
Efficient Non-Interactive Verifiable Outsourced
Computation for Arbitrary Functions

Chunming Tang 1,2, Yuenai Chen 1

1 School of Mathematics and Information Sciences, Guangzhou University,
Guangzhou 510006, China. E-mail:ctang@gzhu.edu.cn

2 Key Laboratory of Mathematics and Interdisciplinary Sciences of Guangdong
Higher Education Institutes, Guangzhou University, 510006, China.

E-mail:chenyuenai@163.com

Abstract. Non-interactive verifiable outsourced computation enables a
computationally weak client to outsource the computation of a function
f on input x to a more powerful but untrusted server, who will return the
result of the function evaluation as well as a proof that the computation
is performed correctly. A basic requirement of a verifiable outsourced
computation scheme is that the client should invest less time in prepar-
ing the inputs and verifying the proof than computing the function by
himself.
One of the best solutions of such non-interactive schemes are based on
Yao’s garble circuit and full homomorphic encryption, which leads to
invest poly(T) running time in offline stage and poly(logT) time in online
stage of the client, where T is the time complexity to compute f .
In this paper, we’ll present a scheme which does not need to use garble
circuit, but to use a very simple technique to confuse the function we
are going to compute, and only invests poly(logT) running time in the
offline stage.

Keywords: cloud computing, non-interactive outsourced computation, ver-
ifiable outsourced computation, full homomorphic encryption

1 Introduction

Outsourced computation, in which a weak client, who has very limited compu-
tational resources, wishes to “outsource” computing to a powerful server, who
has a great quantity of resources and infinite capacities of computation, be-
comes a very active research area in cryptograph recently. Maybe the following
two reasons can explain why it becomes so heat. One is the prevalence of cloud
computing, a paradigm where businesses buy computing time from a service,
rather than purchase and maintain their own computing resources. The other
is the proliferation of computationally weak mobile devices, such as cell-phones,
sensors, tablets, and security access-cards, which might need to buy computing
time of a costly computations from cloud, such as a cryptographic operation or
a photo manipulation, which they are not able to perform by themselves.

The central problem of outsourced computation is: 1) if the server is ma-
licious that he may return an incorrect result of the computation due to the
financial purpose; Or 2) if the information about the computation is so sensitive
that you must guarantee both of the privacy of the inputs and outputs of the com-
putation. Thus we must concern about the following very important two aspects
associated with the security of outsourced computation:

– The privacies of input and output of the computation. In other words, the
computation is done over encrypted data.

– The correctness of the computation. This implies the server has to prove the
correctness of the computation, and the client should be able to efficient-
ly verify this correctness, where ‘efficiently’ means the client must invest
less time in the verification of the result than computation from scratch by
himself.

Therefore, we are concern about a verifiable outsourced computation, which
enables a computationally weak client to outsource the computation of a function
f on input x to a more powerful but untrusted server, who returns the result
of the function evaluation as well as a proof that the computation is performed
correctly. Such a verifiable outsourced computation requires that 1) the privacy
of the client’s input and output; 2) the correctness of the computation; 3) the
security of the computation (i.e., a malicious server cannot persuade the client
to accept an incorrect answer); 4) the efficiency of the computation (i.e., the
client should invest less time in preparing its input and verifying the server’s
proof than computing f on its own). Another reasonable requirement is that the
running time of the worker carrying out the proof should also be reasonable. For
example, when the computing of function f takes time T and the length of the
inputs and outputs is n, then we would like the client invest poly(n, logT) time
and the server invest poly(T) time.

1.1 Previous Work

Computing over encrypted data is an attractive research problem and has a
long research history. The first breakthrough construction of full homomorphic
encryption (FHE) proposed by Gentry [Gen09] improved the development of
computation over encrypted data. After that, many other more efficient FHE
schemes have been constructed based on it [Gen10, GH11, BGV12, Bra12, GH-
S12].

The problem of verifying the correctness of arbitrarily computation, that
is, verifiable computation, also gains much attentions. Actually, it is the goal
of interactive proofs [Bab85,GMR89], where a powerful prover can convince a
weak verifier of the truth of statements that the verifier could not compute
on its own. In order to make the verification executed efficiently by the client,
probabilistically checkable proofs (PCPs) [BFL90,BFLS91,AS92] were proposed,
where a prover can prepare a proof that the verifier needs to check in only
very few place. Based on PCP proof, several protocols came up: Kilian’s efficient

arguments [Kil92,Kil95] with interactive verification, Micali’s non-interactive CS
proofs for any polynomial-time computation in random oracle model [Mic94],
Goldwasser et al.’s interactive proof only for small-depth computation, their
proof can be converted into non-interactive [GKR08].

In this paper, we only restrict our attention to non-interactive solutions for
arbitrary computation. That is, the server/prover should be able to send a proof
to the client/verifier in the same message that it sends the result of the com-
putation. Micali’s non-interactive CS proofs [Mic94] invests poly(T, k) time by
prover and poly(n, k, logT) time by verifier in random oracle model (where k
is the security parameter and n is the length of input). However, the random
oracle heuristic is known to be unsound in general [CGH04]. Goldwasser et al.’s
non-interactive proof [GKR08] applies only to small-depth computation, since
the verifier complexity grows linearly with the depth.

Considering the limitations of above two non-interactive solutions, Gennaro,
Gentry, and Parno [GGP10] formalized the notion of verifiable computation,
and showed how to outsource arbitrary computation by increasing the verifier’s
offline complexity and involving large public key, based on Yao’s garbled circuit
construction [Yao82,Yao86] and FHE scheme [Gen09]. In their protocol, in order
to construct a garbled circuit of function f (which is computable in time T) in
the offline stage, the client invests poly(T, k) running time to generate a public
key of size poly(T, k) and a secret key of size poly(k). In the online stage, the
client/verifier’s complexity is reduced to poly(n, k, logT), and the server/prover’s
complexity is poly(T, k). The online stage of the protocol can be executed many
times to outsource the computation of f on many inputs so as to amortized the
client’s large investment in the offline stage.

Chung et al.[CKV10] proposed a protocol of non-interactive verifiable out-
sourced computation based on FHE without using garble circuit, which eliminat-
ed the large public key from Gennaro et al.’s scheme. However, it still needed to
cost poly(T, k) time for the client to compute the function f on several random
inputs in the offline stage. In order to decrease the large investment of client in
the offline stage, they presented another construction of the protocol at the price
of a 4-message (offline) interaction with a server, which we are not interested in
here.

The two mentioned protocols above are in a very weak model in which the
adversary is not allowed to issue verification queries to the client. In other words,
the acceptance/rejection bit of the verification performed by the client remain-
s private and not learn by the adversary. Gennaro and Pastro [GP14] present
a non-interactive verifiable outsourced computation protocol in the presence of
verification queries based on the FHE and the existing verifiable outsourced com-
putation (which is not allowed the verification queries) for arbitrary poly-time
computation, which means, if the existing verifiable outsourced computation
needs poly(T, k) offline complexity, then their protocol needs poly(T, k) offline
complexity, too. As we have mentioned, there is no such protocols that invest
poly(logT, k) time in the offline stage even in the weak model.

1.2 Our contribution

In this work, we are focused on non-interactive verifiable outsourced computa-
tion for arbitrary polynomial-time computation. As the non-interactive protocols
given by Gennaro et al.[GGP10] and Chung et al.[CKV10] have large investment
in the offline stage, both of which are poly(T, k). Considering this, we will pro-
vide a protocol which has more efficient non-interactive offline complexity than
both of the above.

– Our protocol is based on full homomorphic encryption scheme and involves
no garble circuit while using a technique to confuse the function we are
going to compute. In the offline stage of our protocol, it needs neither to
generate a large public key as Gennaro et al.’s scheme, nor to compute the
function on a random input by the client itself as Chung et al.’s scheme. More
importantly, the client’s offline complexity can be reduced from poly(T, k)
to poly(k, logT) (see table 1), and the online stage also can be executed
efficiently by the client.

Since our protocol is based on a FHE scheme, any improvements in future
FHE scheme will be directly gained by our schemes.

2 Preliminaries on FHE

A full homomorphic encryption scheme FHE=(KeyGen, Enc, Dec, Eval) consists
of four PPT algorithms defined as follows.

– KeyGen(k)→ (pk, sk). The key generation algorithm KeyGen takes as input
a secure parameter k, and outputs a public encryption key pk and a secret
decryption key sk.

– Enc(pk, x) → cx. The algorithm Enc encrypts an input x under public key
pk, outputs the ciphertext cx.

– Eval(pk, C, cx) → cy. the evaluation algorithm Eval takes in a public key
pk, a circuit C and a ciphertext cx, and outputs a new ciphertext cy that
decrypts to the results y = C(x).

– Dec(sk, cy)→ y. The algorithm Dec decrypts the ciphertext cy to a plaintext
y under the secret decryption key sk.

We require that an FHE scheme satisfies four properties, which is encryption
correctness (i.e., it always holds that Dec(sk,Enc(pk,x))=x), evaluation correct-
ness (means that Dec(sk, Eval(pk, cx, C))=C(x)), succinctness, which requires
that the size of the ciphertext always depends polynomially on the secure pa-
rameter, but is independent of the size of the evaluated circuit C, and semantic
security.

Gentry’s construction [Gen09] satisfies the encryption correctness and eval-
uation correctness, furthermore, the Eval algorithm of his scheme can be made
deterministic.

3 The Model

Informally, a verifiable outsourced computation scheme is a two-party protocol
where the client runs a preprocessing phase (offline stage) to outsource the func-
tion f to the server. Later, in the online stage, the client encrypts the input x
and asks the server to evaluate the function on it. Then the server responds an
encrypted value of f(x) as well as a proof of its correctness which will be verified
by the client. We use the definition and secure model of [GGP10].

A verifiable outsourced computation scheme VOC=(KeyGen,ProbGen,Compute,Verify)
consists of the four algorithms defined as follow.

(1) KeyGen(f ,k)→ (PK,SK). The randomized key generation algorithm takes
the security parameter k as inputs and generates a public key that encode
the function f , which is used by the server to compute f , and a secret key
which is kept private by the client.

(2) ProbGenSK(x)→ (σx,τx). The problem generation algorithm uses the secret
key SK to encode the function input x as a public value σx which is given
to the server to compute with, and a secret value τx which is kept private
by the client.

(3) ComputePK(σx) → σy. Using the client’s public key and the encoded input,
the server computes an encoded version of the function’s output y = f(x).

(4) VerifySK(τx, σy)→ y∪⊥. Using the secret key SK and the secret decoding
τx, the verification algorithm converts the server’s encoded output into the
output of the function y = f(x) or outputs ⊥ indicating that σy does not
represent the valid output of f on x. If acc = 1, then we say the client accepts
y = f(x); otherwise, we say the client rejects.

Now, we’ll recall the four properties for a verifiable outsourced computation
defined in [GGP10], which are correctness, security, full privacy (both input and
output privacy) and efficiency.

(1) Correctness.
A verifiable outsourced computation scheme is correct if the problem gen-

eration algorithm produces values that allow an honest server to evaluate the
values that will verify successfully and correspond to the evaluation of f on those
inputs. More formally:
Definition 1 (Correctness). A verifiable outsourced computation scheme VOC
is correct if for any function f , the key generation algorithm produces keys
(PK,SK) ← KeyGen(f, k) such that, for all x in the domain of f , if (σx, τx) ←
ProbGenSK(x) and σy← ComputePK(σx), then (1, y = f(x))← VerifySK(τx, σy).

(2)Security
Intuitively, a verifiable outsourced computation scheme is secure if a mali-

cious server cannot persuade the verification algorithm to accept an incorrect
output. In other words, for a given function f and input x, a malicious server
should not be able to convince the verification algorithm to output ŷ such that

ŷ 6= f(x). The formal security is defined in experiment-based model.

Experiment 1: ExpV erifA [VOC, f, k]
(PK,SK) ← KeyGen(f ,k);
For i = 1, ..., l = poly(k);

xi ← A(PK, x1, σ1, ..., xi−1, σi−1);
(σi, τi) ← ProbGenSK(xi)

(i, σ̂y) ← A(PK, x1, σ1, ..., xl, σl);
ŷ ← VerifySK(τi, σ̂y)
If ŷ 6=⊥ and ŷ 6= f(xi), output 1, else 0.

Essentially, the adversary is given oracle access to generate the encoding of
multiple problem instances. The adversary succeeds if it produces an output that
convinces the verification algorithm to accept on the wrong output value for a
given input value.
Definition 2 (Security). For a verifiable outsourced computation scheme VOC,
we define the advantage of an adversary A in the experiment above as:

AdvV erifA (VOC, f, k) = Pr[ExpV erifA [VOC, f, k] = 1] (1)

A verifiable outsourced computation scheme VOC is secure for a function f ,
if for any adversary A running in probabilistic polynomial time,

AdvV erifA (VOC, f, k) ≤ negl(k) (2)

where negl(·) is a negligible function of its input.

(3)Full Privacy
Full privacy means both the input and output privacy. Input privacy is de-

fined based on a typical indistinguishability argument guaranteeing that no leak-
age of the information about the inputs. The definition of output privacy can be
made similarly.

Intuitively, a verifiable outsourced computation scheme is private when the
public outputs of the problem generation algorithm ProbGen over two different
inputs are indistinguishable; that is, an adversary cannot decide which encod-
ing is the correct one for a given input. More formally, consider the following
experiment 2: the adversary is given the public key for the scheme and selects
two inputs x0,x1. He is then given the encoding of a randomly selected one of
the two inputs and must guess which one was encoded. During this process the
adversary is allowed to request the encoding of any input he desires. The exper-
iment is described below. The oracle PubProbGenSK(x) calls ProbGenSK(x) to
obtain (σx, τx) and returns only the public part σx.

Experiment 2: ExpPrivA [VOC, f, k]
(PK,SK) ← KeyGen(f, k);

(x0, x1) ← APubProbGenSK(·)(PK);

(σ0, τ0) ← ProbGenSK(x0);
(σ1, τ1) ← ProbGenSK(x1);
b← {0, 1} ;

b̂ ← APubProbGenSK(·)(PK, x0, x1, σb);

If b̂ = b, output 1, else 0;

Definition 3 (Privacy). For a verifiable outsourced computation scheme VOC,
we define the advantage of an adversary A in the experiment above as:

AdvPrivA (VOC, f, k) = |Pr[ExpPrivA [VOC, f, k] = 1]− 1

2
| (3)

A verifiable outsourced computation scheme VOC is private for a function f ,
if for any adversary A running in probabilistic polynomial time,

AdvPrivA (VOC, f, k) ≤ negl(k) (4)

where negl(·) is a negligible function of its input.

(4)Efficiency
The final condition we require from a verifiable outsourced computation

scheme is that the time to encode the input and verify the output must be
less than the time to compute the function from scratch.
Definition 4 (Efficiency). A VOC is efficient if for any x and any σy, the time
required for ProbGenSK(x) plus the time required for Verify(σy) is o(T), where
T is the fastest known time required to compute f(x).

4 Efficient Non-interactive Verifiable Outsourced
Computation Scheme

As we have mentioned, the well-known two protocols given by [GGP10] and
[CKV10] have very expensive offline complexity. In [GGP10], client needs to
create a garbled circuit for the evaluation function f in the offline stage, which
costs the client poly(T) time to finish it and generates a large public key of size
poly(T). This large public key is eliminated by Chung et al.[CKV10] in their
protocols, but the client needs to evaluate the function f on randomly selected
input r by herself, which still invests poly(T) time to compute f(r) in the offline
stage. In this section, we propose two protocols in which we both eliminate the
large public key and reduce the offline complexity to poly(logT).

4.1 Protocol VOC: Reusable Verifiable Outsourced Computation
Scheme

Suppose we compute the function f in domain {0, 1}n. Informally, our first pro-
tocol works as follow: in the preprocessing phase, the client will confuse the
function f with two variables, that is, sets F (z) , F (x, a, b) = af(x) + b. Then

represent the function F as a circuit C such that C(z) = F (z), and this cir-
cuit C will be evaluated by the server instead of the function f . In the online
stage, given the input x of function f , the client will first run a key generation
algorithm Fkeygen of a full homomorphic encryption and obtain public/secret
key pair. Then the client randomly chooses two values a1, a2 and b1, b2 for the
variables a and b respectively and sends the ciphertexts of z1 = (x, a1, b1) and
z2 = (x, a2, b2) under the public key to the server, who will return two en-
crypted values of F (z1) and F (z2). Finally, the client decrypts them using the
sectet key of Fkeygen and verifies the correctness of the computation, i.e., if
(F (z1)− b1)a−11 = (F (z2)− b2)a−12 , then the client accept and the computation
result of function f on input x is (F (z1)− b1)a−11 or (F (z2)− b2)a−12 . We give a
detailed description below.

Protocol VOC.
Let k be security parameter, FHE=(Fkeygen,Fenc,Fdec,Feval) be a seman-
tically secure full homomorphic encryption scheme. Suppose the computation
function f is in domain {0, 1}n.

1. KeyGen(f, k)→ (PK,SK). The algorithm KeyGen first encodes the function
f with n-bit input x into a function F with 3n-bit input a‖b‖x, such that
F (a‖b‖x) = af(x) + b, where a, b are the variables in domain {0, 1}n. Then
it represents F as a circuit C such that C(z) = F (z) for any z ∈ {0, 1}3n.
The circuit C will be evaluated by the server instead of f . The algorithm
then sets the public key PK = C and the secret key SK is the position of
the bites of strings a, b, x. This preprocessing phase will be executed in the
offline stage by the client.

2. ProbGenSK(x) → (σx, τx). The problem generation algorithm takes as the
input x and output a public value σx, which will be used to evaluate the value
of function F by the server in the next phase, as well as a private value τx,
which will be used by the client to verify the correctness of the computation.
This algorithm will be executed in the online stage by the client as below.
– It first calls the key generation algorithm Fkeygen of FHE to create a

key pair: (pk, sk)← Fkeygen(k).
– Chooses randomly two pairs (a1, b1) and (a2, b2) for the variables (a, b),

where ai, bi ∈ {0, 1}n, i ∈ {1, 2}.
– Runs the encryption algorithm Fenc of FHE to encrypt the tuples (a1, b1, x)

and (a2, b2, x) in a random order:

(â1, b̂1, x̂1)← Fencpk(a1, b1, x)

(â2, b̂2, x̂2)← Fencpk(a2, b2, x)

– Sets σ1
x = (â1, b̂1, x̂1), σ2

x = (â2, b̂2, x̂2), τ1x = (a1, b1), τ2x = (a2, b2), then
the public value σx = (pk, σ1

x, σ
2
x), and the private value τx = (sk, τ1x , τ

2
x)

3. ComputePK(σx) → σy. The computation algorithm Compute takes as the
input σx and outputs the evaluation of the circuit C on this input. This
will be done by the server in the online stage as below. It firstly calls the

evaluation algorithm Feval of the FHE and computes Fevalpk(σ1
x, C) →

σ1
y, Fevalpk(σ2

x, C) → σ2
y. Then the output of algorithm Compute is set as

σy = (σ1
y, σ

2
y), where σ1

y, σ
2
y are the ciphertexts of F (x, a1, b1), F (x, a2, b2)

respectively according to the properties of the FHE.
4. VerifySK(τx, σy) → y ∪ ⊥. After receiving the result of the computation,

the client firstly decrypt the two ciphertexts σ1
y and σ2

y of σy into y1 and
y2 using the decryption algorithm Fdec of the FHE uder the secret key sk;
Then uses (a1, b1) and (a2, b2) to verify if (y1 − b1)a−11 = (y2 − b2)a−12 . If
the equation establishes, set the consistent value as the output of y = f(x),
otherwise, output ⊥.

Theorem 1. Let FHE be a semantically secure full homomorphic encryption
scheme. Then protocol VOC is a correct, secure, private and efficient non-interactive
verifiable outsourced computation scheme.

Proof. In order to prove Theorem 1, it is easy to see that the protocol VOC is
correct and efficient, because the time required for ProbGenSK(x) is poly(logT),
and the verification algorithm Verify invests also poly(logT) time, thus, the
addition of them is less than T , the time to compute f from scratch. It is also
not difficult to show that the protocol VOC is private, because the encryption
of the input is probabilistic and the output of the computation is an encrypted
version.

Now, we are focused on the proof of security of the protocol. The proof needs
two high-level steps. We’ll first show that the protocol VOC has one-time security
(Lemma 1), i.e., the protocol can be used to compute f securely on one input.
Then we reduce the security of protocol VOC (with multiple executions) to the
security of one time execution in which we expect the adversary to cheat.
Definition 5 (One-time Security Error). Let VOC be a verifiable outsourced
computation scheme and k be a security parameter. The one-time security ex-
periment ExpV erifA∗ [VOC, f, k] for VOC is the same as experiment 1 excepts that
it only runs one round in the online stage. We say that VOC has one-time
security error ε if for every PPT adversary A∗, AdvV erifA∗ (VOC, f, k) ≤ ε(k).

Lemma 1. Assume that the full homomorphic encryption scheme is semantical-
ly secure, then the verifiable outsourced computation scheme VOC has one-time
security error 1

23n + negl(k).

Proof of lemma 1. Fix any security parameter k, and any efficient (cheating)

adversary A∗. According to experiment ExpV erifA∗ [VOC, f, k], the adversary A∗

is allowed to query the oracle ProbGenSK(·) only once (i.e., l = 1) and must

cheat on that input. From the experiment ExpV erifA∗ [VOC, f, k], A∗ firstly get
the circuit C evaluating the function F (z) = af(x) + b which is the encoding of
the function f .

Then A∗ queries the oracle ProbGen only once on input x and obtains a public
key σx = (pk, σ1

x, σ
2
x), where σ1

x and σ2
x are the two ciphertexts of x assiciated

with two randomly chosen pairs (a1, b1) and (a2, b2) in {0, 1}n, which are kept

private by the client, respectively. Then, A∗ replies with answer σy′ = (σ1
y′ , σ

2
y′)

to the client which will be decrypted to y′1 and y′2 using the decryption algorithm
Fdec of the FHE scheme. At the end of the experiment, if A∗ succeeded in
cheating, the decryption y′1 and y′2 should be decoded into the same value, i.e.,
(y′1 − b1)a−11 = (y′2 − b2)a−12 = y′, by which we mean a value other than f(x).

Instead of computing the function F honestly, the adversary A∗ firstly picks
y′1 randomly in domain {0, 1}n. For any choice y′1, there is only one correspond-
ing f(x′) such that y′1 = a1f(x′) + b1. Thus A∗ can successfully guess f(x′)
with probability 1

2n . Then A∗ constructs y′2 such that y′2 = a2f(x′) + b2 with
probability 1

23n since the probabilities of A∗ successfully guess a2, b2 are 1
2n , 1

2n

respectively. Therefore,

Pr[
y′1−b1
a1

=
y′2−b2
a2

] = 1
23n

Let AdvV erifA∗ (VOC, f, k) denotes the advantage of adversary A∗ in the experi-

ment ExpV erifA∗ [VOC, f, k], then we have

AdvV erifA∗ (VOC, f, k) ≤ 1
23n + negl(k).

�
Now, we are ready to show that if the homomorphic encryption scheme is

semantically, then we are able to reduce the security of protocol VOC (with
multiple executions) to the security of one time execution in which we expect the

adversary to cheat. Let ExpV erifA be the security experiment corresponding to

VOC, and ExpV erifA∗ be the one-time security experiment (that is, the adversary
is allowed to query the oracle ProbGen only once, i.e., l = 1) corresponding to
one-time execution of VOC.

Assume for the contradiction that there exists a PPT adversary A for exper-
iment ExpV erifA and a non-negligible function ε such that

AdvV erifA (VOC, f, k) ≥ ε(k).

We use A to construct a PPT adversary A∗ for the one-time experiment Ex-
pV erifA∗ , and prove that there is a non-negligible function ε∗ such that

AdvV erifA∗ (VOC, f, k) ≥ ε∗(k),

which is contradict with lemma 1, then the proof of theorem 1 is complete.
Now we build the PPT adversary A∗ below.
Let L be an upper bound on the number of queries that A makes to its

ProbGen oracle. A∗ chooses randomly an index i ∈ [L]. Loosely speaking, the

adversary A∗ executes the one-time experiment ExpV erifA∗ by simulating the

adversary A executes the repeated experiment ExpV erifA , while embedding his

single query in the i-th query of ExpV erifA , and simulating the messages in the
other queries by encrypting random n-bit strings under a randomly choosing
public key of FHE scheme. Formally, the PPT adversary A∗ is defined as follow.

– For the j-th query of A, where j 6= i, A∗ will simulate the j-th query of A by
1) choosing a fresh, random public/private key pair (pkj , skj) for the FHE

scheme; 2) encrypting random n-bit strings (aj1, b
j
1, r

j
1) and (aj2, b

j
2, r

j
2) under

pkj in a random order.
– For the i-th query, x, the adversary A∗ gives x to its oracle ProbGen and

returned back σx by 1) choosing a random public/private key pair (pki, ski)
for the FHE scheme; 2) encrypting the input x with two randomly chosen
n-bit pairs, i.e., encrypting (ai1, b

i
1, x) and (ai2, b

i
2, x) under pkj in a random

order.

Now we claim that AdvV erifA∗ (VOC, f, k) ≥ ε∗(k) and prove it in Lemma 2
and complete the proof of Theorem 1.

Lemma 2. AdvV erifA∗ (VOC, f, k) ≥ ε∗(k), where ε∗ is a non-negligible function.

Proof of Lemma 2: For every t = 0, ..., L, we define the hybrid experiment
HtA(VOC, f, k) for PPT adversary A below.

Experiment HtA(VOC, f, k):

- For the j-th query with j ≤ t and j 6= i: the oracle will respond by 1) choosing a
random public/private key pair (pkj , skj) for the FHE scheme; 2) encrypting

random n-bit strings (aj1, b
j
1, r

j
1) and (aj2, b

j
2, r

j
2) under pkj in a random order.

- For the j-th query with j > t or j = i: the oracle will respond exactly as in
VOC by 1) choosing a random public/private key pair (pkj , skj) for the FHE
scheme; 2) encrypting the correct input xj (when j = i, then xi = x) with

4 randomly chosen n-bit strings aj1, b
j
1, a

j
2, b

j
2, i.e., encrypting (aj1, b

j
1, xj) and

(aj2, b
j
2, xj) under pkj in a random order.

If A successfully cheats on the i-th input, then the experiment HtA outputs 1
and otherwise 0. Denotes AdvtA(VOC, f, k) = Pr[HtA(VOC, f, k) = 1].

According to the construction of the hybrid experiment HtA, we stress the
three properties:

– When t = 0, H0
A(VOC, f, k) is the same as experiment ExpV erifA [VOC, f, k]

except for the way the output bit is computed at the end. Therefore, we have

Adv0A(VOC, f, k) =
AdvV erif

A (VOC,f,k)
L ≥ ε

L ,

because the index i is randomly chosen between 1 and L.
– When t = L, HLA(VOC, f, k) is the same as the construction of the adversary
A∗ above, thus, we have

AdvLA(VOC, f, k) = AdvV erifA∗ (VOC, f, k)

– For t = 0, ..., L, experiments HtA and Ht−1A are computationally indistin-
guishable, that is, for every A,

|Advt−1A (VOC, f, k)−AdvtA(VOC, f, k)| ≤ negl(k)

The first two properties are obviously, and if we can prove the third property,
then we can finish the proof of Lemma 2, because we have

AdvV erifA∗ = AdvLA = Adv0A −
∑L
t=1(Advt−1A −AdvtA)

≥ Adv0A −
∑L
t=1 |Adv

t−1
A −AdvtA|

≥ ε
L − L · negl(k) , ε∗(k)

Actually, the third property easily follows the semantic security of the FHE
scheme. Assume that experiments HtA and Ht−1A are computationally distin-
guishable. Now let’s see what is the difference between HtA and Ht−1A . The only
deference is the t-th query in experiments HtA and Ht−1A . Let viewtj denotes the
views of the j-th query of HtA, then

viewtt = (pkt, Fencpkt(a
t
1, b

t
1, r

t
1, a

t
2, b

t
2, r

t
2))

viewt−1t = (pkt, Fencpkt(a
t
1, b

t
1, xt, a

t
2, b

t
2, xt))

If we could distinguish betweenHtA andHt−1A , then we could distinguish between
(pkt, Fencpkt(r

t
1), Fencpkt(r

t
2)) and (pkt, Fencpkt(xt), Fencpkt(xt)) which is con-

tradict to the semantic security of the FHE scheme. �

4.2 Protocol VOC′: Reusable Verifiable Outsourced Computation
Scheme with Negligible Soundness

Our first protocol has security error 1/23n + negl(k), if the length of the input
is mall (i.e., n is not large enough), then the security error is non-negligible on
k. In order to improve this security error, the protocol could ask the server to
compute F on multiple independent randomized inputs σ1

x, ..., σ
t
x, where t is an

additional security parameter associated with k. Upon receiving the t encrypt-
ed inputs, the server evaluates and replies the answers F (σ1

x), ..., F (σtx) to the
client, who checks whether these t answers are decrypted to the same value and
set this consistent value as f(x). The details are described as below.

Protocol VOC′.
Let k be security parameter, FHE=(Fkeygen,Fenc,Fdec,Feval) be a full homo-
morphic encryption scheme. Suppose the computation function f is in domain
{0, 1}n.

1. KeyGen(f, k)→ (PK,SK). The algorithm KeyGen first encodes the function
f with n-bit input x into a function F with 3n-bit input a‖b‖x, such that
F (a‖b‖x) = af(x) + b, where a, b are the variables in domain {0, 1}n. Then
it represents F as a circuit C such that C(z) = F (z) for any z ∈ {0, 1}3n.
The circuit C will be evaluated by the server instead of f . The algorithm
then sets the public key PK = C and the secret key SK is the positions of
bites of strings a, b, x.

2. ProbGenSK(x)→ (σx, τx). The algorithm ProbGen is executed by the client
as below.
– Calls the key generation algorithm Fkeygen of FHE to create a key pair:

(pk, sk)← Fkeygen(k).

– Chooses randomly t pairs τ1x , (a1, b1), ..., τ tx , (at, bt) for the variables
(a, b), where ai, bi ∈ {0, 1}n, i ∈ [t].

– Runs the encryption algorithm Fenc of FHE to encrypt the tuples (a1, b1, x),
..., (at, bt, x):

σ1
x , (â1, b̂1, x̂1)← Fencpk(a1, b1, x),

· · ·

σtx , (ât, b̂t, x̂t)← Fencpk(at, bt, x)

– Sets the public value σx = (pk, σ1
x, ..., σ

t
x), and the private value τx =

(sk, τ1x , ..., τ
t
x)

3. ComputePK(σx) → σy. The Compute algorithm is executed by the server
to compute the value of circuit C as below. Calls the evaluation algorithm
Feval of the FHE and calculates

Fevalpk(σ1
x, C)→ σ1

y,

· · ·

Fevalpk(σtx, C)→ σty.

Then the output is σy = (σ1
y, ..., σ

t
y), where σ1

y, ..., σ
t
y are the ciphertexts

of F (x, a1, b1), ..., F (x, at, bt) respectively according to the properties of the
FHE.

4. VerifySK(τx, σy) → y ∪ ⊥. The client uses the decryption algorithm Fdec

of FHE to decrypt the t ciphertexts σ1
y, ..., σ

t
y under secret key sk, obtaining

F (x, a1, b1), ..., F (x, at, bt); Then he uses τ1x = (a1, b1), ..., τ tx = (at, bt) to de-
code F (x, a1, b1), ..., F (x, at, bt), if (F (x, a1, b1)−b1)a−11 = · · · = (F (x, at, bt)−
bt)a

−1
t , y, sets the consistent value y as the output of f(x), otherwise, out-

put ⊥.

Lemma 3. Assume that the full homomorphic encryption scheme is semantically
secure, then the verifiable outsourced computation scheme VOC′ has one-time
soundness error 1

22(t−1)n+n + negl(k), which is negligible in k
Theorem 2. Let FHE be a semantically secure full homomorphic encryption
scheme. Then protocol VOC′ is a correct, secure, private and efficient non-
interactive verifiable outsourced computation scheme.

The proofs of Lemma 3 and Theorem 2 are similar to the proofs of Lemma
1 and Theorem 1.

5 Conclusion

To our best of knowledge, the existing non-interactive verifiable outsourced com-
putation schemes for arbitrary functions have offline complexity of poly(T),
where T is the time complexity of computing the functions. In this work, we
propose a non-interactive verifiable outsourced computation scheme for arbitrary
functions satisfying the four properties defined in [GGP10] (i.e., correctness, pri-
vacy, security, efficiency), which invests poly(logT) time in offline stage.

However, we are not sure if our scheme is secure in the presence of verification
queries defined in [GP14], so in the next step, we’ll carefully concern about the
security model in which the adversary is allowed to issue verification queries to
the client.

Reference offline complexity(C) |PK| |SK| online complexity(C) online complexity(S)

GGP10 poly(k, T) poly(k, T) poly(k, n) poly(k, n, logT) poly(k, T)

CKV10 poly(k, T) 0 poly(k, n) poly(k, n, logT) poly(k, T)

Ours poly(k, logT) |C| poly(k, n) poly(k, n, logT) poly(k, T)
Table 1. The comparison of the complexity.

References

1. A. Yao. Protocols for secure computations. In Proceedings of the IEEE Symposium
on Foundations of Computer Science, 1982.

2. László Babai. Trading group theory for randomness. In Robert Sedgewick, editor,
STOC, pages 421-429. ACM, 1985.

3. A. Yao. How to generate and exchange secrets. In Proceedings of the IEEE Sym-
posium on Foundations of Computer Science, 1986.

4. Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complexity
of interactive proof systems. SIAM J. Comput., 18(1):186-208, 1989.

5. László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. In FOCS, pages 16-25. IEEE Computer
Society, 1990.

6. László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Checking com-
putations in poly-logarithmic time. In Cris Koutsougeras and Jeffrey Scott Vitter,
editors, STOC, pages 21-31. ACM, 1991.

7. Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs; a new charac-
terization of np. In FOCS, pages 2-13. IEEE Computer Society, 1992.

8. Joe Kilian. A note on efficient zero-knowledge proofs and arguments (extended
abstract). In S. Rao Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis,
editors, STOC, pages 723-732. ACM, 1992.

9. Silvio Micali. Cs proofs (extended abstracts). In FOCS, pages 436-453. IEEE Com-
puter Society, 1994.

10. Joe Kilian. Improved efficient arguments (preliminary version). In Don Copper-
smith, editor, CRYPTO, volume 963 of Lecture Notes in Computer Science, pages
311-324. Springer, 1995.

11. Ran Canetti, Oded Goldreich, and Shai Halevi. The random oracle methodology,
revisited. Journal of the ACM, 51(4):557-594, 2004.

12. Shafi Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating com-
putation: interactive proofs for muggles. In Cynthia Dwork, editor, STOC, pages
113-122. ACM, 2008.

13. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Michael
Mitzenmacher, editor,STOC, pages 169-178. ACM, 2009.

14. Craig Gentry. Toward basing fully homomorphic encryption on worst-case hard-
ness. In Rabin [Rab10],pages 116-137.

15. Kai-Min Chung, Yael Tauman Kalai, and Salil P. Vadhan. Improved delegation of
computation using fully homomorphic encryption. In CRYPTO, volume 6223 of
Lecture Notes in Computer Science, pages 483-501. Springer, 2010.

16. Rosario Gennaro, Craig Gentry, and Bryan Parno. Non-interactive verifiable com-
puting: Outsourcing computation to untrusted workers. In Rabin [Rab10], pages
465-482.

17. Craig Gentry and Shai Halevi. Implementing gentry’s fully-homomorphic encryp-
tion scheme. In Kenneth G. Paterson, editor, EUROCRYPT, volume 6632 of Lec-
ture Notes in Computer Science, pages 129-148. Springer, 2011.

18. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homo-
morphic encryption without bootstrapping. In Goldwasser [Gol12], pages 309-325.

19. Zvika Brakerski. Fully homomorphic encryption without modulus switching from
classical gapsvp. In Reihaneh Safavi-Naini and Ran Canetti, editors, CRYPTO,
volume 7417 of Lecture Notes in Computer Science, pages 868-886. Springer, 2012.

20. Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully homomorphic encryption
with polylog overhead. In David Pointcheval and Thomas Johansson, editors, EU-
ROCRYPT, volume 7237 of Lecture Notes in Computer Science, pages 465-482.
Springer, 2012.

21. Rosario Gennaro, Valerio Pastroeprint. Verifiable Computation over Encrypted
Data in the Presence of Verification Queries. IACR Cryptology ePrint Archive,
2014. http://iacr.org/2014/202.pdf

