4 G 2 G (+hybrid) n/a 3

CS DDH 0 + [1,3,0] 0 + [1,1,0] 5 G 3 G + G
CHK/BB1 BDDH 0 + [1,2,0] 1 + [1,0,0] O(1)d 2 G + ver key + sig + GT 3

CHK/BB2 q-BDDHI 0 + [1,2,0] 1 + [0,1,1] O(1)d 2 G + ver key + sig + GT 3

BK/BB1 BDDH 0 + [1,2,0] 1 + [1,0,0] O(1)d 2 G + com + mac + GT
BK/BB2 q-BDDHI 0 + [1,2,0] 1 + [0,1,1] O(1)d 2 G + com + mac + GT
BMW BDDH 0 + [1,2,0] 1 + [0,1,0] 2 G + GT 2 G + GT 3

Kiltz DLin 0 + [2,3,0] 0 + [1,0,0] 5 G 4 Ge + Ge 3

Ours §5.5f SXDH 0 + [2,3,0] 0 + [2,1,0] 6 G1 4 G1 + G1 3

Ours §7.4 SXDH 0 + [0,4,0] + 2K 0 + [0,2,0] + 2K (3 + 4K) G1 3 G1 + G1 3

KD: Kurosawa-Desmedt [KD04], CS: Cramer-Shoup [CS98], CHK: Canetti-Halevi-Katz transform [CHK04]
for BB1/BB2 Boneh-Boyen IBE [BB04], BK: Boneh-Katz transformation [BK05], BMW: Boneh-Mey-
Waters [BMW05], Kiltz [Kil06]
ver key: verification key of a signature scheme, sig: signature, com: commitment

a #pairing + [#multi, #regular, #fix]-exponentiation (+ #multiplication) (in G or G1), a multi-exponentiation
being a computation of the form ab1

1 · · · a
bk
k , where a1, . . . , ak ∈ G and b1, . . . , bk ∈ Zp; the number of

multiplications is approximate and only written when it depends on K, since multiplications are way faster
than pairings and exponentiations;

b Number of other elements required to make the KEM (previous column) scheme, a structure preserving
encryption scheme; see text;

c support threshold decryption;
d depends on parameters for the signature/commitment/mac and if we use symmetric or asymmetric groups,
but a small constant in any case;

e G has to be a cyclic group from a symmetric bilinear group, and so element representation is often 50% bigger
than for the other scheme where G is either just a cyclic group, or can be the first group (G1) of an asymmetric
bilinear group;

f supposing ν = 2K.

each player needs to send an exponential number of group elements in n, this protocol is limited
to small number n of users. Notice that the only known group one-round (non authenticated)
key exchange is the group Diffie-Hellman key exchange [BS03], which also require (n− 1)-way
symmetric multilinear maps.

In our protocol, we suppose that users participating in our one-round GPAKE are identified
as U1, U2 and U3. Let (p,G,GT , e, g) be a symmetric bilinear group. The common reference
string crs contains an encryption key ek for the linear Cramer-Shoup encryption scheme. The
linear Cramer-Shoup encryption scheme [Sha07] recalled in Appendix A.3 is a variant of the
Cramer-Shoup encryption scheme secure under DLin. We cannot use the original Cramer-Shoup
scheme because DDH does not hold in symmetric bilinear groups. Let Lcrs be the language of
tuples ((pw1, `1, C1), (pw2`2, C2)), where C1 (with label `1) is a valid Cramer-Shoup ciphertext
of pw1 or C2 (with label `2) is a valid linear Cramer-Shoup ciphertext of pw2. This language is
the disjunction of two identical languages L1 = L2, namely the language of tuples (pw, `, C) of
valid linear Cramer-Shoup ciphertexts C (with label `) of pw. A diverse vector space for L1 is
recalled later in this appendix.

Let us describe the protocol for U1 with password pw1 (the protocol is symmetric for the
other users): user U1 first generates an hashing key hk1 and an associated projection key hp1 for
a 2-smooth SPHF on L . Such a 2-smooth SPHF can be created using the generic transformation
of Section 5.2. Then, he generates C1

$← Encrypt(`, ek, pw1; r1, s1), with label ` = (U1, U2, U3, hp1)
and random scalars r1, s1

$← Zp. Finally, he sends C1, hp1 to U2 and U3.
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Then after receiving C2, hp2 from U2 and C3, hp3 from U3, U1 computes sk as the product (·
in GT ) of the three following values:

Hash(hk1, crs, ((pw1, `2, C2), (pw1, `3, C3)))
ProjHash(hp2, crs, ((pw1, `1, C1), (pw1, `3, C3)), (r1, s1))
ProjHash(hp3, crs, ((pw1, `1, C1), (pw1, `2, C2)), (r1, s1)),

where `2 = (U1, U2, U3, hp2) and `3 = (U1, U2, U3, hp3). Concretely, each user sends a ciphertext
with 5 group elements, and a projection key with 2× 7× 4 = 56 group elements, which adds up
to 61 group elements sent per user.

As shown later, this protocol is secure under the DLin assumption in G. The proof is a very
delicate extension of the proof of the one-round PAKE of Katz and Vaikuntanathan in [KV11],
and may be of independent interest.

Its extension to n users would require to use an n-linear variant of Cramer-Shoup and to use
an (n− 1)-smooth SPHF. The proof would hold under n-Lin. However, the size of the projection
keys and the gap in the security reduction grow exponentially in n, and so we are limited to
small values of n, which needs to be logarithmic in the security parameter K.
Formal Model. Let us recall the model of group password authenticated key exchange for n
users in [ABCP06].

We denote by U1, . . . , Un the parties that can participate in the key exchange protocol P .
Each of them may have several instances called oracles involved in distinct, possibly concurrent,
executions of P . We denote Ui instances by Πs

Ui
. To simplify notations, s is supposed to be

an integer between 1 and qsession, and for any s, instances (Πs
Ui

)n
i=1 are supposed to run the

protocol together. Each s therefore corresponds to a session of the protocol, and is called a
session id. The parties share a low-entropy secret pw∗ which is uniformly drawn from a small
dictionary Password of size N .

The key exchange algorithm P is an interactive protocol between the Ui’s that provides the
instances with a session key sk. During the execution of this protocol, the adversary has the
entire control of the network, and tries to break the privacy of the key.

As in [ABCP06], we use the Real-or-Random notion for the semantic security instead of the
Find-then-Guess. This notion is strictly stronger in the password-based setting. And actually,
since we focus on the semantic security only, we can assume that each time a player accepts a
key, the latter is revealed to the adversary, either in a real way, or in a random one (according
to a bit b). Let us briefly review each query:
– Send(Ui, s, Uj ,m): This query enables us to consider active attacks by having A sending a

message to the instance Πs
Ui

in the name of Uj . The adversary A gets back the response
Πs
Ui

generates in processing the message m according to the protocol P . A special query
Send(Ui, s, Start) initializes the instance Πs

Ui
and the key exchange algorithm, and thus the

adversary receives the initial flows sent out by the instance.
– Testb(Ui, s): This query models the misuse of the session key by instance Πs

Ui
(known-key

attacks). The query is only available to A if the attacked instance actually “holds” a session
key. It either releases the actual key to A, if b = 1 or a random one, if b = 0. The random
keys must however be consistent between users in the same session. Therefore, a random key
is simulated by the evaluation of a random function on the view a user has of the session:
all the partners have the same view, they thus have the same random key (but independent
of the actual view.)

Remark 8. Note that it has been shown [AFP05] that this query is indeed enough to model
known-key attacks (where Reveal queries, which always answer with the real keys, are
available), and makes the model even stronger. Even though their result has only been
proven in the two-party and three-party scenarios, one should note that their proof can be
easily extended to the group scenario.
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As already noticed, the aim of the adversary is to break the privacy of the session key (a.k.a.,
semantic security). This security notion takes place in the context of executing P in the presence
of the adversary A. One first draws a password pw∗ from Password, flips a coin b, provides coin
tosses to A, as well as access to the Testb and Send oracles.

The goal of the adversary is to guess the bit b involved in the Test queries, by outputting
this guess b′. We denote the AKE advantage as the probability that A correctly guesses the
value of b. More precisely we define Advake

A (K) = 2 Pr[b = b′]− 1. The protocol P is said to be
(t, ε)-AKE-secure if A’s advantage is smaller than ε for any adversary A running with time t.

We will denote by qactive the number of messages the adversary produced by himself (thus
without including those he has just forwarded). This number upper-bounds the number of on-line
“tests” the adversary performs to guess the password. And we denote by qsession the total number
of sessions the adversary has initiated: nqsession, where n is the size of the group, upper-bounds
the total number of messages the adversary has sent in the protocol (including those he has
built and those he has just forwarded).

The best we can expect with such a scheme is that the adversary erases no more than 1
password for each session in which he plays actively (since there exists attacks which achieve
that in any password-based scheme). However, in our scheme, we can just prevent the adversary
from erasing more than 1 password for each player that he tries to impersonate, which was
also the case for the scheme in [ABCP06]. So we want to prove that Advake

A (K) is bounded by
qactive/N plus some negligible term in K.

Finally, we are interested in one-round protocol, meaning that each player sends exactly one
flow and all flows can be sent simultaneously. Since the communication channel is not assumed
to be reliable, the adversary is allowed to modify messages, to delete them, and to alter the
order in which these messages are received.

SPHF for Linear Cramer-Shoup Ciphertexts. Our construction needs an SPHF for the
language defined by the following witness relation:

Rcrs((pw, `, C), r) if and only if C = Encrypt(`, ek, pw; r)

where Encrypt is the encryption algorithm for Linear Cramer-Shoup, ek is an encryption key
(stored in crs).

Here is a diverse vector space for the above language (using notations in Appendix A.3 for
ek):

X̂ = G7 Γ =



g1 1 1 1
1 g1 1 1
1 1 g2 1
1 1 1 g2
g3 1 g3 1
h1 1 h2 1
c1 d1 c2 d2


θ((pw, `, C)) =



u1
uξ1
u2
uξ2
u3
v/pw
w


with C = (u1, u2, u3, v, w) and ξ = H((`, u1, u2, u3, v)). It is a straightforward extension of the
one for Cramer-Shoup encryption scheme introduced in [BBC+13].

Security Proof. The security proof is a delicate extension of the proof for the one-round PAKE
of Katz and Vaikuntanathan in [KV11]. It also works for our extension of the protocol for n
players (and not only for our protocol for n = 3 players), as long as n is logarithmic in K.

Although our proof is self-contained, we highly recommend the reader to get familiar with the
work of Katz and Vaikunthanatan [KV11] before reading this proof. The following paragraphs
explain the main difference between our proof and their proof.
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Main Difficulties in the Proof. Basically, the main difficulty in the proof comes from the fact
that we have to be able to prove that the hash values computed by the honest user look random
if the adversary only generated ciphertexts not containing the valid password pw∗. In the case
of a two-player PAKE, this was handled by the technical lemma in [KV11]. Its proof basically
consisted in an hybrid over all pairs of honestly generated hashing/projection key (hk, hp) and
an honestly generated ciphertext C. The hash value of C under hk can be proven to look random
under the pseudo-randomness of the SPHF, which comes from the hard subset membership
property of the underlying language (which itself comes from the IND-CCA property of the
encryption scheme). More precisely, we could just replace C by an encryption of a dummy
password, and that would prove that the hash value of C under hp looks random to someone
not knowing hk. This is possible thanks to the IND-CCA property and the fact we do not need
to use the random coins of C in that part of the game: these random coins are indeed only used
to compute the resulting secret keys, but either these secret keys were already random (if one of
the user involved in the session yielding the secret key is corrupted by the adversary and did not
used the valid password), or these secret keys can be computed directly using the hashing keys
of honest users, without requiring to know the random coins of C. That is why the hash value
of C under hk can be replaced by a random value, and then we can change back C to a valid
ciphertext of pw∗ (and continue the hybrid argument. . . ).

Unfortunately, in our case, we cannot simply do that, since hash values are now over n− 1
ciphertexts, and as soon as one ciphertext is a valid ciphertext of pw∗, the hash value could be
derived from the projection key hp (at least information theoretically). That is why we need
to do a much more delicate hybrid over all sets S of possible honest players, and turn all the
ciphertexts of these players into ciphertexts of dummy values, assuming there is only one session
for each set of players to simplify. However, that needs to be done in the correct order, otherwise,
we may not be able to compute the secret keys of the other players by doing so! Basically, what
we show is that if we enumerate the sets S by increasing size, everything works.

Another subtlety is that the classical smoothness is not enough, and we need to use the
(n− 1)-smoothness property.

Proof Details. We can assume that there are two kinds of Send-queries: Send0(Ui, s, Start)
and Send1(Ui, s, Uj ,m). Send0(Ui, s, Start)-queries are queries where the adversary asks the
instance Πs

Ui
to send its flow. It is answered by the flow Ui should send to all the Uj with j 6= i.

Send1(Ui, s, Uj ,m)-queries are queries where the adversary sends the message m to the instance
Πs
Ui
. It gives no answer back, but, it may define the session key, for possible later Test-queries,

when Πs
Ui

received a flow from all the other users (Uk with k 6= i, j).
We write AdvI(A) the advantage of A in Game GI and negl() means negligible in K.

Game G0: This game is the real attack game.
Game G1: We first modify the way one answers the Send1-queries, by using a decryption

oracle, or alternatively knowing the decryption key. More precisely, when a message (hp, C)
is sent, two cases can appear:
– it has been generated (altered) by the adversary, then one first decrypts the ciphertext

to get the password pw used by the adversary. And, if it is correct (pw = pw∗) —event
EventStop— one declares that A succeeds (saying that b′ = b) and terminates the game.
Otherwise, we do nothing;

– it is a replay of a previous flow sent by the simulator, then, in particular, one knows the
hashing keys, and one can compute the associated hash values using the hashing key.

The first case can only increase the advantage of the adversary in case EventStop happens
(which probability is computed in G4). The second change does not affect the way the key
is computed, so finally: Adv0(A) ≤ Adv1(A) + negl(K).

Game G2: We modify the way the secret keys are computed: each time two simulated instances
have corresponding transcripts, the second instance which computes the secret key, does not
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recompute it but uses the one already computed by the first instance. More precisely, when
an instance Πs

Ui
has received a message (hpj , Cj) from Uj and previously received messages

(hpk, Ck) from all the other users Uk with k 6= i, j, and if another instance ΠUt
l
received the

same messages (hpk, Ck) for k 6= l, and sent (hpl, Cl), then we set the secret key of Πs
Ui

to
be the one computed by Πt

Ul
. This change is only formal and Adv1(A) = Adv2(A).

Game G3: We modify again the way one answers the Send1-queries. More precisely, when an
instance Πs

Ui
has received a message (hpj , Cj) from Uj and previously received messages

(hpk, Ck) from all the other users Uk with k 6= i, j, then we choose sk at random. The proof
is a non-trivial extension of the technical lemma of Katz and Vaikuntanathan in [KV11].
As explained above, we consider a sequence of hybrid games G3,h, where h is a tuple of the
form (s, i, S), where s is a session id (s ∈ {1, . . . , qsession)), i is a player id (i ∈ {1, . . . , n}),
and S is a strict subset of {1, . . . , n} which does not contains i. We choose an arbitrary (total)
order ≺ over the tuples h so that if h = (s, i, S) ≺ h′ = (s′, i′, S′), then |S| ≤ |S′|. We also
suppose there exists a special h = ⊥, which is less (≺) than all regular h tuples. Furthermore,
h − 1 denotes the tuple h just before h in the order ≺. Note there are qsessionn2n−1 + 1
tuples h = (s, i, S). This number of tuples is much higher than the number of sessions, and
the number of hybrid games is exponential on n, because we do not know in advance the
structure of the set S for the session s. Hence, we need to enumerate all the possibilities.
We denote by hki,s the hashing key honestly generated by Πs

Ui
(supposing wlog. that any

instance always generate such hashing key even if it is not asked by the adversary, through
a Send0 query) and by hpi,s the associated projection key (which is sent by Πs

Ui
, if asked by

the adversary). We also say an hash value we have to compute is of type h, if it is a hash
value under hki,s of ciphertexts (Cj)j 6=i (with labels (`j)j 6=i), where:
– for j ∈ S, Cj was honestly generated by Πs

Uj
,

– for j /∈ S, Cj was generated (altered) by the adversary (and so we know that these
ciphertexts Cj are not valid ciphertexts of pw∗).

Notice there may be up to |S|+ 1 hash values of type h, since Πs
Ui

and all the Πs
Uj

with
j ∈ S may need to compute a hash value of type h. In addition, when |S| = n− 1, all these
hash values are equal. Therefore, we can see there are at most n− 1 distinct hash values of
type h, hence the requirement of a (n− 1)-smooth SPHF (details follow).
The hybrid G3,h, with h = (s, i, S) is defined as follows: all hash values of types � h are
replaced by random values. Clearly G3,⊥ is G2, while G3,> is G3, where > is the maximal
tuple for ≺.
Let h 6= ⊥ be a tuple (s, i, S). We now just need to prove that G3,h−1 is computationally
indistinguishable from G3,h. This is basically done by the following sequence of sub-hybrid
games:
Game G3.0: This game is G3,h−1.
Game G3.1: Let Cj,s be the ciphertext honestly generated by Πs

Uj
, for j ∈ {1, . . . , n},

and `j,s be the associated label. In this game, for j ∈ S, when Πs
Uj

wants to compute the
hash value of the ciphertext he received under a projection key hp from some adversarily
generated flow from some Πs

Uk
, then:

– either this hash value if of type ≺ h, in which case, it is actually chosen at random,
– or, it is not, in which case, this implies that at least |S| flows received by Πs

Uj
are

honestly generated. In the previous game, we would compute the requested hash
value using the random coins used in Cj,s, as witness. In this game, we do not want
to do that, and instead we remark that among these |S| honest flows, at least one
comes from a Πs

Uk
for k /∈ S; otherwise S would contain at least |S| − 1 + 1 values,

the “+1” coming from the fact j ∈ S. Therefore, we can compute the requested
hash values using the random coins of Ck,s as witness.

This game is clearly perfectly indistinguishable from the previous one. In addition, in
this game, the random coins of Cj,s are never used.
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Game G3.2: In this game, we now generate Cj,s for j ∈ S, as a ciphertext of a dummy
(invalid) password. This game is indistinguishable from the previous one, we use the
IND-CCA property of the encryption scheme (in a classical hybrid way).

Game G3.3: Now, the (n−1)-smoothness property of the SPHF ensures that the (at most
n−1) hash values of type h look like independent random values, since these hash values
are for words outside the language (all the ciphertexts used are either honestly generated
for Cj,s for j ∈ S, and so containing a dummy password, or adversarily generated, and
so not containing the correct password pw∗). So in this game, we now replace all hash
values of type h by independent random values.

Game G3.4: In this game, we encrypt again pw∗ in Cj,s (for j ∈ S). This game is
computationally indistinguishable from the previous one under the IND-CCA property
of the encryption scheme.

Game G3.5: In this game, we undo what has been done in G3.1. This game is perfectly
indistinguishable from the previous one. This game is also exactly G3,h.

The last hybrid G3,> corresponds to our current game G3, i.e. to the case where all secret
keys are computed at random. We proved that this game is indistinguishable from the
previous and that:

|Adv3(A)− Adv2(A)| ≤ qsessionn2n−1 · negl(),

since there are qsessionn2n−1 + 1 hybrids.
Game G4: We now modify the way one answers the Send0-queries: instead of encrypting the

correct values, we encrypt a dummy password. Under the IND-CCA security of the encryption
scheme: |Adv4(A)− Adv3(A)| ≤ negl().
If there is no event EventStop (even ¬EventStop), then this last game looks exactly the same
when b = 0 and when b = 1, hence:

Adv4(A) ≤ 2
(
Pr
[
b′ = b | ¬EventStop

]
· Pr [¬EventStop ]

+ Pr
[
b′ = b | EventStop

]
· Pr [ EventStop ]

)
− 1

≤ 2 ·
(1

2 (1− Pr [ EventStop ]) + Pr [ EventStop ]
)
− 1

≤ 1
2 + Pr [ EventStop ] .

Since in G4, pw∗ is never used before EventStop happens, and since EventStop happens when
the adversary correctly encrypts pw∗ (in one of its qactive active queries), the probability of
this event is at most than qactive/N . In addition, combining all relations above, we also get:

Advake
A (K) = Adv0(A) ≤ Adv4(A) + qsessionn2n−1 · negl().

Therefore, we have:

Advake
A (K) ≤ qactive

N
+ qsessionn2n−1 · negl().

That concludes the proof, since n2n−1 · negl() is negligible in K when n is logarithmic in K.

D.3 Trapdoor Smooth Projective Hash Functions

Definition. A TSPHF [BBC+13] is an extension of a classical SPHF with an additional algorithm
TSetup, which takes as input the CRS crs and outputs an additional CRS crs′ and a trapdoor
Tcrs′ specific to crs′, which can be used to compute the hash value of words C knowing only hp.
The additional CRS crs′ is often implicit.

TSPHFs enable to construct efficient PAKE protocols in the UC model and also efficient
2-round zero-knowledge proofs. For the latter, the trapdoor is used to enable the simulator to
simulate a prover playing against a dishonest verifier.

Formally, a TSPHF is defined by seven algorithms:
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– TSetup(crs) takes as input the CRS crs (generated by Setupcrs) and generates the second
CRS crs′, together with a trapdoor Tcrs′ ;

– HashKG, ProjKG, Hash, and ProjHash behave as for a classical SPHF;
– VerHP(hp, crs) outputs 1 if hp is a valid projection key, and 0 otherwise.
– THash(hp, crs, C, Tcrs′) outputs the hash value of C from the projection key hp and the

trapdoor Tcrs′ .

It must verify the following properties:

– Correctness is defined by two properties: hash correctness, which corresponds to correctness
for classical SPHFs, and an additional property called trapdoor correctness, which states
that, for any C ∈ X , if hk and hp are honestly generated, we have: VerHP(hp, crs) = 1 and
Hash(hk, crs, C) = THash(hp, crs, C, Tcrs′), with overwhelming probability;

– Smoothness cannot obviously be statistical because of THash. That is why smoothness is
defined by the experiments Expsmooth-b depicted in Fig. 7. We suppose that testing C ∈ Lcrs
can be done in polynomial-time using Tcrs.

Expsmooth-b(A,K)
(crs, Tcrs) $← Setupcrs(1K)
hk $← HashKG(crs)
hp← ProjKG(hk, crs)
(C, st) $← A(crs)
if b = 0 or C ∈ Lcrs then

H ← Hash(hk, crs, C)
else

H
$← Π

return A(st, H)

Fig. 7. Experiments Expsmooth-b for computational smoothness of TSPHF

– The (t, ε)-soundness property says that, given crs, Tcrs and crs′, no adversary running in
time at most t can produce a projection key hp, a word C and valid witness w such that hp
is valid (i.e., VerHP(hp, crs) = 1) but

THash(hp, crs, C, Tcrs′) 6= ProjHash(hp, crs, C, w),

with probability at least ε. The perfect soundness states that the property holds for any t
and any ε > 0.

It is important to notice that Tcrs is not an input of THash and it is possible to use THash,
while generating crs with an algorithm which cannot output Tcrs (as soon as the distribution of
crs output by this algorithm is indistinguishable from the one output by Setupcrs, obviously).
For example, if Tcrs contains a decryption key, it is still possible to use the IND-CPA game for
the encryption scheme, while making calls to THash. Tcrs is just used in the definition of the
computational smoothness and in the proof of this property.

New Construction. Let us now show how to construct a TSPHF for any family of languages
(L1,crs1)crs1

such that there exists two diverse vector spaces V1 = (X1, (L1,crs1),G1, n1, k1, Γ
(1,crs1),

(θ1,crs1)) and V2 = (X2, (L2,crs2),G2, n2, k2, Γ
(2,crs2), (θ2,crs2)) over two multiplicatively-compatible

sub-graded ring G1 and G2 of some graded ring G, such that the second diverse vector space
corresponds to a hard subset membership language.

This is actually exactly the same requirement as for NIZK from SPHFs in Section 5.1.
Let V = (X ,L ,R,G, n, Γ, θ) be the diverse vector space corresponding to the disjunction of

the two previous diverse vector spaces. Let crs′ contains a random word C2
$← L2 and Tcrs′ = λ2
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be its witness. Then, the algorithms HashKG and ProjKG are the same as the one for V, while
the hash value of a word C1 ∈ X1 is just the hash value of (C1, C2). This can be computed in
three ways:

– Hash: using hk
– ProjHash: using a witness λ1 for C1 ∈ L1 (if C1 ∈ L1)
– THash: using the witness Tcrs′ = λ2 for C2 ∈ L2.

The correctness is trivial, and the computational smoothness directly comes from the
smoothness of V and the hard subset membership problem for L2: crs′ = C2 is indistinguishable
from a word crs′ = C2 /∈ L2, and in this case, the hash value of (C1, C2) is statistically
indistinguishable from random, when C1 /∈ L1.

It remains to define correctly VerHP to get the perfect soundness property. For that, VerHP
checks:

γ(1) • (Idk1 ⊗ Γ (2)) ?= γ(2) • (Γ (1) ⊗ Idk2), (12)

where γ(1) = (γj)n2k1
j=1 and γ(2) = (γj)n2k1+n1k2

j=n2k1+1 .
Let C1 ∈ L1, C2 ∈ L2 with λ1 and λ2 such that Ĉ1 = Γ (1) • λ1 and Ĉ2 = Γ (2) • λ2. The

hash value computed with ProjHash is then:

H ′ = γ(1) • (λ1 ⊗ Ĉ2) = γ(1) • ((Idk1 • λ1)⊗ (Γ (2) • λ2)) = γ(1) • (Idk1 ⊗ Γ (2)) • (λ1 ⊗ λ2)

while the hash value computed with THash is:

H ′′ = γ(2) • (Ĉ1 ⊗ λ2) = γ(2) • ((γ(1) • λ1)⊗ (Idk2 • λ2))• = γ(2) • (Γ (1) ⊗ Idk2) • (λ1 ⊗ λ2).

And so H ′ = H ′′ and Eq. (12) is verified, when hp is valid.

Comparison with the Original Construction. If L2 is just the language of DDH tuples
(as in Example 1), then we get a TSPHF slightly less efficient than the original construction:
the second part of the projection key (γ(2) here and χ in [BBC+13]) is twice as long. However,
the advantage is that our construction works in more cases: it does not require that there is a
way to generate a CRS crs with a trapdoor Tcrs enabling to compute the discrete logarithms of
elements of Γ1, but only enabling to check if a word C1 is in L1 or not.

It is interesting to notice that one can obtain the original TSPHF in [BBC+13] by simply
replacing the second hard membership diverse vector space V2 by the canonical PrPHF V2
under κ-Lin in G2 in our construction above. Even though this observation does not lead to a
performance improvement, it sheds a new light into the way the original TSPHF construction
works, namely, that it was just a disjunction of the language L1 and a trivial language L2.
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