
Universally Composable Non-Interactive Key Exchange∗

Eduarda S.V. Freire†1, Julia Hesse2, and Dennis Hofheinz‡2

1Royal Holloway, University of London, United Kingdom
Eduarda.Freire.2009@live.rhul.ac.uk

2Karlsruhe Institute of Technology, Germany
{julia.hesse,dennis.hofheinz}@kit.edu

Abstract

We consider the notion of a non-interactive key exchange (NIKE). A NIKE scheme allows a
party A to compute a common shared key with another party B from B’s public key and A’s
secret key alone. This computation requires no interaction between A and B, a feature which
distinguishes NIKE from regular (i.e., interactive) key exchange not only quantitatively, but
also qualitatively.

Our first contribution is a formalization of NIKE protocols as ideal functionalities in the
Universal Composability (UC) framework. As we will argue, existing NIKE definitions (all of
which are game-based) do not support a modular analysis either of NIKE schemes themselves,
or of the use of NIKE schemes. We provide a simple and natural UC-based NIKE definition
that allows for a modular analysis both of NIKE schemes and their use in larger protocols.

We proceed to investigate the properties of our new definition, and in particular its relation
to existing game-based NIKE definitions. We find that
(a) game-based NIKE security is equivalent to UC-based NIKE security against static corrup-

tions, and
(b) UC-NIKE security against adaptive corruptions cannot be achieved without additional as-

sumptions (but can be achieved in the random oracle model).
Our results suggest that our UC-based NIKE definition is a useful and simple abstraction of

non-interactive key exchange.

Keywords: non-interactive key exchange, universal composability.

1 Introduction

Non-interactive key exchange. In a non-interactive key exchange (NIKE) scheme, any two
parties can compute a common shared key without any interaction. Concretely, a NIKE scheme
enables a party A to compute a shared key KA,B = KB,A with party B from A’s secret key skA
and B’s public key pkB. A very simple (albeit only mildly secure) example of a NIKE scheme is
the Diffie-Hellman key exchange protocol [14]. (Here, KA,B = gab can be computed from skA = a
and pkB = gb, or from pkA = ga and skB = b.)

A NIKE scheme offers guarantees that are quite different from a regular (i.e., interactive) key
exchange (KE) protocol: a NIKE scheme can only offer one session (i.e., shared key) per pair of

∗An extended abstract of this work will appear in the proceedings of SCN 2014. This is the full version.
†Supported by CAPES Foundation/Brazil on grant 0560/09-0 and Royal Holloway, University of London
‡Supported in part by DFG grant GZ HO 4534/4-1.

1

public keys. On the other hand, in NIKE schemes, the notion of (specifically adversarial) key
registrations plays a crucial role. Namely, while KE schemes use long-term public keys commonly
only to achieve authentication properties (e.g., [7, 8]), a NIKE scheme must completely rely on
public and secret keys. In return, a NIKE scheme offers its functionality without any interaction
– a feature that has found use, e.g., in constructions of PKE schemes [18], designated verifier
signature schemes [25], deniable authentication [15], or in wireless and sensor networks [20]. To
see how the latter could benefit from the non-interactivity we refer to [11], where it is shown that
the energy costs of communication can be significantly reduced when using non-interactive key
exchange schemes rather than interactive ones. Moreover, as a further application, NIKE can even
be used as a basis for interactive key exchange [2]. We stress that in many of the above mentioned
applications [18, 25, 15], non-interactivity is a crucial requirement, and not only an efficiency bonus.
We believe that this justifies the investigation of NIKE schemes as such.

Previous NIKE definitions. Somewhat surprisingly, the syntax and security of NIKE schemes
has been formalized only very recently, by Cash, Kiltz, and Shoup [12].1 They also construct an
efficient NIKE scheme in the random oracle model, based on the Computational Diffie-Hellman
assumption. Further constructions and variants of the NIKE definition were given by Freire et al.
[18]. All of the security definitions in [12, 18] are game-based and do not consider the registration
process of public keys itself. This is a bit unfortunate, in particular since a factoring-based NIKE
scheme from [18] explicitly requires a nontrivial key registration (and can thus not be completely
modeled in the setting of [18]).

In fact, game-based security definitions (like those from [12, 18]) appear unsuitable to model an
interactive key registration process for NIKE schemes. Namely, adding a (presumably adversarially
controlled) interactive message scheduling would considerably complicate the clean and simple
NIKE definitions of [12, 18]. Indeed, it seems more natural and modular to conceptually separate
the interactive key registration process from the actual security of (non-interactive) NIKE sessions.
However, it is not obvious how to achieve such a conceptual separation using a game-based security
definition.

Our contribution. In this work, we devise a simple and intuitive NIKE definition that enables
a modular analysis both of NIKE schemes themselves and their use in larger protocols. Our
definition is set in the framework of Universal Composability (UC) [4],2 which allows for a convenient
separation of the interactive key registration phase and the actual NIKE scheme. Specifically, we can
analyze key registration and NIKE scheme (assuming correctly registered public keys) separately.
Besides, a formalization as an ideal functionality in the UC framework yields a very natural and
intuitive characterization of a NIKE scheme.

We demonstrate the usefulness of our definition by showing that our definition can be seen
as a generalization of existing game-based NIKE definitions, and that the factoring-based NIKE
scheme of [18] can be analyzed with respect to our NIKE definition. This in particular means that,
while being conceptually simpler, our NIKE notion retains a form of backward compatibility with
existing notions.

Why KE functionalities are not suitable for NIKE protocols. Existing KE functionalities
(e.g., [8, 24]) are designed for interactive key exchange protocols and allow multiple sessions per pair

1A formalization of NIKE schemes as variants of interactive KE schemes (e.g., using the KE security models of
[3, 30, 7, 8]) seems possible; however, as argued above, a case-tailored NIKE definition would appear simpler and
more useful.

2More specifically, we use the variant “GNUC” [23] of UC.

2

of public keys. In contrast, our own NIKE functionality is a non-interactive (i.e., immediate) and
supports only one session per pair of public keys. As mentioned above, non-interactivity is crucial
in certain applications (e.g., [18, 25, 20, 15]); however, currently no NIKE schemes that support
multiple sessions per pair of public keys are known. (Hence we have restricted our functionality to
one session per pair of public keys.)

Of course, one could modify existing KE functionalities by restricting their usage to one session,
or by modifying the adversary to immediately deliver outputs. This would have essentially the
same effect as our tailor-made NIKE functionality. We believe, however, that a specific NIKE
functionality is simpler, and the conceptual differences between (interactive) KE and NIKE justify
a separate functionality.

Some technical details. As already explained, we formalize a NIKE scheme itself and the key
registration process separately. Concretely, we consider three ideal functionalities (in the sense of
UC), FCRS , FNIKE and FKR. FCRS provides a common reference string (CRS), which abstracts the
availability of public parameters for the NIKE scheme. FKR abstracts the key registration process.
We stress that, similar to [26], and unlike [1, 10], our FKR functionality allows a party to register
arbitrary public keys (that pass some – possibly interactive – validity check). In particular, FKR

does not choose key pairs for a party. This yields a weaker, but arguably more realistic abstraction
of key registration. Indeed, we will not attempt to implement FKR itself – rather, we view FKR as
an abstraction of an actual key registration authority.
FNIKE , on the other hand, completely abstracts a NIKE scheme. Hence, a NIKE scheme may

(or may not) implement FNIKE in the (FCRS ,FKR)-hybrid model (i.e., using an instance of FCRS

and FKR). In a nutshell, FNIKE simply provides every pair of parties with a single, independently
uniform shared key K.

We first show that our formalization can be seen as a generalization of the previous game-
based definitions of [12, 18]. Concretely, let us call a NIKE scheme NIKE CKS-secure if it achieves
the game-based notion of [12]. We show (in Appendix B) that the CKS notion and the NIKE
security notions from [18] are all polynomially equivalent even if we allow some special types of
re-registration of users that are not allowed in those models. Since [12, 18] do not model key
registration, we must assume that NIKE runs with a trivial key registration in which parties simply
send their public keys to FKR, and no validity check whatsoever is performed. We show that
(a) NIKE is CKS -secure if and only if NIKE securely realizes FNIKE (with respect to the trivial key

registration described above) against static3 adversaries,
(b) FNIKE cannot be realized without additional (e.g., set-up) assumptions against adaptive ad-

versaries, but
(c) if NIKE is CKS -secure,4 then a variant of NIKE with hashed shared keys securely realizes FNIKE

against adaptive adversaries in the random oracle model.
Results (b) and (c) resemble similar results by Nielsen [27] for the case of UC-secure public-key
encryption. Specifically, to show (b), we show that a UC simulator S (as necessary to show UC
security) attempting to emulate an adaptive attack on NIKE may run into a commitment problem.
(We note, however, that the commitment problem we encounter for NIKE schemes is slightly
different from the one for public-key encryption from [27]; see Section 4.2.1 for details.)

Secondly, we remark that FNIKE and FKR allow to model NIKE schemes that cannot be modeled
using previous NIKE notions. Specifically, we observe that the key registration of the factoring-

3However, our result hinges on the exact definition of “static corruptions” — see Section 4.1 for details.
4Actually we only need a weaker version of this notion, which is “search-based” instead of indistinguishability-

based.

3

based NIKE scheme from [18] can be handled using FKR.

Further related work. Apart from the mentioned works dealing with public-key-based NIKE
schemes, the concept of NIKE has also been considered in the identity-based setting (e.g., [29, 16,
28, 20, 19]).

Roadmap. After recalling (and slightly adapting) previous NIKE definitions in Section 2, we
present our UC-based NIKE definition in Section 3. We investigate the properties of our new
definition in Section 4. Namely, Section 4.1, relates our definition (restricted to static corruptions)
to existing (game-based) definitions. Section 4.2 and Section 4.4 contain our results for adaptive
corruptions: Section 4.2 shows that adaptive UC-based NIKE security cannot be achieved without
additional (e.g., setup) assumptions, and Section 4.4 describes a simple transformation that achieves
adaptive UC-based NIKE security in the random oracle model. Due to lack of space, we postpone a
complete modelling of the factoring-based NIKE scheme from [18] to Appendix A. We deliver more
details about the game-based NIKE notions (and our adaptations) in Appendix B. The remaining
appendix recalls some details about the UC model (Appendices C,D, and E), and delivers full
versions of proofs that are only sketched in the main part (Appendices F and G).

2 Preliminaries

NIKE schemes. Following [12], and later [18], we formally define non-interactive key exchange
in the public key setting. A non-interactive key exchange scheme NIKE in the public key setting
consists of three algorithms: NIKE.CommonSetup, NIKE.KeyGen and NIKE.SharedKey. The first
algorithm is run by a trusted authority, while the second and third algorithms can be run by any
user.
• NIKE.CommonSetup(1k): This algorithm is probabilistic and takes as input a security param-

eter k. It outputs a set of system parameters, params.
• NIKE.KeyGen(params, ID): This is the key generation algorithm, a probabilistic algorithm

that on inputs params and a user identifier ID ∈ IDS, where IDS is an identity space,
outputs a public key/secret key pair (pk, sk).
• NIKE.SharedKey(ID1, pk1, ID2, sk2): On inputs a user identifier ID1 ∈ IDS and a public key
pk1 along with another user identifier ID2 ∈ IDS and a secret key sk2, this deterministic
algorithm outputs a shared key in SHK, the shared key space, for the two users, or a failure
symbol ⊥. We assume that this algorithm outputs ⊥ if ID1 = ID2 or if any of its input is
missing or is not in the correct domain.

For correctness, for any pair of user identifiers ID1, ID2, and corresponding public key/secret
key pairs (pk1, sk1), (pk2, sk2), NIKE.SharedKey satisfies

NIKE.SharedKey(ID1, pk1, ID2, sk2) = NIKE.SharedKey(ID2, pk2, ID1, sk1).

Throughout the paper we will be considering, w.l.o.g., a shared key space SHK = {0, 1}k.

(Game-based) security of NIKE. Several game-based security notions for NIKE, where an
adversary against a NIKE scheme is required to distinguish real from random keys, were presented
in [18]. The security notions in [18] are denoted by CKS-light, CKS, CKS-heavy and m-CKS-heavy.
In those notions, minimal assumptions are made about the Certificate Authority (CA) in the PKI
supporting the non-interactive key exchange. The security models in [18] do not rely on the CA
checking that a public key submitted for certification has not been submitted before, and does not

4

check that the party submitting the public key knows the corresponding secret key. An adversary
against a NIKE scheme in those models is thus allowed to introduce arbitrary public keys (for which
it might not know the corresponding secret keys) into the system. However, the security models
in [18] do not capture re-registration of (honest or corrupted) users, (i.e., when a user renews its
public key).

In this paper, we make use of some of the security notions from [18], but in the more realistic
scenario where users are allowed to re-register public keys with a CA, and an adversary against a
NIKE scheme is allowed to re-register a user as corrupted even if it was registered as honest before.
Also, for some cases we need weaker security notions, where an adversary instead of being required
to distinguish real from random keys, it is required to actually output the shared key between two
honest users.

We present in Appendix B the security models from [18] as well as our augmented versions
of those models, allowing honest re-registrations of users and corrupt registration of previously
registered honest users. Moreover, in Appendix B, we prove the equivalence of all the above
mentioned security models with or without the re-registration of users just described. Additionally,
a weaker, search-based (instead of indistinguishability-based) security notion is also described there.
Throughout the paper we add + to the notation of the security models from [18] to denote the
augmented versions of those models when re-registration of honest users is allowed; We add ++ to
the notation to denote that both re-registration of honest users, as well as corrupt registration of
previously registered honest users, are allowed.

3 NIKE in the UC model

NIKE in the UC model of protocol execution. In order to establish relationships between
game-based NIKE security notions and UC notions, we first explain how parties behave in a real
execution of a NIKE scheme NIKE with environment Z and adversary A, in the hybrid-model with
a key registration functionality FfKR (described below) and a common reference string functionality
FCRS (described in Appendix E). For a more detailed description of how the UC model of protocol
execution works, we refer the reader to Appendix C.

A party Pi proceeds as follows, running with Z, A, FfKR and FCRS :
• Upon receipt of (register,Pi) from Z for the first time, request params from the FCRS func-

tionality and run NIKE.KeyGen(params,Pi) to generate a public key/secret key pair (pki, ski).

Register the public key pki with FfKR by sending (register,Pi, pki, τ), where τ is a proof of
validity of pki

5.
• On input (init,Pi,Pj) from Z, request the public key corresponding to party Pj by sending

(lookup,Pj) to FfKR. ComputeKi,j ← NIKE.SharedKey(Pj , pkj ,Pi, ski) and send (Pi,Pj ,Ki,j)
to Z.
• On input (renew,Pi) from Z compute (pki, ski)

$←− NIKE.KeyGen(params,Pi) to generate a

new public key/secret key pair. Register pki with FfKR as before.
• Upon receipt of (corrupt,Pi) from A, send the entire current state to A and from this point

on relay everything to or from A.

Ideal functionalities for NIKE. We now introduce our ideal functionalities FNIKE and FfKR.
FNIKE abstracts the task of non-interactive key exchange. To enable a modular analysis of NIKE

5How such a proof τ looks like depends on the concrete NIKE scheme. For instance, in most existing NIKE
protocols, the proof will be trivial (i.e., empty), since the validity of public keys is publicly verifiable.

5

schemes we separate the process of key registration from the issuance of shared keys and, in addition
to FNIKE , introduce a separate ideal functionality FfKR for the task of public key registration.

The key exchange functionality FNIKE . Our ideal functionality FNIKE is suitable for non-
interactive key exchange in the public key setting. FNIKE handles the generation of shared keys
between two parties, providing the security guararantees of non-interactive key exchange: if an
honest party Pi obtained a key Ki,j from a session with an honest party Pj , then Ki,j is ideally
random and unknown to the adversary. Also, FNIKE requires the requesting party to know the
identity of the peer. We stress that FNIKE can also handle issuance of new shared keys (e.g., after
a party renews its public key in a real NIKE scheme). If one of the parties is corrupted by the time
that a request was made, then there is no guarantee of security of the shared key.

We remark that, as standard in the GNUC model, FNIKE ’s output towards the parties is
scheduled immediately, i.e., without adversarial intervention. Even more, we model FNIKE such
that the computation of shared keys between honest parties is completely oblivious to the adversary.
This models the fact that a party, when using a non-interactive key exchange scheme, needs to be
able to perform this computation without the help of other parties. Modeling FNIKE as immediate
enforces this, because the execution of an interactive protocol can be delayed by the real-world
adversary and is thus not simulatable in the ideal world, where the adversary has no ability to
schedule FNIKE ’s output. We note that even in this setting, during computation of a shared key, a
real-world party is still able to use hybrid ideal functionalities that do not communicate with the
adversary.
FNIKE operates in two modes, depending on the kind of session for which it should output a

key. We call a session honest if both parties are honest, otherwise the session is called corrupted.
We assume FNIKE knows which parties are corrupted.6 Additionally, FNIKE maintains three lists:
• a list Λrenew to store parties that want to renew their public key/secret key pair;
• a list Λreg to store parties that successfully registered a public key;
• a list Λkeys to store shared keys for pairs of parties.

We note that technically, sessions with dishonest parties who still maintain an honestly registered
key could alternatively be treated as honest. This yields an alternative ideal functionality that pro-
vides slightly better security guarantees than FNIKE at the cost of a more complicated description.
(Our proofs below carry over to such an alternative functionality.)

On the immediateness of FNIKE . As specified above, FNIKE does not guarantee immediate
output upon an init query that refers to a corrupted session. Namely, in that case, the adversary
is queried for a key Ki,j , and could potentially block FNIKE ’s output by not sending that key. (We
stress that the simulators we construct will never block immediate delivery of keys in this sense.) To
avoid this possibility to block outputs, we could have let the adversary upload an algorithm AdvKey
to FNIKE that is used to immediately derive keys Ki,j := AdvKey(Pi,Pj) without querying the
adversary. (This is in analogy to similar algorithms in signature and encryption functionalities [5,
6].) While possible, this would entail technical complications (such as communicating code and an
AdvKey function that will have to use a pseudorandom function to derive keys), so we keep the
slightly simpler and more intuitive formulation from above.

6This assumption is standard in UC (e.g., [9, 8]) and implemented as part of the model of computation. However,
since the corruption mechanism is not fully specified in GNUC (yet), we simply assume a mechanism. (For concrete-
ness, we assume that ideal functionalities send any party a special “corrupted?” request that is automatically and
directly answered with “yes” if and only if that party has been corrupted.)

6

FNIKE proceeds as follows, running on security parameter k, with parties P1, . . . ,Pn
and an adversary.

• On input (register,Pi) from Pi forward (register,Pi) to the adversary.
• On input (Pi, registered) from the adversary, if Pi /∈ Λreg, add Pi to Λreg.

Else, if Pi ∈ Λrenew, delete every existing entry ({Pi, ·}, key) from Λkeys and
delete Pi from Λrenew. In any case, send (Pi, registered) back to the adver-
sary.
• On input (init,Pi,Pj) from Pi, if Pj /∈ Λreg, return (Pi,Pj ,⊥) to Pi. If
Pj ∈ Λreg, we consider two cases:

– Corrupted session mode: if there exists an entry ({Pi,Pj},Ki,j) in Λkeys,
set key = Ki,j . Else send (init,Pi,Pj) to the adversary. After receiving
({Pi,Pj},Ki,j) from the adversary, set key = Ki,j and add ({Pi,Pj}, key)
to Λkeys.

– Honest session mode: if there exists an entry ({Pi,Pj},Ki,j) in Λkeys, set

key = Ki,j , else choose key
$←− {0, 1}k and add ({Pi,Pj}, key) to Λkeys.

Return (Pi,Pj , key) to Pi.
• On input (renew,Pi) from Pi, store Pi in Λrenew and forward (renew,Pi) to

the adversary.

Description of the ideal functionality FNIKE .

The key registration functionality FfKR. The ideal functionality for key registration is mo-
tivated by the key registration process in the real world, which is usually operated by a trusted
authority, e.g., a CA. We can assume authenticated channels between each party and the CA (be-
cause usually a CA requires a proof of identity, e.g. possession of an identity card or, for remote use,
a valid signature). Using standard techniques (e.g., public-key encryption), we can then establish
secure channels between party and CA. Note that, even with secure channels, the adversary still
learns about registrations taking place and is able to delay them. This leads to the following ideal
functionality:

FfKR proceeds as follows, running with parties P1, . . . ,Pn and an adversary.

• On input (register,Pi, pki, τ) from Pi send (register,Pi) to the adversary.
• On input (output,Pi) from the adversary, if f(Pi, pki, τ) = 0, send ⊥ to Pi.

Otherwise, store (Pi, pki) and send (Pi, pki, registered) to Pi.
• On input (lookup,Pi) return (Pi, pki). If this entry does not exist, return ⊥.

Description of the ideal functionality FfKR.

FfKR is provided with an efficiently computable function f that takes as input a party identifier Pi,
a public key pki and a proof of validity, τ , of the public key. f returns 1 if τ is a valid proof for pki,
and 0 otherwise. The adversary obtains a notification from FfKR when a party tries to register and

needs to send a notification back so that FfKR can proceed. This models the fact that the output
of the functionality can be delayed by the adversary.

Note that the function f needs to be specified and can be used to obtain different ideal func-
tionalities. For example, if we want FfKR to accept all public keys, we can set f to be constant,

7

e.g. f ≡ 1. We denote this special functionality by F1
KR and allow omitting τ in the inputs for

F1
KR. We explicitly allow interactive key registrations (i.e., implementations of FfKR) – only the

ideal functionality FfKR uses f to (non-interactively) check validity of keys. (Hence, an interactive
key registration protocol could enable a simulator to extract a witness for f .)

Finally, we remark that we explicitly do not require proofs of possession (of secret keys), as
popular in concrete public-key infrastructures. However, proofs of possession can be seen as a
special case of FfKR (in which τ simply is the secret key for pk, which can be verified by a suitable
f).

4 Results

4.1 Static corruption

We show that any CKS+-secure NIKE scheme NIKE emulates the functionality FNIKE in a hybrid
UC model, if and only if the environment Z is restricted to static corruptions. (With static
corruptions, we mean that a party can only be corrupted before it obtains any protocol input
from Z. However, we point out that there is a subtlety regarding the precise definition of static
corruptions – see the comment after the proof of Theorem 4.2.)

We remind the reader that the CKS+ security notion is an augmented version of the CKS
security notion from [18] including honest re-registration of parties (see Section 2 and Appendix B
for definitions).

Theorem 4.1. Let NIKE be a CKS+-secure NIKE scheme. Then NIKE realizes FNIKE in the
(FCRS ,F1

KR)-hybrid model with respect to static corruptions.

Proof. It suffices to show that there exists a simulator S for the dummy adversary A. S interacts
with an environment Z and FNIKE . S maintains a list of corrupted parties and a list Λ with entries
of the form (Pi, pki, ski), containing party identifiers and their public key/secret key pairs. For
every party only the newest entry is kept. Thus, there is at most one entry for each party identifier
Pi. A party’s entry contains a public key if and only if it successfully registered this key with F1

KR.
We specify the reactions of S to invocations from Z and FNIKE :
(parameters) from Z. Z issues this request to the adversary because it cannot access FCRS di-

rectly. S simulates FCRS by obtaining params
$←− NIKE.CommonSetup(1k) once and, from

then on, S always answers this request with params.
(register,Pi) from FNIKE . We may assume that S already computed params. If Λ contains no

entry (Pi, ·, ·), S obtains (pki, ski)
$←− NIKE.KeyGen(params,Pi) and stores (Pi, pki, ski) in Λ.

S then sends a message (Pi, registered) to FNIKE , waits for (Pi, registered) from FNIKE

and sends (register,Pi) to Z (simulating that message from F1
KR to the dummy adversary

A).
(init,Pi,Pj) from FNIKE . The receipt of this input implies that Pi,Pj are not both honest. We

may assume Pj is corrupted, because S would not send (init,Pi,Pj) through a corrupted Pi.
Finally, S returns (Pi,Pj , NIKE.SharedKey(Pj , pkj ,Pi, ski)) to FNIKE (note that this output
could be ⊥).

(renew,Pi) from FNIKE . S obtains (pki, ski)
$←− NIKE.KeyGen(params,Pi) and stores (Pi, pki, ski)

in Λ, overwriting any existing entry for Pi if necessary. S then sends (Pi, registered) to
FNIKE , waits for (Pi, registered) from FNIKE and sends (register,Pi) to Z.

(corrupt,Pi) from Z. Again, Z will issue this request to the adversary. S corrupts Pi and adds
Pi to its list of corrupted parties.

8

(register,Pi, pki) from Z. Such a request will only be made by Z to the adversary, which is asked
to let a corrupted party Pi register pki as its public key. S then stores (Pi, pki,⊥) in Λ, sends
(Pi, registered) to FNIKE , waits for (Pi, registered) from FNIKE and sends (register,Pi)
to Z. S then sends (register,Pi) to Z, (Pi, registered) to FNIKE and stores (Pi, pki,⊥)
in Λ.

(lookup,Pi) from any entity. If Λ contains an entry (Pi, pki, ·) return (Pi, pki), else return ⊥.

FKR FCRS

Pi Pj

A

Z Z

F

S
Pi Pj

FKR FCRS

A

Figure 1: Transition from G0 (left) to G1 (right)

Now let A be the dummy adversary and NIKE a CKS+-secure NIKE scheme. We show that for
every environment Z

Exec[FNIKE ,S,Z] ≈ Exec[NIKE,A,Z].

Here Exec[NIKE,A,Z] (resp. Exec[FNIKE ,S,Z]) denotes the random variable describing the output
of environment Z when interacting with adversary A (resp. S) and protocol NIKE (resp. function-
ality FNIKE).7

Game G0: Real protocol run. This is the real execution of NIKE with dummy adversary A. A
specific instance of this game is depicted on the left-hand side of Figure 1.

Game G1: Regrouping of machines and addition of relays. We regroup every machine
except for Z from game G0 into one machine and call it S. We add single relays for every party,
outside of S, and one relay called F covering all wires between the single relays and S.

Obviously the view of Z is distributed exactly as in game G0. Figure 1 shows the transformation
from G0 to G1 in a situation with one honest and one corrupted party.

Game G2: Merging wires. Merge all wires between F and S into one wire. Let F determine
recipients of messages (consisting of a tuple) from S by choosing the first party that occurs in the
tuple. S determines recipients in the same way.

Messages are delivered to the same recipients as in the previous game, hence, the view of Z is
distributed exactly as before.

7Throughout the paper we assume Z to be uniform, i.e. Z gets no auxiliary input.

9

The main difference between G2 and the ideal execution with FNIKE is that in G2 the keys of
honest sessions are computed using the algorithm NIKE.SharedKey, whereas in the ideal execution
the keys are randomly chosen. This will change in the last game G5. Next, in game G3, we make a
simple but slightly technical modification: we let F perform a check to determine whether it should
forward a shared key coming from S to the requesting party. (Namely, if the other party involved
in this session has not registered its public key yet, then F can answer this request with ⊥ on its
own.)

Game G3: Allowing F to store information and make decisions. We let S send (Pi, registered)
to F whenever a party successfully registers a public key pki with F1

KR. We let F bounce the mes-
sage back to S and additionally maintain a list Λreg with parties for which F already received such
a message. Upon receiving (init,Pi,Pj), if Pj /∈ Λreg, F sends (Pi,Pj ,⊥) to Pi. Else F relays
(init,Pi,Pj) to S and receives an answer (Pi,Pj ,Ki,j). F relays (Pi,Pj ,Ki,j) to Pi.

We have to check whether the output of Pi in G2 is (Pi,Pj ,⊥) if and only if the output of Pi in
G3 is (Pi,Pj ,⊥). In G2, Pi outputs (Pi,Pj ,⊥) if and only if ⊥ ← NIKE.SharedKey(Pj , pkj ,Pi, ski).
By definition of F in G3, the output of a party Pi is (Pi,Pj ,⊥) if and only if Pj /∈ Λreg or S
answered with (Pi,Pj ,⊥). A missing pkj will cause NIKE.SharedKey(Pj , pkj ,Pi, ski) to output ⊥,
hence, both events together are equivalent to ⊥ ← NIKE.SharedKey(Pj , pkj ,Pi, ski).

Game G4: More lists and more decisions for F . Here, we introduce two new lists, Λkeys
and Λrenew, to F . These lists resemble the lists used internally by FNIKE . Specifically, whenever
F has to send a message (Pi,Pj , key) to Pi where key 6= ⊥, it also stores ({Pi,Pj}, key) to Λkeys.
Whenever F receives a message (renew,Pi) from Pi, it adds Pi to Λrenew. Whenever F receives
a message (Pi, registered) from S, if Pi ∈ Λrenew, F deletes all entries ({Pi, ·}, key) from Λkeys
and removes Pi from Λrenew. So far there were no modifications regarding F ’s outputs. Now upon
receipt of (init,Pi,Pj) with Pj ∈ Λreg we let F check the list Λkeys for an entry ({Pi,Pj}, key). If
there is one, F does not relay (init,Pi,Pj) to the adversary and instead returns ({Pi,Pj}, key) to
Pi right away.

The output of F is the same as in Game G3, because any entry in Λkeys was computed by S
and therefore matches the answer of S to the init request in Game G3.

Game G5: Building the ideal functionality FNIKE . We now substitute all real shared keys
between two honest parties in Λreg (computed via the NIKE.SharedKey algorithm) with random
keys. Concretely, for every honest session (init,Pi,Pj), for Pj in F ’s list Λreg, we let F determine
the key for that session. First of all we prevent F from forwarding (init,Pi,Pj) to the adversary.

Next, if Λkeys contains an entry ({Pi,Pj},Ki,j), F sets key = Ki,j . Else F chooses key
$←− {0, 1}k,

stores ({Pi,Pj}, key) and sends (Pi,Pj , key) to Pi.
Let Z be a distinguishing environment between games G4 and G5. We use Z to construct an

adversary B against NIKE in the CKS+ security game. Besides playing the CKS+ security game
with its challenger C, B runs Z and acts as a mediator between Z and C.

Table 1 shows requests of Z and the corresponding queries in the CKS+ security game that
B issues to get answers for Z’s requests. Note that B can embed its own challenge into the UC
execution with Z by answering initialization requests for honest sessions from Z with C’s responses
to test queries. We omit a detailed description of B and briefly list what B has to do besides
issuing the requests shown in Table 1.
• To be able to answer lookup requests from Z, B has to keep track of all public keys.

10

UC requests CKS+ queries

(parameters) (parameters)
(corrupt,Pi) + (register,Pi, pki) (register corrupt user,Pi, pki)
(register,Pi) or (renew,Pi) (register honest user,Pi)
(init,Pi,Pj), corrupt session (corrupt reveal,Pi,Pj)
(init,Pi,Pj), honest session (test,Pi,Pj)

Table 1: Corresponding queries

• When answering (init,Pi,Pj) requests from Z, B returns ⊥ to Z if Pj has not been registered
with C yet.

Note that according to Table 1 both (register,Pi) and (renew,Pi) requests from Z lead to the
same request in the CKS+ game. This is due to the fact that renewing a public key in the CKS+

game is done by re-registering the user as honest.
Let AdvG4,G5

Z = |(Pr[1← Z|Z is running in G5]− Pr[1← Z|Z is running in G4])| denote the

advantage of Z in distinguishing G4 and G5. By assumption, AdvG4,G5

Z is non-negligible. Let b̂
denote the output bit of Z and b the bit chosen by the CKS+ challenger C. If b = 0, C answers
test queries with real shared keys, else the keys are randomly chosen from {0, 1}k. Thus if b = 0, B
simulates G4, and if b = 1, B simulates G5. We let B output b̂, i.e. the same bit as Z. Hence, we have
that AdvCKS+

B = AdvG4,G5

Z . Clearly, as AdvG4,G5

Z is non-negligible, AdvCKS+

B is non-negligible as

well. This contradicts the CKS+ security of NIKE and thus we conclude that AdvG4,G5

Z is negligible.
It is easy to see that F in game G5 behaves exactly like FNIKE , and game G5 is equal to an

ideal execution of NIKE with FNIKE and S. It follows that

Exec[NIKE,A,Z] = GAMEG0
Z ≈ GAMEG5

Z = Exec[FNIKE ,S,Z],

where GAMEG0
Z (resp. GAMEG5

Z) denotes the output of Z when running in gameG0 (resp. G5).

Remark. The hybrid functionality FCRS is required to guarantee that the parameters for the
NIKE scheme cannot be adversarially chosen. But since there is no need for the simulator to
program the CRS, we can also assume FCRS to be a global functionality. The global CRS function-
ality, denoted by ḠCRS , can be directly accessed by Z and is a strictly weaker assumption than our
functionality FCRS . A detailed description of ḠCRS can be found in [10].

Theorem 4.1 states that CKS+ security (or any equivalent notion) of a NIKE scheme is sufficient
for UC security of the scheme with respect to static adversaries. Next we show that CKS+ security
(or any equivalent notion) is also a requirement for UC-secure NIKE schemes. We recall that there
is an equivalence between several flavours of game-based security notions for NIKE (see [18] or
Appendix B) and it therefore suffices to show CKS-light security.

Theorem 4.2. Let NIKE be a UC-secure NIKE scheme realizing FNIKE in the (FCRS ,F1
KR)-hybrid

model with respect to static corruptions. Then NIKE is CKS-light-secure.

Proof sketch. We will first map any CKS-light adversary B to a suitable environment Z that sim-
ulates B and translates B’s queries in a similar way as shown in Table 1.8 Hence, running Z with
NIKE provides B with a view as in the CKS-light game with b = 0 (i.e., with real keys). Now con-
sider an environment Z̃ that works like Z, but substitutes all shared keys between honest parties

8Note, however, that the CKS-light game does not feature renew queries. Furthermore, the number of queries
considered in the CKS-light game is in fact more restricted than in the CKS+ game.

11

provided by NIKE (or FNIKE) with random keys. Hence, running Z̃ with NIKE provides B with a
view as in the CKS-light game with b = 1 (i.e., with random keys). Intuitively, if B is a successful
CKS-light distinguisher, then B can distinguish between running with Z or Z̃ in the real UC model.
However, in the ideal UC model, Z and Z̃ provide B with identical views; hence, B will not be
able to distinguish running with Z or Z̃ in the ideal UC model. In this way, a successful B acts
as a successful distinguisher between the real and the ideal UC model. (See Appendix F for a full
proof.)

On the UC notion of static corruption. In the proof of Theorem 4.2, we use the relatively
loose definition of static corruption in the UC model (cf. [6, Section 6.7]). In fact, Theorem 4.2
would not hold if we applied a stricter (with respect to adversarial constraints) definition of static
corruption. For instance, we could require that no corruptions take place after the first honest party
receives an input. (This is in fact the default notion of static corruptions in the GNUC model of
security, at least since the December 2012 update of [23].) For this notion of static corruption,
we can construct counterexamples to Theorem 4.2. On the other hand, once there is only a fixed
polynomial number of parties whose identities are known in advance, the environment Z from the
proof of Theorem 4.2 can guess the two honest parties that B chooses and corrupt all other parties
in advance. Hence, Theorem 4.2 holds even with respect to stricter notions of static corruption,
once the set of possible honest parties is polynomially small.

4.2 Adaptive corruption

We consider adaptive corruption, where Z is now allowed to corrupt formerly honest protocol
participants. To avoid trivial protocols, say that a function f (that recognize valid keys in FfKR)
is nontrivial for a given NIKE scheme iff f(Pi, pki, τ) = 1 for all parameters params generated
by NIKE.CommonSetup(1k) and all public keys generated by NIKE.KeyGen(params,Pi) along with
proofs τ .

Theorem 4.3. There is no NIKE scheme NIKE and function f which is nontrivial for NIKE, such
that NIKE realizes FNIKE in the (FCRS ,FfKR)-hybrid model with respect to adaptive corruptions.

Proof. We specify an adversary A and an environment Z and show that there is no simulator S
for this setup.

Let NIKE be any non-interactive key exchange scheme. W.l.o.g we assume that all secret keys
have the same bit length l = l(k), where k denotes the security parameter. Let NIKE.SharedKey

be the shared key algorithm of NIKE that takes as inputs (Pi, pki,Pj , skj), i 6= j, and outputs shared
keys of length k. Let n := d lke + 2. For convenience we let A be the dummy adversary and let Z
mount the attack on NIKE, which is described in five steps:

1. Send (parameters) to A to obtain params, a set of system parameters.
2. Send (register,Pi) to Pi, i = 1, . . . , n and (init,Pi,P1) to Pi, i = 2, . . . , n. Thus, Z obtains

the shared keys K1,i between party P1 and party Pi, i = 2, . . . , n.
3. Obtain the public keys pk1, . . . , pkn, corresponding to parties P1, . . . ,Pn, from A.
4. Send (corrupt,P1) to A to learn sk1. Abort if sk1 /∈ {0, 1}l.
5. If K1,i = NIKE.SharedKey(Pi, pki,P1, sk1) ∀ i = 2, . . . , n, output 1, else output 0.

In the real world Z will always output 1 by the correctness of NIKE and the nontriviality of f . Now
let S be any simulator. The ideal world execution with S will have to proceed as follows:

1. S arbitrarily chooses a set of system parameters params and sends params to Z.
2. Here S cannot choose the shared keys K̃1,i, i = 2, . . . , n, between the honest parties, because

these are chosen by FNIKE (and in fact unknown to S).

12

3. Now S arbitrarily chooses public keys pk1, . . . , pkn, simulating FfKR, and sends them to Z.
4. S also corrupts P1 and learns K̃1,i, i = 2, . . . , n. S chooses sk1 ∈ {0, 1}l and sends it to Z.
To see what happens in step 5 we define

F ~pk(sk1) : {0, 1}l −→ {0, 1}(n−1)k

sk1 7−→ (NIKE.SharedKey(P2, pk2,P1, sk1), . . . ,

NIKE.SharedKey(Pn, pkn,P1, sk1))

where ~pk := (pk2, . . . , pkn). FNIKE chooses (K̃1,2, . . . , K̃1,n) uniformly from {0, 1}(n−1)k, hence the
probability that there exists sk1 with

F ~pk(sk1) = (K̃1,2, .., K̃1,n)

is at most 2l

2(n−1)k . As n was chosen such that (n− 1)k ≥ l+k, we have 2l

2(n−1)k ≤ 2l

2l+k ≤ 2−k, which
is negligible in k. It follows that Z will output 1 only with negligible probability.

Remarks. (1) If the secret key depends deterministically on the public key, the attack is simpler,
because after the first step S is committed to secret keys. After receiving the public keys, Z
initializes a key exchange session between two honest parties and later corrupts one of them. Due
to the commitment in the first step, the probability that the secret key matches the uniformly
chosen shared key is negligible in the size k of the shared key.
(2) In the security models from [18], adaptive corruption corresponds to an adversary which issues
a test query for two honest identities and additionally uses an extract query to get one of the
secret keys. This case is excluded as trivial win for the adversary.

4.2.1 Relation to a similar result of Nielsen in secure message transfer

Nielsen’s results. We have shown that security against adaptive corruptions is not possible
without additional assumptions. Taking into account the results of Nielsen [27], this is not sur-
prising. There, it is shown that there is no non-interactive protocol which realizes secure message
transfer (SMT) without additional assumptions. Non-interactive SMT protocols (according to the
definition of [27]) can essentially be viewed as a PKE scheme. The impossibility result is due to the
fact that the simulator has to commit to a transcript of encryptions before knowing the underlying
messages. Upon corruption, S, now knowing the messages, can only hope to adjust the secret key
to explain the transcript. Nielsen shows that a secret key of fixed length does not provide enough
entropy to explain an unbounded number of encryptions.

Why his result does not imply ours. Regarding NIKE, a similar problem arises when formerly
honest parties, when being corrupted, reveal an unbounded number of earlier computed shared keys.
The simulator has to use the secret key to explain those shared keys. Analogous to [27] we can
prove an impossibility result due to a lack of entropy in the secret key.

One could hope to conclude this directly from the result of [27] with the following argument:
every NIKE can be used to realize SMT. Thus an impossibility result for the latter would imply
Theorem 4.3. However, [27] crucially uses that the SMT protocol can transmit arbitrarily long
messages between two parties. In contrast, a NIKE only creates fixed-length (i.e., k-bit) shared keys
between each pair of parties. Such a short key cannot (in any obvious way) be used to transmit
arbitrarily long messages against adaptive corruptions.

13

Therefore Nielsen’s impossibility result for non-interactive SMT can not be used to directly
conclude Theorem 4.3. Nevertheless our technique is strongly inspired by the idea of Nielsen, namely
using an unbounded number of key exchange sessions instead of unbounded-length messages.

Generalizations of our negative result to other (non-programmable) functionalities.

Theorem 4.3 shows that security against adaptive corruption is not achievable in the (FCRS ,FfKR)-
hybrid model. The result would be even stronger if we added more powerful hybrid functionalities.
We find that, similar to another result from [27], even a global random oracle functionality to
which Z has direct access does not facilitate security against adaptive corruption. (This notion of
a globally accessible functionality has been formalized in [27], but can be cast more generally in
the “GUC” variant of UC [10].)

Even more, (the proof of) Theorem 4.3 would still hold in any hybrid model that, in addition

to FCRS and FfKR, provides only non-programmable hybrid functionalities. In this context, by
non-programmable we mean that the input/output behaviour of the functionality is completely
independent of the simulator (note that this also includes that the simulator is not able to program
the output of the functionality via scheduling of messages). This observation points us to hybrid
functionalities that actually facilitate adaptive corruption. And indeed, in Section 4.4 we will see
that a programmable random oracle functionality is enough to achieve adaptive UC security.

4.3 Summary of relations established so far

There is a strong relation between the game-based security notions from [12, 18] and UC security
with respect to FNIKE , our functionality for non-interactive key exchange. In Section 4.1 we have
shown equivalence of CKS security (or other equivalent notions from [18] or Appendix B) to static
UC-NIKE security (w.r.t FNIKE using FCRS and FKR). Furthermore, Theorem 4.3 implies that
CKS security is not enough to achieve adaptive UC-NIKE security (w.r.t FNIKE using FCRS and
FKR). The relations between the security notions are depicted in Figure 2.

adaptive UC-NIKE security

static UC-NIKE security CKS security
Theorem 4.1

Theorem
4.3

Theorem 4.2

Figure 2: Relations between CKS security models and UC-NIKE security

4.4 Transformation to adaptively secure NIKE in the random oracle model

In Section 4.2 we have proven that, without additional assumptions, FNIKE cannot be realized in

the (FCRS ,FfKR)-hybrid model in the presence of adaptive adversaries. We now show how to achieve
adaptive UC security if we assume the existence of a random oracle. More specifically, we show
that if a NIKE scheme NIKE is secure in the sense of a strictly weaker (“search-based” instead of
indistinguishability-based) notion of security than the notions presented in [18], and with additional
allowance of re-registration of honest users and corrupt registration of previously registered honest

14

users, then a hash variant of NIKE securely realizes our non-interactive key exchange functionality
FNIKE in the FRO -hybrid model (see Appendix D for a description of FRO). The security model
used in our reduction is denoted by weakCKS++ (see Appendix B for a definition).

Definition 4.4 (Transformation to the random oracle model). Let NIKE be a non-interactive key
exchange scheme with shared key algorithm NIKE.SharedKey and let H : {0, 1}∗ → {0, 1}k′ be
a hash function (viewed as a random oracle), where k′ is a security parameter. Let NIKE’ be a
modification of the scheme NIKE such that its shared key algorithm, NIKE’.SharedKey’, is defined
as

NIKE’.SharedKey’(Pi, pki,Pj , skj)

if

{
Pi < Pj return H(Pi,Pj , NIKE.SharedKey(Pi, pki,Pj , skj))

Pj < Pi return H(Pj ,Pi, NIKE.SharedKey(Pi, pki,Pj , skj))

Here we are assuming that the party identifiers come from a space with a natural ordering and
that the shared key space of NIKE’ is {0, 1}k′.

Theorem 4.5. Let NIKE be a weakCKS++-secure non-interactive key exchange protocol. Then the
transformed protocol NIKE’ realizes FNIKE in the (FCRS ,F1

KR,FRO)-hybrid model, in the presence
of adaptive adversaries.

Proof sketch. We show that Z cannot distinguish the real protocol run of NIKE’ with the ideal
functionalities FCRS , F1

KR and FRO , and an adversary A, from the ideal protocol run with FNIKE

and S, unless Z makes a specific type of random oracle query. Then we show that if Z makes such
a random oracle query, we can construct an adversary against NIKE in the weakCKS++ security
game. By our assumption, there is no such adversary with non-negligible advantage. Thus, the
probability that Z makes that random oracle query is negligible and therefore the real and ideal
execution (with our simulator S) cannot be distinguished by any environment Z. (See Appendix
G for a full proof.)

References

[1] Boaz Barak, Ran Canetti, Jesper Buus Nielsen, and Rafael Pass. Universally composable
protocols with relaxed set-up assumptions. In 45th Annual Symposium on Foundations of
Computer Science, pages 186–195. IEEE Computer Society Press, October 2004.

[2] Elaine Barker, Don Johnson, and Miles Smid. NIST special publication 800-56A: Recommen-
dation for pair-wise key establishment schemes using discrete logarithm cryptography (revised),
March 2007.

[3] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in Com-
puter Science, pages 232–249. Springer, August 1993.

[4] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
42nd Annual Symposium on Foundations of Computer Science, pages 136–145. IEEE Computer
Society Press, October 2001.

[5] Ran Canetti. Universally composable signature, certification, and authentication. In Proceed-
ings of CSFW 2004, pages 219–. IEEE Computer Society, 2004.

15

[6] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
Cryptology ePrint Archive, Report 2000/067, 2005. http://eprint.iacr.org/.

[7] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for building
secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EUROCRYPT 2001,
volume 2045 of Lecture Notes in Computer Science, pages 453–474. Springer, May 2001.

[8] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure
channels. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume
2332 of Lecture Notes in Computer Science, pages 337–351. Springer, April / May 2002.

[9] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally composable two-
party and multi-party secure computation. In 34th Annual ACM Symposium on Theory of
Computing, pages 494–503. ACM Press, May 2002.

[10] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable se-
curity with global setup. In Salil P. Vadhan, editor, TCC 2007: 4th Theory of Cryptography
Conference, volume 4392 of Lecture Notes in Computer Science, pages 61–85. Springer, Febru-
ary 2007.

[11] Cagatay Capar, Dennis Goeckel, Kenneth G. Paterson, Elizabeth A. Quaglia, Don Towsley,
and Murtaza Zafer. Signal-flow-based analysis of wireless security protocols. Inf. Comput.,
226:37–56, 2013.

[12] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applications.
In Nigel P. Smart, editor, Advances in Cryptology – EUROCRYPT 2008, volume 4965 of
Lecture Notes in Computer Science, pages 127–145. Springer, April 2008.

[13] Ivan Damg̊ard, Jesper Buus Nielsen, and Daniel Wichs. Universally composable multiparty
computation with partially isolated parties. In Omer Reingold, editor, TCC 2009: 6th Theory
of Cryptography Conference, volume 5444 of Lecture Notes in Computer Science, pages 315–
331. Springer, March 2009.

[14] Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions
on Information Theory, 22(6):644–654, 1976.

[15] Yevgeniy Dodis, Jonathan Katz, Adam Smith, and Shabsi Walfish. Composability and on-line
deniability of authentication. In Omer Reingold, editor, TCC 2009: 6th Theory of Cryptogra-
phy Conference, volume 5444 of Lecture Notes in Computer Science, pages 146–162. Springer,
March 2009.

[16] Régis Dupont and Andreas Enge. Provably secure non-interactive key distribution based on
pairings. Discrete Applied Mathematics, 154(2):270–276, 2006.

[17] Roger Fischlin and Claus-Peter Schnorr. Stronger security proofs for RSA and Rabin bits.
Journal of Cryptology, 13(2):221–244, 2000.

[18] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-interactive
key exchange. In PKC 2013: 16th International Workshop on Theory and Practice in Public
Key Cryptography, Lecture Notes in Computer Science, pages 254–271. Springer, 2013. doi:
10.1007/978-3-642-36362-7 17.

16

[19] Eduarda S. V. Freire, Dennis Hofheinz, Kenneth G. Paterson, and Christoph Striecks. Pro-
grammable hash functions in the multilinear setting. Lecture Notes in Computer Science,
pages 513–530. Springer, August 2013. doi: 10.1007/978-3-642-40041-4 28.

[20] Rosario Gennaro, Shai Halevi, Hugo Krawczyk, Tal Rabin, Steffen Reidt, and Stephen D.
Wolthusen. Strongly-resilient and non-interactive hierarchical key-agreement in MANETs.
In Sushil Jajodia and Javier López, editors, ESORICS 2008: 13th European Symposium on
Research in Computer Security, volume 5283 of Lecture Notes in Computer Science, pages
49–65. Springer, October 2008.

[21] Shafi Goldwasser, Silvio Micali, and Ronald L. Rivest. A “paradoxical” solution to the signa-
ture problem (extended abstract). In 25th Annual Symposium on Foundations of Computer
Science, pages 441–448. IEEE Computer Society Press, October 1984.

[22] Dennis Hofheinz and Eike Kiltz. The group of signed quadratic residues and applications. In
Shai Halevi, editor, Advances in Cryptology – CRYPTO 2009, volume 5677 of Lecture Notes
in Computer Science, pages 637–653. Springer, August 2009.

[23] Dennis Hofheinz and Victor Shoup. GNUC: A new universal composability framework. Cryp-
tology ePrint Archive, Report 2011/303, 2011. http://eprint.iacr.org/.

[24] Dennis Hofheinz, Jörn Müller-Quade, and Rainer Steinwandt. Initiator-resilient universally
composable key exchange. In Einar Snekkenes and Dieter Gollmann, editors, ESORICS 2003:
8th European Symposium on Research in Computer Security, volume 2808 of Lecture Notes in
Computer Science, pages 61–84. Springer, October 2003.

[25] Markus Jakobsson, Kazue Sako, and Russell Impagliazzo. Designated verifier proofs and their
applications. In Ueli M. Maurer, editor, Advances in Cryptology – EUROCRYPT’96, volume
1070 of Lecture Notes in Computer Science, pages 143–154. Springer, May 1996.

[26] Dafna Kidron and Yehuda Lindell. Impossibility results for universal composability in public-
key models and with fixed inputs. Journal of Cryptology, 24(3):517–544, July 2011.

[27] Jesper Buus Nielsen. Separating random oracle proofs from complexity theoretic proofs:
The non-committing encryption case. In Moti Yung, editor, Advances in Cryptology –
CRYPTO 2002, volume 2442 of Lecture Notes in Computer Science, pages 111–126. Springer,
August 2002.

[28] Kenneth G. Paterson and Sriramkrishnan Srinivasan. On the relations between non-interactive
key distribution, identity-based encryption and trapdoor discrete log groups. Des. Codes
Cryptography, 52(2):219–241, 2009.

[29] Ryuichi Sakai, Kiyoshi Ohgishi, and Masao Kasahara. Cryptosystems based on pairing. In
SCIS 2000, Okinawa, Japan, January 2000.

[30] Victor Shoup. On formal models for secure key exchange. Technical Report RZ 3120, IBM,
1999.

17

A Key registration for the factoring-based NIKE from [18]

In this section, we recall the factoring-based NIKE scheme from [18] and argue why it constitutes a

secure realization of FNIKE in the FfKR-hybrid model for a suitable (nontrivial) “validity” function
f . We start with a bit of notation taken almost verbatim from [18].

The factoring assumption. Let n(k) be a function and δ a constant with 0 ≤ δ < 1/2. Let
RSAgen be an algorithm with input 1k that generates elements (N,P,Q) such that N = PQ is an
n-bit Blum integer and all prime factors of φ(N)/4 are pairwise distinct and have at least δn bits.
These conditions ensure that (JN , ·) is cyclic and that the square g of a random element in Z∗N ,
generates QRN with high probability. That is, 〈g〉 = QRN . For such N , we recall the definition
of the group of signed quadratic residues QR+

N from [22] (see also [21, 17]) which is defined as the
set {|x| : x ∈ QRN}, where |x| is the absolute value when representing elements of ZN as the
set {−(N − 1)/2, . . . , (N − 1)/2}. (QR+

N , ·) is a cyclic group of order φ(N)/4 whose elements are
efficiently recognizable given only N as input.

The BBS generator. Let BBSN : QR+
N → {0, 1}k be the Blum-Blum-Shub pseudorandom gen-

erator. (That is, BBSN (X) = (lsbN (X), lsbN (X2), · · · , lsbN (X2k−1
)), where lsbN (X) denotes the

least significant bit of X ∈ QR+
N .) The factoring assumption implies the computational indistin-

guishability of the distributions

(N,X2k ,BBSN (X)) and (N,X2k , R),

where N
$←− RSAgen(1k), and X

$←− QR+
N and R

$←− {0, 1}k are chosen uniformly.

Chameleon hashing. A chameleon hash function ChamH : D × RCham → I, where D is the
domain, RCham the randomness space and I the range, is associated with a pair of public and
private keys (the latter called a trapdoor). These keys are denoted respectively by hk and ck and
are generated by a PPT algorithm Cham.KeyGen(1k). The public key hk defines a chameleon hash
function, denoted ChamHhk(·, ·). On input a message m and a random string r, this function
generates a hash value ChamHhk(m, r) which satisfies the following properties:
Collision resistance. There is no efficient algorithm that on input the public key hk can find

pairs (m1, r1) and (m2, r2) where m1 6= m2 such that ChamHhk(m1, r1) = ChamHhk(m2, r2),
except with negligible probability in k.

Trapdoor collisions. There is an efficient algorithm that on input the secret key ck, any pair
(m1, r1) and any additional message m2, finds a value r2 such that ChamHhk(m1, r1) =
ChamHhk(m2, r2). Also, for uniformly and independently chosen m1, r1 and m2, r2 is inde-
pendently and uniformly distributed over RCham.

Uniformity. All messages m induce the same probability distribution on ChamHhk(m, r) for r
chosen uniformly at random.

The NIKE scheme. Let ChamH : {0, 1}∗ ×RCham → Z2k be a chameleon hash function. Now
consider the following scheme NIKEfac-int:

18

NIKE.CommonSetup(1k)

(N,P,Q)
$←− RSAgen(1k)

g, u0, u1, u2
$←− QR+

N with 〈g〉 = QR+
N

hk, ck
$←− Cham.KeyGen(1k)

params← (N, g, u0, u1, u2, hk)
Return params

NIKE.KeyGen(params,Pi)

x
$←− ZbN/4c; r

$←− RCham

Z ← gx·2
3k

; t← ChamHhk(Z||Pi; r)
Y ← u0u

t
1u2

t2 ; X ← Y x

pk← (Z,X, r); sk← x
Return (pk, sk)

NIKE.SharedKey(Pi, pki,Pj , skj)
Parse pki =: (Zi, Xi, ri) ∈ QR+

N ×QR+
N ×RCham and skj =: xj ∈ ZbN/4c

Return BBSN (Z
xj ·22k
i)

Consistent public keys and the security of scheme. We first cite a result from [18] that
shows that the NIKE scheme NIKEfac-int is CKS-light-secure (and thus CKS+-secure), assuming
that an adversary only registers public keys that are consistent. A public key pk = (Z,X, r) is
consistent if there is an exponent x with

Z = gx·2
3k
, X = (u0u

t
1u
t2

2)x for t = ChamHhk(Z||Pi; r). (1)

Theorem A.1 ([18]). Under the generalized Riemann hypothesis and the factoring assumption
relative to RSAgen, and assuming that the chameleon hash function ChamH is collision-resistant,
the scheme NIKEfac-int is CKS+-secure against all adversaries that only register consistent (in the
sense above) public keys.

Our goal is now to formalize the notion of consistent public keys (as in (1)) using our key

registration functionality FfKR for a suitable f . Concretely, observe that an exponent x satisfying
(1) is a witness of consistency for a given public key pk. Hence, if we set

f(Pi, pk, τ) = 1 :⇐⇒ Z = gτ ·2
3k

and X = (u0u
t
1u
t2

2)τ , (2)

where pk is parsed as (Z,X, r) and t = ChamHhk(Z||Pi; r), then FfKR allows precisely consistent

public keys to be registered. (There is one subtlety: FfKR is not aware of the public parameters
params, and in particular not of hk. This can be resolved by including params in public keys pk
registered with FfKR; each party will then of course have to check that the value of params is the
same as provided by FCRS .)

Using a combination of Theorem A.1 and a slight adaptation of Theorem 4.1,9 we then obtain:

Theorem A.2 ([18]). Assume the generalized Riemann hypothesis, that factoring is hard relative
to RSAgen, and that the chameleon hash function ChamH is collision-resistant. Then NIKEfac-int

realizes FNIKE in the (FfKR,FCRS)-hybrid model for the function f from (2) against static corrup-
tions.

B Game-based security notions for NIKE

Review of existing security notions

Following a game-based notion of security for non-interactive key exchange schemes from [12],
several security definitions for NIKE were stated in [18]: the CKS-light, CKS, CKS-heavy and

9Recall that Theorem 4.1 assumes a key registration functionality F1
KR that accepts all registered keys. However,

the same proof also works for general f if the NIKE scheme is CKS+ secure in a setting in which only consistent
(w.r.t. f) keys are registered.

19

m-CKS-heavy security models. Their strongest model, the m-CKS-heavy security model, covers
all possible types of queries that an adversary can make in any of those models. In this paper we
always refer to the dishonest key registration (DKR in [18]) setting, where an adversary against a
NIKE scheme is allowed to register dishonestly generated public keys for which it does not have to
know the corresponding secret keys.

As all game-based security notions used in our paper are derived from the m-CKS-heavy security
model (with possible re-registration of keys), for ease of comparison, we present here the m-CKS-
heavy model.

In [18], the m-CKS-heavy security notion for non-interactive key exchange schemes is defined
in terms of a game between an adversary B and a challenger C. First, B obtains a set of system

parameters, params, from C, which is obtained by running params
$←− NIKE.CommonSetup(1k). C

then randomly chooses a bit b and answers the following oracle queries from B:
(register honest user, ID). Challenger C generates a public key/secret key pair by running

(pk, sk)
$←− NIKE.KeyGen(params, ID), records (honest, ID, pk, sk) and sends pk to B.

(register corrupt user, ID). C records (corrupt, ID, pk,⊥), overwriting any existing entry for
this ID.

(extract, ID). C looks for an entry of the form (honest, ID, pk, sk) and returns sk to B.
(honest reveal, IDi, IDj). Here B supplies two identities IDi and IDj , both registered as honest. C

obtains the shared key between IDi and IDj by runningKi,j ← NIKE.SharedKey(IDi, pki, IDj , skj)
and returns Ki,j to B.

(corrupt reveal, IDi, IDj). Here B supplies one honest and one corrupt identity. C obtains the
shared key between IDi and IDj by running Ki,j ← NIKE.SharedKey(IDi, pki, IDj , skj) if IDj
is honest or Ki,j ← NIKE.SharedKey(IDj , pkj , IDi, ski) if IDi is honest. C returns Ki,j to B.

(test, IDi, IDj). B supplies two honest identities. C computes the corresponding shared key by run-

ning Ki,j ← NIKE.SharedKey(IDi, pki, IDj , skj) if b = 0, or Ki,j
$←− SHK if b = 1. C returns

Ki,j to B.

The identities ID belong to an identity space IDS and are merely used to track which public
keys are associated with which users. Also, B is allowed to make an arbitrary number of queries.
We assume that C maintains a list of shared keys and sends the same shared key for a pair of
identities if B makes the same test query again. To avoid trivial wins, B is not allowed to issue
an honest reveal query and a test query on the same pair of identities. For the same reason, B
is not allowed to issue an extract query on any identity involved in a test query, and vice versa.
B is also not allowed to make a register corrupt user query on an identity which has already
been registered as honest. B wins the game if it outputs a bit b̂ = b.

The advantage of B in the m-CKS-heavy security game is defined as:

Advm-CKS-heavy
B (k, qH , qC , qE , qHR, qCR, qT) =

∣∣∣Pr[b̂ = b]− 1/2
∣∣∣ ,

where qH , qC , qE , qHR, qCR and qT are the numbers of register honest user, register corrupt

user, extract, honest reveal, corrupt reveal and test queries made by B. Informally, a
NIKE scheme is m-CKS-heavy-secure if there is no polynomial-time adversary that makes at most
qH register honest user queries, etc., having non-negligible advantage in k. In our security
reductions, we will w.l.o.g. restrict to adversaries that make exactly as many queries of each type as
they are allowed, since we can easily transform every (qH , qC , qE , qHR, qCR, qT)-bounded adversary
into one that issues exactly (qH , qC , qE , qHR, qCR, qT) queries.

In Table 2 we summarize the differences between the CKS-light, CKS, CKS-heavy and m-CKS-
heavy security notions by specifying the maximum number of queries which B is allowed to issue.

20

Security notion reg.hon. reg.corr. extract hon.rev. corr.rev. test

CKS-light 2 ∗ 0 0 ∗ 1
CKS ∗ ∗ 0 0 ∗ ∗
CKS-heavy ∗ ∗ ∗ ∗ ∗ 1
m-CKS-heavy ∗ ∗ ∗ ∗ ∗ ∗

Table 2: Allowed number of queries for an adversary in the game-based security definitions for
NIKE from [18]. ∗ means that B is allowed to make an arbitrary number of queries.

Theorem B.1 (Theorem 1 from [18]). The CKS-light, CKS, CKS-heavy and m-CKS-heavy se-
curity models are all polynomially equivalent.

Allowing re-registration of honest users and corrupt registration of previously
registered honest users

The security notions from [18] capture several types of queries that an adversary can make.
However, those models still have some shortcomings. For instance, they do not capture re-
registration of honest users. Concretely, an adversary in those models is not allowed to issue
(register honest user, ID) multiple times for the same ID and obtain a new public key pk upon
each such request. This is often not realistic, e.g. when we have to work with public key/secret key
pairs that have a lifetime and expiration date. So a protocol participant should be able to perform
what we will call an honest re-registration.

Moreover none of those security models allow an adversary to register previously registered
honest users as corrupt users. In this paper we augment the security notions from [18] with honest
re-registration and corrupt registration of honest users and throughout the paper we add ++ to the
notation to represent the augmented versions of the models from [18] including those two types of
re-registration. We add a single ‘plus’, +, to the notation if the models are only augmented with
honest re-registration of honest users. We prove our strongest model, the m-CKS-heavy++, to be
polynomially equivalent to the weakest model from [18], the CKS-light model. Then, it follows
that all security models, with or without the types of re-registration mentioned above, are also
polynomially equivalent. Let us first introduce the m-CKS-heavy++ security model.

The m-CKS-heavy++ security model. We modify the m-CKS-heavy security notion from [18]
by allowing an adversary A to make multiple (register honest user, ID) queries for the same

ID. Upon each such request, C runs (pk, sk)
$←− NIKE.KeyGen(params, ID) to obtain a new public

key/secret key pair and returns pk to A. C then overwrites any existing entry (honest, ID, pk, sk)
for ID in its list. Additionally, A is allowed to register previously registered honest users as corrupt
users by issuing a (register corrupt user, ID) query to its challenger C. The user will from then
on be considered as corrupt. Here C deletes any existing entry for ID of the form (honest, ID, pk, sk)
and adds a new entry (corrupt, ID, pk,⊥) to its list. The adversary’s job in the m-CKS-heavy++

game is the same as in the m-CKS-heavy game: A has to guess whether C answers test queries
with the real shared key, computed via the NIKE.SharedKey algorithm using the current public
key of one of the users involved in the query and the current secret key of the other user, or with
random keys from the shared key space SHK.

Here, we loosen the restriction required to avoid trivial wins in the m-CKS-heavy model. We
allow an adversary against a NIKE scheme to make test queries on a pair of honest identities

21

even if an honest reveal query on the same pair of identities occurred before (as long as one of
the users has been re-registered since the test query was made), and vice versa. We also allow
an adversary to make extract queries on users involved in test queries as long as that user has
been re-registered since the test query was made (the same is valid in the other direction). Notice
that in order to avoid an adversary to trivially win the security game, if the challenge bit equals 1,
whenever the adversary makes a test query on the same pair of identities (IDi, IDj), the challenger
must respond with a new random value if at least one of the honest identities has been re-registered
since the last test query on (IDi, IDj) was made.

Let b denote the challenge bit chosen by a challenger C in the m-CKS-heavy++ security game
and b̂ the guess of A. Then the advantage of an m-CKS-heavy++ adversary A is defined as

Advm-CKS-heavy++

A (k, qH , qC , qE , qHR, qCR, qT , qR) =
∣∣∣Pr[b̂ = b]− 1/2

∣∣∣ .
We abuse notation here and let qH denote the number of honest users registered by A and qR the
number of total honest re-registrations made by A. As in the m-CKS-heavy model, here qC , qE ,
qHR, qCR and qT are the numbers of register corrupt user, extract, honest reveal, corrupt
reveal and test queries made by A.

Remark [loosening restrictions on other security notions]: We highlight here that we also
appropriately loosen restrictions on other security models. As an example, we allow an adversary
in the augmented versions of the CKS-light or CKS-heavy security models to make multiple test

queries (instead of one), but on the same pair of identities involved in the first test query and only
if at least one of these identities has been re-registered since the last test query was made. Again
here, if b = 1, the challenger chooses a new random value to answer the new test query.

Theorem B.2 (m-CKS-heavy++ ⇔ CKS-light). The m-CKS-heavy++ and CKS-light security
models are polynomially equivalent. More specifically, for any NIKE scheme NIKE, we have that:
• for any adversary B against NIKE in the CKS-light game, there is an adversary A that breaks
NIKE in the m-CKS-heavy++ game with

Advm-CKS-heavy++

A (k, 2, qC , 0, 0, qCR, 1, 0) = AdvCKS-light
B (k, qC , qCR),

• for any adversary A against NIKE in the m-CKS-heavy++ game, there is an adversary B that
breaks NIKE in the CKS-light game with

AdvCKS-light
B (k, qC , q

′
CR) ≥ 2Advm-CKS-heavy++

A (k, qH , qC , qE , qHR, qCR, qT , qR)/qT q
2
H(qR + 1)2,

where q′CR ≤ qCR.

Proof. Clearly, security in the sense of the m-CKS-heavy++ model implies security in the sense of
the CKS-light model, since the latter model is a limited case of the former.

Here we prove the second reduction, namely that if a NIKE scheme NIKE is secure in the
CKS-light model, then it is also secure in the m-CKS-heavy++ model. We assume that there
is an adversary A that breaks a NIKE scheme in the m-CKS-heavy++ model with advantage

Advm-CKS-heavy++

A (k, qH , qC , qE , qHR, qCR, qT , qR).

The hybrid argument technique. We consider a sequence of games G0, G1, . . . , GqT , all defined
over the same probability space. Starting with the actual adversarial game G0, with respect to
an adversary A in the m-CKS-heavy++ model when b = 1, we make slight modifications between
successive games, in such a way that A’s view is indistinguishable among the games.

22

Game G0: actual adversarial game when b = 1. This is the original game as defined in the
m-CKS-heavy++ model when b = 1. All test queries will be answered with randomly chosen values
from the shared key space SHK.

Game Gι (1 ≤ ι ≤ qT − 1): hybrid games. This game is identical to game Gι−1, except that
the ι-th test query, say on a pair of honest users IDi, IDj , is answered with the actual real shared
key Ki,j , between those users.

Game GqT : actual adversarial game when b = 0. This is the original game as defined in the
m-CKS-heavy++ model when b = 0. All test queries will be answered with the current real shared
keys (computed via the NIKE.SharedKey algorithm) associated to the two users involved in each
query.

Let A(Gι) denote adversary A playing game Gι. We see that A can distinguish games G0 and
GqT with advantage

Advm-CKS-heavy++

A (k, qH , qC , qE , qHR, qCR, qT , qR) = |Pr[A(G0) = 1]− Pr[A(GqT) = 1]| .

Note that Gι and Gι+1 (0 ≤ ι < qT) differ in only one single test query. According to the
hybrid argument, if A can distinguish between G0 and GqT with non-negligible probability, then for
some 0 ≤ ι < qT it can also distinguish Gι and Gι+1 with non-negligible probability. We show that
if this is the case, then we can construct an adversary B in the CKS-light model with advantage
related to A’s advantage by a polynomial factor.

The idea. In order to simulate the m-CKS-heavy++ game for A, B picks ι
$←− {0, . . . , qT − 1},

guessing that A can distinguish games Gι and Gι+1. Then it guesses which users will be involved
in the (ι+ 1)-st test query made by A and also how often these users will be re-registered by A,
before issuing that test query.

B plays the CKS-light security game with challenger C and acts as a challenger for A. C takes

as input the security parameter 1k, computes params
$←− NIKE.CommonSetup(1k) and gives params

to B. C then takes a bit b and answers oracle queries for B until B outputs a bit b̂.
Let qH be a bound on the number of honest users registered by B in the course of its attack

and let qR and qT be bounds on the number of total honest re-registration queries and test queries
made by A. W.l.o.g., we assume that A does not make the same test query more than once
if both users involved have the same key pair as when the previous test query was made. B
chooses an index ι

$←− {0, . . . , qT −1}, two distinct indices I, J
$←− {1, . . . , qH} and two other integers

q̃RI
, q̃RJ

$←− {0, . . . , qR}. Let qRI
, qRJ

be the number of honest re-registrations of the I-th and J-th
distinct registered honest users, respectively, issued by A, before the (ι+ 1)-st test query is made.
B gives params to A and answers queries to A in the following manner:

(register honest user, ID) If ID is the I-th or J-th distinct user involved in such a query, B sets
IDI = ID or IDJ = ID as appropriate. Moreover, if this is the (q̃RI

+ 1)-st (resp. (q̃RJ
+ 1)-

st) request of this type for IDI (resp. IDJ), B adds IDI (resp. IDJ) to a list ΛT . B then

makes the same query to C, which obtains (pk, sk)
$←− NIKE.KeyGen(params, ID), records

(honest, ID, pk, sk), and returns pk to B. B gives pk to A.

23

In any other case, B obtains (pk, sk)
$←− NIKE.KeyGen(params, ID) and sends pk to A. B stores

(honest, ID, pk, sk) in a list Λhon, overwriting any existing entry for ID. Also, if this is the
(q̃RI

+ 2)-nd (resp. (q̃RJ
+ 2)-nd) query of this type for IDI (resp. IDJ), B removes IDI (resp.

IDJ) from ΛT .

(register corrupt user, ID, pk): B aborts if ID ∈ {IDI , IDJ}. If ID /∈ {IDI , IDJ}, this means
that B never made a (register honest user, ID) query to C. So B forwards the register

corrupt user query to C, which will record (corrupt, ID, pk,⊥). B then checks if ID is in
Λhon and if so, deletes the entry for that user. Additionally, B stores (corrupt, ID, pk,⊥) in a
list Λcor.

(extract, ID): If ID /∈ ΛT , B finds (honest, ID, pk, sk) in Λhon and gives sk to A. Otherwise, if
ID ∈ ΛT , B aborts the simulation.

(corrupt reveal, IDi, IDj): Here A supplies two identities IDi and IDj , where either IDi or IDj is
an honest user. W.l.o.g., let us assume that IDj is the honest user. B checks if IDj ∈ Λhon.
If IDj /∈ Λhon (that means that IDj ∈ ΛT), B makes the same query to C, obtaining Ki,j ,
the shared key between IDi and IDj . B returns this value to A. Now, if IDj ∈ Λhon, B finds
skj , then it finds pki in Λcor and computes Ki,j ← NIKE.SharedKey(IDi, pki, IDj , skj). B then
returns Ki,j to A.

(honest reveal, IDi, IDj): Here A supplies two identities IDi and IDj , both registered as honest
users. If {IDi, IDj} ⊆ ΛT , B aborts. Otherwise, at least one of the identities must be in Λhon.
Without loss of generality, assume that IDi ∈ Λhon. Now B finds the secret key ski in Λhon,
then computes Ki,j ← NIKE.SharedKey(IDj , pkj , IDi, ski) and returns Ki,j to A.

(test, IDi, IDj): The way B answers test queries depends on the number of such queries issued by
A.

– the first ι test queries, B answers with the actual shared keys associated to the corre-
sponding users involved in those queries. In order to do this, B checks if {IDi, IDj} ⊆ ΛT .
If so, it aborts. Otherwise, at least one of the identities must be in Λhon. W.l.o.g., as-
sume that IDi ∈ Λhon. Now B retrieves the secret key ski from Λhon, then computes
Ki,j ← NIKE.SharedKey(IDj , pkj , IDi, ski) and returns Ki,j to A.

– if this is the (ι + 1)-st test query, B checks if {IDi, IDj} ∈ ΛT . If not, it aborts. If
{IDi, IDj} ⊆ ΛT , B makes the same test query to C, receiving a value α. B gives α to
A.

– all other test queries B answers to A with random values from SHK. Here B responds
with a new random key every time A makes such a query for the same pair of identities.
(Remember that we are assuming that A does not make the same test query more than
once if each identity involved has the same public/private key pair since the previous
test query was made.)

This completes the description of B’s simulation. Whenever A outputs a bit b̂, B outputs the
same bit. Now, if α is the actual shared key computed via the NIKE.SharedKey algorithm and
using as inputs the current secret key of one the users involved in the (ι+ 1)-st test query and the
current public key of the other user, then A was playing game Gι+1. Otherwise, if α is a random
value, A was playing game Gι.

Let G′0 and G′1 be the CKS-light games played by B when b = 0 and b = 1, respectively. Let F
denote the event that B guessed the identities involved in the (ι+ 1)-st test query correctly (this

24

would mean that the identities are IDI and IDJ). Now if F happens and, q̃RI
= qRI

and q̃RJ
= qRJ

,
then B simulates the m-CKS-heavy++ game correctly. Now we assess B’s success probability. It is
easy to see that Pr[F] =

(
qH
2

)
≥ 2/q2H and that Pr[q̃RI

= qRI
∧ q̃RJ

= qRJ
] ≥ 1/(qR + 1)2. We have:

Pr[B(G′0) = 1] =
1

qT
Pr[F] Pr[q̃RI

= qRI
∧ q̃RJ

= qRJ
]

qT−1∑
ι=0

Pr[A(Gι+1) = 1]

and

Pr[B(G′1) = 1] =
1

qT
Pr[F] Pr[q̃RI

= qRI
∧ q̃RJ

= qRJ
]

qT−1∑
ι=0

Pr[A(Gι) = 1].

Therefore it follows that

AdvCKS-light
B (k, qC , q

′
CR) =

∣∣Pr[B(G′0) = 1]− Pr[B(G′1) = 1]
∣∣

≥ 2

qT q2H(qR + 1)2

∣∣∣∣∣
qT−1∑
ι=0

Pr[A(Gι+1) = 1]−
qT−1∑
ι=0

Pr[A(Gι) = 1]

∣∣∣∣∣
=

2

qT q2H(qR + 1)2
|Pr[A(G0) = 1]− Pr[A(GqT) = 1]|

=
2

qT q2H(qR + 1)2
Advm-CKS-heavy++

A (k, qH , qC , qE , qHR, qCR, qT , qR).

This concludes our proof.

Let CKS-light++, CKS++, CKS-heavy++ and m-CKS-heavy++ be the augmented versions of the
CKS-light, CKS, CKS-heavy and m-CKS-heavy security models from [18], including re-registration
of honest users and corrupt registration of previously registered honest users. Additionally, let
CKS-light+, CKS+, CKS-heavy+ and m-CKS-heavy+ be the augmented versions of the latter mod-
els, including only re-registration of honest users.

Theorem B.3 (Polynomial equivalence of all models). The CKS-light, CKS, CKS-heavy, m-CKS-
heavy, CKS-light+, CKS+, CKS-heavy+, m-CKS-heavy+, CKS-light++, CKS++, CKS-heavy++ and
m-CKS-heavy++ security models are all polynomially equivalent.

Proof. The proof follows from Theorems B.1 and B.2. Note that because the CKS-light++, CKS++

and CKS-heavy++ security models are limited cases of the m-CKS-heavy++ model, the non-trivial
direction (m-CKS-heavy++ ⇐ CKS-light) of Theorem B.2 implies that CKS-light security also
implies CKS-light++, CKS++ and CKS-heavy++ security. Now, because the CKS-light++, CKS++

and CKS-heavy++ security models are augmented versions of the CKS-light, CKS and CKS-heavy
models, respectively, Theorem B.1 also implies that security in the sense of the CKS-light++, CKS++

or CKS-heavy++ model imply security in the CKS-light model. Note that the same argument is
valid for the CKS-light+, CKS+, CKS-heavy+ and m-CKS-heavy+. Thus, we see that all security
models including or not honest re-registration and/or corrupt registration of previously registered
honest users are polynomially equivalent.

25

A strictly weaker notion: weakCKS++ security

In order to prove security of our NIKE’ scheme from Definition 4.4, we also need to make use of a
strictly weaker security notion for NIKE, which we call weakCKS++ security. This notion requires
that, instead of having to distinguish between real and random keys like in all the above mentioned
security notions for NIKE, an adversary against a NIKE scheme has to output a current shared key
between two honest users. The weakCKS++ security model is a limited and weaker variant of our
m-CKS-heavy++ model. There are no test queries because this is not an indistinguishability based
notion. Furthermore, in this security model, an adversary is only allowed to make the following
types of queries: (register honest user, ID), (register corrupt user, ID, pk), (extract, ID)
and (corrupt reveal, IDi, IDj), including the above mentioned re-registration of users when we
use the ++ notation.

The advantage of an adversary A in the weakCKS++ game is defined as

AdvweakCKS++

A (k, qH , qC , qE , qCR, qR) = Pr[(IDi, IDj , NIKE.SharedKey(IDi, pki, IDj , skj))← A],

where qH , qC , qE , qCR and qR denote the same as in the definition of the m-CKS-heavy++ model.
{IDi, IDj} is any pair of honest users subject to the constraint that A issued no extract queries
for IDi or IDj after the last honest re-registration of IDi or IDj respectively (if it exists) before A
outputs its guess. NIKE.SharedKey(IDi, pki, IDj , skj) is the current shared key between IDi and IDj .

We note that using a similar line of argument as seen in the proof of Theorem B.2, it can be
shown that the weakCKS++ security model is polynomially equivalent to its version without the
extra allowance of the above mentioned re-registration of users, which we denote by the weakCKS
security model. Thus, in the construction of a NIKE’ scheme from Definition 4.4, we actually only
require a NIKE scheme NIKE which is secure in the sense of the weakCKS security notion.

C The UC model of protocol execution

We use the Universal Composability (UC) framework for multi-party protocols defined in [4]. In
fact, we employ the variant “GNUC” of UC [23], which differs from the original UC framework
in a number of low-level details. (However, both the results in our main part and the high-level
description given here are largely independent of such low-level details.)

The real model, static and adaptive attacks. First of all, parties (usually denoted by P1

through Pn) are modeled as interactive machines (IMs) and are supposed to run some (fixed)
protocol π. There also is an adversary (denoted A and modeled as an IM as well) carrying out
attacks on protocol π. Therefore, A may corrupt parties (in which case it learns the party’s
current state and the contents of all its tapes, and controls its future actions), and intercept or,
when assuming unauthenticated message transfer, also inject messages sent between parties. If A
corrupts parties only before the actual protocol run of π takes place (i.e., in its first activations),
A is called static, otherwise A is said to be adaptive. The respective local inputs for protocol π
are supplied by an environment machine (modeled as an IM and denoted Z), which may also read
all outputs locally made by the parties and communicate with the adversary. We assume that all
involved entities are polynomial-time in the security parameter k. (The notion of polynomial-time
is nontrivial in the UC setting, and we refer the reader to [23] for details.)

26

The ideal model. The model we have just described is called the real model of computation. In
contrast to this, the ideal model of computation is defined just like the real model, with the following
exceptions: we have an additional IM called the ideal functionality F that is able to send messages
to and receive messages from the parties privately (i.e., without the adversary being able to even
intercept these messages). The ideal functionality may not be corrupted by the adversary, yet may
send messages to and receive messages from it. Furthermore, the parties P1, . . . , Pn are replaced
by dummy parties P̃1, . . . , P̃n which simply forward their respective inputs to F and take messages
received from F as output. Finally, the adversary in the ideal model is called the simulator and
denoted S. The only means of attack the simulator has in the ideal model are those of corrupting
parties (which has the same effect as in the real model), delaying or even suppressing messages
sent from F to a party, and all actions that are explicitly specified in F . (We note, however, that
FNIKE offers no possibility for S to delay or even suppress output.)
S has no access to the contents of the messages sent from F to the dummy parties (except in

the case that the receiving party is corrupted) nor are there any messages actually sent between
(uncorrupted) parties S could intercept. Intuitively, the ideal model of computation (or, more
precisely, the ideal functionality F itself) should represent what we ideally expect a protocol to do.
In fact, for a number of standard tasks, there are formulations as such ideal functionalities (see,
e.g., [4]).

The security definition. To decide whether or not a given protocol π does what we would
ideally expect some ideal functionality F to do, the UC and GNUC frameworks use a simulation-
based approach: at a time of its choice, Z may halt and leave a bit of output on its output tape.
The random variable describing Z’s output will be denoted by Exec[π,A,Z], resp. Exec[F ,S,Z].
Now if for any adversary A in the real model, there exists a simulator S in the ideal model such
that for any environment Z, we have that

|Pr[Exec[π,A,Z] = 1]− Pr[Exec[F ,S,Z] = 1]|

is negligible as a function in the security parameter, then protocol π is said to securely realize
functionality F . Intuitively, this means that any attack carried out by adversary A in the real
model can also be carried out in the idealized modeling with an ideal functionality by the simulator
S (hence the name), such that no environment is able to tell the difference.

The hybrid model and universal composition. To allow for a modular protocol design, there
also exists the F -hybrid model of computation (for an arbitrary ideal functionality F). Briefly, this
model is identical to the real model of computation, but the parties have access to an unbounded
number of instances of F . The modularity of the hybrid model is legitimated by the fundamental
composition theorem of [4]. To describe the theorem statement, suppose that protocol φ securely
realizes functionality F . Then, in any protocol π running in the F -hybrid model, all F -invocations
can be substituted by invocations of φ without losing security. Specifically, for every real-life
adversary A, there is a hybrid-model adversary H such that no environment can tell whether it is
interacting with A and π (with F -instances substituted by invocations of φ) in the real model, or
with H and π in the F -hybrid model.

D The ideal functionality FRO

We present here a version of the random oracle ideal functionality FRO . For simplicity, since
we need only one instance of FRO , we omit the use of session identifiers and stress that in our

27

FRO -hybrid model, all parties always call the same instance of FRO .

FRO proceeds as follows, running on security parameter k, with parties P1, . . . ,Pn
and an adversary.

• FRO keeps a list L (which is initially empty) of pairs of bitstrings.
• Upon receiving a value m (with m ∈ {0, 1}∗) from some party Pi or from the

adversary, do:
– If there is a pair (m, h̃) for some h̃ ∈ {0, 1}k in the list L, set h := h̃.
– If there is no such pair, choose uniformly h ∈ {0, 1}k and store the pair

(m,h) in L.
Once h is set, reply to the activating machine (i.e., either Pi or the
adversary) with h.

Functionality FRO .

E The ideal functionality FCRS

Throughout the paper we make use of a hybrid functionality FCRS , which provides all parties
and the adversary with a common reference string (CRS). The CRS is drawn from a specific
distribution, in our case, the output distribution of the algorithm NIKE.CommonSetup(1k). The
functionality FCRS is described below.

FCRS proceeds as follows, running on security parameter k, with parties P1, . . . ,Pn
and an adversary.

• Upon receiving the first input of the form (parameters), compute params
$←−

NIKE.CommonSetup(1k) and send params to the activating entity. From now
on, always answer (parameters) requests with params.

Functionality FCRS .

F Proof of Theorem 4.2

Proof. Let B be a CKS-light adversary. Out of B, we construct two environments, Z and Z̃, where
Z’s view in a real execution of NIKE corresponds to an instance of a CKS-light game with B and
challenge bit b = 0 (which means that test queries are answered with real keys in the CKS-light
game). Z̃ transforms Z’s view to an instance of a CKS-light game with b = 1.

We start with a description of Z. Z internally simulates B and translates B’s queries in the
CKS-light security game into requests to honest NIKE parties, resp. to the adversary. This is
done using an adaptation of the query translations from Table 1; for instance, when B makes a
(register corrupt user,Pi, pki) request, then Z asks the adversary to corrupt Pi and to let Pi
register pki as its public key.10 In the CKS-light security model there are no re-registrations of
honest users, so there are no (renew,Pi) requests in the UC world. (register honest user,Pi)

10We stress that this still corresponds to a static corruption in the UC model (cf. [6, Section 6.7]): since B is
a CKS-light adversary, party Pi has not been invoked before; thus, Z only requests corruptions of freshly created
parties.

28

queries for the two honest parties, say P1 and P2, are handled by issuing (register,Pi) (i ∈ {1, 2})
queries to Pi and Pj . When B outputs a decision bit b′, Z also outputs b′.

It is easy to see that a real execution of NIKE with such a Z corresponds to a CKS-light game
with b = 0 (recall that b = 0 means that the CKS-light challenger C will answer test queries by
running NIKE.SharedKey). Hence, Pr[Exec[NIKE,A,Z] = 1] = Pr[1← B | b = 0].

Next we define the environment Z̃ as a modification of Z. Z̃ internally simulates Z. However,
when Z initializes a session including the only two honest parties, Z̃ answers with a randomly
chosen key instead of forwarding the initialization and using the output of the UC party as answer
to Z. Note that in the ideal world, where keys for honest sessions are randomly chosen anyway
(by FNIKE), this does not alter Z’s view. In particular, if we let Z̃ adopt Z’s output bit, we have
Exec[FNIKE ,S,Z] = Exec[FNIKE ,S, Z̃] (for any S). Again it is easy to see that in a real execution
of NIKE, Z̃ simulates a CKS-light game for Z with b = 1. Hence, Pr[Exec[NIKE,A, Z̃] = 1] =
Pr[1← B | b = 1].

Finally, as NIKE is UC-secure w.r.t. static environments, the distinguishing advantages of both
Z and Z̃ must be negligible. Putting things together, we get

Pr[1← B|b = 0] = Pr[Exec[NIKE,A,Z] = 1]

≈ Pr[Exec[FNIKE ,S,Z] = 1]

= Pr[Exec[FNIKE ,S, Z̃] = 1]

≈ Pr[Exec[NIKE,A, Z̃] = 1]

= Pr[1← B|b = 1].

Therefore, NIKE is CKS-light-secure.

Why we use two different environments in the proof of Theorem 4.2. One might be
tempted to directly associate the ideal UC setting with FNIKE with the CKS-light game with b = 1
(i.e., with random keys). This would seem to enable a simpler proof of Theorem 4.2. However, note
that an ideal world simulator S controls FCRS and F1

KR. Hence, S is able to generate parameters
and public keys of honest users in a malicious way. This does not correspond to a CKS-light
game anymore, where the parameters and public keys of honest users are honestly chosen by the
CKS-light challenger.

G Proof of Theorem 4.5

Proof. Let A be the dummy adversary in the UC setting. We construct a simulator S that interacts
with Z and FNIKE such that for all distinguishing environments Z,

Exec[FNIKE ,S,Z] ≈ Exec[NIKE’,A,Z].

We proceed with a description of S. S internally simulates the real life execution of NIKE’ with A.
S maintains a list of corrupted parties and a list Λ with entries of the form (Pi, pki, ski), containing
party identifiers and their public key/secret key pairs. S also maintains a list ΛH to handle random
oracle queries. We now give a definition of S by specifying its reaction to invocations from any
entity in the ideal world, including the internally simulated real life execution:

(parameters) from any entity. S runs params
$←− NIKE.CommonSetup(1k) once and always an-

swers this request with params.

29

(H,Pi,Pj , h) from any entity. S maintains a list ΛH (initially empty) in order to handle Random
Oracle (RO) queries. Upon receiving a tuple (Pi,Pj , h), w.l.o.g. Pi,Pj ∈ {0, 1}∗, Pi < Pj ,
and h ∈ {0, 1}k (the shared key space of NIKE), S answers RO queries as follows: S checks if
there already exists an entry ((Pi,Pj , h), r) in the list ΛH . If so, S returns r. Otherwise, S
uniformly chooses r′

$←− {0, 1}k′ , records ((Pi,Pj , h), r′) in ΛH and returns r′. S returns ⊥ if
h /∈ {0, 1}k (which is represented by h = ⊥).

(register,Pi) from FNIKE . S checks if there exists an entry of the form (Pi, ·, ·) in Λ. If not,
S runs NIKE.KeyGen(params,Pi) to obtain a valid public key/secret key pair (pki, ski) for Pi
and stores (Pi, pki, ski) in Λ (W.l.o.g. we assume that S has already computed params). S
then sends (Pi, registered) to FNIKE , waits until FNIKE sends back (Pi, registered), then
sends (register,Pi) to Z. Note that FNIKE keeps ski private.

(init,Pi,Pj) from FNIKE . The receipt of this input implies that Pi,Pj are not both honest. We
can assume Pj is corrupted, because S would not send (init,Pi,Pj) through a corrupted Pi.
S computes NIKE.SharedKey(Pj , pkj ,Pi, ski), sets

Ki,j =

{
H(Pi,Pj , NIKE.SharedKey(Pj , pkj ,Pi, ski)), if Pi < Pj or

H(Pj ,Pi, NIKE.SharedKey(Pj , pkj ,Pi, ski)), if Pj < Pi,

and sends (Pi,Pj ,Ki,j) to FNIKE .

(renew,Pi) from FNIKE . S obtains (pki, ski)
$←− NIKE.KeyGen(params,Pi) and stores (Pi, pki, ski)

in Λ, overwriting any existing entry for Pi. S then sends (Pi, registered) to FNIKE , waits
until FNIKE sends back (Pi, registered) and then sends (register,Pi) to Z.

(corrupt,Pi) from Z. If Pi has no public key registered, Z expects to learn an empty internal
state. Otherwise, if there exists an entry (Pi, pki, ski) in Λ, for the honest party Pi, S sends
ski to Z. S corrupts Pi and learns shared key values (Pi,Pj , rij)

11. For every tuple {Pi,Pj}
(Pj ∈ Λ), S computes h = NIKE.SharedKey(Pj , pkj ,Pi, ski) and records ((Pi,Pj , h), rij) in
ΛH if Pi < Pj , or ((Pj ,Pi, h), rij) if Pj < Pi. S aborts the simulation if there already exists
an entry (({Pi,Pj}, h), ·) in the list ΛH .

(register,Pi, pki) from Z. We can assume that Pi is corrupted. S adds (Pi, pki,⊥) to Λ, over-
writing any existing entry for Pi. S then sends (Pi, registered) to FNIKE , waits until FNIKE

sends back (Pi, registered) and sends (register,Pi) to Z.
(lookup,Pi) from any entity. If there is an entry (Pi, pki, ·) in Λ, return (Pi, pki). Otherwise,

return ⊥.

We will show that this simulation is in fact perfect, unless a certain event BAD occurs. Concretely,
let BAD denote the event that at any time, Z queries (H,Pi,Pj , h) for two honest parties Pi,Pj that
have both registered their public keys, and h = NIKE.SharedKey(Pi, pki,Pj , skj). (Note that since
Pi and Pj are both honest, their secret keys ski and skj are well-defined.) Observe that BAD is
necessary for S to abort. In principle, BAD can be defined both in the real and the ideal UC game;
however, when we write BAD, we mean BAD in the ideal UC game.

Claim 1: |Pr[Exec[NIKE’,A,Z] = 1]− Pr[Exec[FNIKE ,S,Z] = 1]| ≤ Pr[BAD].

11Here we assume non-erasing parties, as it is done in [4], meaning that the internal state of a dummy party
contains everything the party has relayed so far. We note that GNUC ([23]) does not specify whether dummy parties
are erasing. However, our simulation can be slightly modified to work in a model with erasing parties. The modified
simulator, controlling corrupted parties, will simply request all possible shared keys (with other registered parties)
from FNIKE through the corrupted parties again and program the random oracle with these keys. This can be done
in a time polynomially bounded in the number of inputs Z gave so far (i.e., in the number of invoked parties).

30

Proof. In this proof we define a sequence of indistinguishable games G0, G1, G2, G3 and G4, all
defined over the same probability space. Starting with G0, the real execution of the protocol
NIKE’, we make slight modifications between successive games, in such a way that the view of an
environment Z is indistinguishable among the games. The last game, G4, will be indistinguishable
from an ideal execution with S as defined above, when conditioned on ¬BAD. In G1, we basically
regroup machines and add some relays. We explain how S internally simulates the parties and the
functionalities FRO , FCRS and F1

KR. In G2 and G3, we let one of the relays store information and
make some decisions. Finally, in G4, we make some modifications, transforming one of the added
relays into the ideal key exchange functionality FNIKE .

Game G0: Real protocol run. This is the real protocol run (involving all the parties in the
NIKE’ protocol and an adversary A, controlling some of the parties) with the ideal functionalities
FCRS , F1

KR and FRO . The situation is similar to the left-hand side of Figure 1, but with an extra
ideal functionality FRO .

Game G1: Regrouping of machines and addition of relays. We modify the network of
G0 by regrouping all the machines but Z into one machine and call it S. S simulates all parties
in the protocol, as well as the helping functionalities. Then, we add to the network single relays
representing each party in the NIKE’ protocol, and another relay, which we call F (see right-hand
side of Figure 1). For now, F basically only relays the connections between the relays representing
each party in the protocol, and the parties themselves (internally simulated by S).

We now explain how S simulates the helping functionalities.

The functionality FCRS is implemented by S by obtaining params
$←− NIKE.CommonSetup(1k)

once. S always answers queries to FCRS with params.
In order to properly manage queries for the random oracle H, which will be made by the

simulated parties or by the environment Z, S maintais a list ΛH . S updates the list according to
the above description of how our simulator S handles RO queries.

For the key registration functionality, we allow S to maintain a list Λ with entries of the form
(Pi, pki, ski), containing a party identifier, its public key and its secret key (if defined). Whenever
a party Pi (internally simulated by S) runs NIKE.KeyGen(params,Pi) to obtain a valid public
key/secret key pair (pki, ski), S stores (Pi, pki, ski) in Λ, overwriting any existing entry for Pi,
and sends (register,Pi) to Z. Moreover, whenever the environment Z tries to register a party
with the ideal functionality F1

KR by sending (register,Pi, pki), S sends (register,Pi) to Z, and
adds (Pi, pki,⊥) to Λ, overwriting any existing entry for Pi. Additionally, S can easily handle
(lookup,Pi) by searching Pi in Λ.

Note that because S simulates all parties that Z might invoke during the protocol run, S has
access to all parties’ internal states. S is thus able to answer all the corrupt queries made by Z
or even to forward public keys to Z.

As this new network is basically only a regrouping of the previous network and because S
perfectly simulates the parties and the helping functionalities, it holds that Z’s view is still the
same as in game G1.

Game G2: Allowing F to store information and make decisions. This game is exactly
like Game G3 in proof of Theorem 4.1. We let S send (Pi, registered) to F whenever a party
successfully registers a public key pki with F1

KR. F answers such a message by bouncing it, i.e.
sending (Pi, registered) to S. We also let F store information about the registered parties and
make decisions regarding whether to forward tuples, containing shared keys, coming from S, to

31

parties. Additionally, we assume F knows which parties are corrupted. F maintains a list Λreg.
On input (Pi, registered) from S, if Pi /∈ Λreg, F adds Pi to Λreg. Upon receiving (init,Pi,Pj),
if Pj /∈ Λreg, F sends (Pi,Pj ,⊥) to Pi. Else F relays (init,Pi,Pj) to S and receives an answer
(Pi,Pj ,Ki,j). F relays (Pi,Pj ,Ki,j) to Pi.

It is easy to see that the output of a party Pi in G1 is (Pi,Pj ,⊥) if and only if the output of a
party in G2 is (Pi,Pj ,⊥). Thus Z’s view in G2 is still the same as in G1.

Game G3: More lists and more decisions for F . Here we let F maintain two other lists,
Λkeys and Λrenew. Before relaying any tuple (Pi,Pj , key), where key 6= ⊥, to a party Pi, F adds
({Pi,Pj}, key) to Λkeys. Upon receipt of (renew,Pi) from Pi, F stores Pi in Λrenew. Upon receipt
of (Pi, registered) from S, if Pi ∈ Λrenew, F deletes every existing entry ({Pi, ·}, key) from Λkeys
and deletes Pi from Λrenew. Upon receipt of (init,Pi,Pj) with Pj ∈ Λreg we let F check the list
Λkeys for an entry ({Pi,Pj}, key). If there is one, F does not relay (init,Pi,Pj) to the adversary
and instead returns ({Pi,Pj}, key) to Pi right away.

The output of F is the same as in Game G2, because any entry in Λkeys was computed by S
and therefore matches the answer of S to the init request in Game G2.

Game G4: Building the ideal functionality FNIKE . Upon receipt of an (init,Pi,Pj) request,
where Pi and Pj are honest and Pj ∈ Λkeys, we prevent F from relaying (init,Pi,Pj) to the
adversary. Instead, F checks if there already exists an entry ({Pi,Pj}, key) in Λkeys. If not, F
sets key

$←− {0, 1}k′ (the shared key space of NIKE’) and stores ({Pi,Pj}, key) in Λkeys. F sends
(Pi,Pj ,key) to Pi. Upon corruption of a party Pi, S will learn the shared key values (Pi,Pj , rij) that
were randomly chosen by F . S then adds ((Pi,Pj , NIKE.SharedKey(Pj , pkj ,Pi, ski)), rij) (w.l.o.g.
assuming that Pi < Pj) to ΛH . We stress that in this game, we assume that Z makes no queries
H(Pi,Pj , NIKE.SharedKey(Pj , pkj ,Pi, ski)) to the random oracle, where Pi and Pj are both honest.

To conclude the proof, we see that in both games G3 and G4, the shared key between two honest
parties is a randomly generated value from {0, 1}k′ , the space of shared keys of NIKE’. Thus, games
G3 and G4 are indistinguishable from Z’s point of view.

Claim 2: Pr[BAD] ≤ negl.

Proof. Besides running with Z and FNIKE , we let S play a weakCKS++ security game. S has to
be slightly modified to act as a translator between the UC setting and the weakCKS++ game. We
mainly have to specify how S registers users in the weakCKS++ game. For the sake of simplicity
we only list the modifications of S.

Let C be S’s challenger in the weakCKS++ security game.
• Instead of running NIKE.CommonSetup(1k), S obtains params from C.
• If an honest party Pi needs to register a public key (i.e. after S received the first (register,Pi)),

then, instead of generating a public/secret key pair by running NIKE.KeyGen(params,Pi), S
registers Pi in the weakCKS++ game and gets pki from C.
• Upon receiving (renew,Pi) from FNIKE , S re-registers the honest Pi in the weakCKS++ game

to obtain a new pki for this party.
• Upon receiving (register,Pi, pki) from environment Z, S simulates the F1

KR functionality
and issues a (register corrupt user,Pi, pki) query to C.
• If FNIKE lets S determine the key of a corrupted session, S queries C with a corrupt reveal

query to obtain a shared key and sends it to FNIKE .

32

• Upon corruption of a formerly honest party Pi, S has to inform Z about the internal state
of Pi. This state is empty if Pi so far did not obtain any input from Z, which means that
Pi does not exist in the weakCKS++ game yet. If Pi already obtained an input from Z, S
queries C for the secret key ski by issuing an extract query for Pi. Notice that S will then
be able to compute NIKE.SharedKey(Pj , pkj ,Pi, ski) for any registered party Pj . S sends ski
to Z.

The output of S towards other entities is distributed exactly as before because C uses the same
algorithms to generate params, public/secret key pairs and shared keys. The modified simulation
guarantees that the registered users in the weakCKS++ game correspond to those parties who
registered a public key with F1

KR in the internal simulation of NIKE’.
Let qRO denote the total number of RO queries made by Z. Then S will try to win the

weakCKS++ game by randomly choosing one RO entry and submitting the preimage as guess to
C. (The hope is that this guessed RO entry is responsible for BAD.) S picks the right entry with
probability 1/qRO. Thus the advantage of S in the weakCKS++ game is

AdvweakCKS++

S = Pr[BAD]/qRO.

If Pr[BAD] is non-negligible, this contradicts the weakCKS++ security of NIKE.

The theorem follows from Claim 1 and Claim 2.

33

