

Chapter 1 Electrostatic Field

- 1.1 Charge and Matter
- **1.2 Electric Field and Intensity**
- 1.3 The Gauss's Law For **E**
- 1.4 The Circuital Law for E

Electromagnetism-a Preview

- # 600 B.C.— Ancient Greece, <u>Thales</u>
 - ▲ <u>Amber</u> (resin) attracts light objects
 - Iron rich rocks from Magnesia attract iron
- 1730 -C. F. du Fay: Two kinds of charges
 Positive and Negative
 - ▲ Positive: obtained rubbing glass // with silk
 - A Negative: obtained rubbing amber / with fur

Electromagnetism-a Preview

- # 1766-1786 Priestley/Cavendish/Coulomb
 - EM interactions follow an inverse square law
 Actual precision better than 2/10⁹!
- 🗰 1800 Volta
 - Invention of the electric battery

N.B.: Till now Electricity and Magnetism are disconnected!

Nota bene

- Electromagnetism-a Preview
 - 1820- Oersted and Ampere
 - Established first connection between electricity and magnetism
 - # 1831— Faraday
 - A Discovery of magnetic induction
 - # 1873—Maxwell: Maxwell's equations
 - A The birth of modern Electro-Magnetism

- Electromagnetism-a Preview
 - * 1887—Hertz
 - Established connection between EM and radiation
 - # 1905—Einstein
 - Special relativity makes connection between Electricity and Magnetism as natural as it can be!

- The Electric Charge
 - Two kinds of charge

Positive and Negative (Benjamin Franklin)

- Positive: obtained by rubbing glass with silk
- A Negative: obtained by rubbing resin with fur
- Two kinds of actions
 Repulsions and Attractions
 - Repulsions : Like charges repel.
 - Attractions : Unlike charges attract.

- The Electric Charge
 - * Normal (Neutral) State
 - ▲ Matter : equal amounts of positive and negative electricity.
 - # Electrified Body: rubbing, induction,...
 - Upsetting the electric neutrality of matter

The Electric Charge

Demonstration of electric forces

Charged by rubbing

- Coulomb's Law
 - Consequences
 - ▲ Newton's third law:

 $\vec{F}_{12} = -\vec{F}_{21}$

- Like signs repel, opposite signs attract.
- * Point Charge:
 - ▲ The distance apart is much bigger than their size.

Vector sum: rectangular or triangle principle

- Coulomb's Law
 - Superposition principle (SP)
 - Continuous Distribution of Charges

$$\vec{F} = \int d\vec{F} = \int \frac{1}{4\pi\varepsilon_0} \frac{q_0 dq}{r^2} \hat{r}$$

- dq : Infinitesimal Charge
- •dq= ρ dV, volume charge
- •dq= σ dS, surface charge
- $\cdot dq = \lambda dl$, line charge

 \mathbf{q}_0

dF

dq

Coulomb's Law

Superposition principle (SP) q_3 Example 1.1 r₁₃ $F_{1x} = F_{21x} + F_{31x} = F_{21} + F_{31x} \sin\theta$ F_{21} q_1 $\int \alpha r_{12}$ =1.2N+(1.8N)sin30° =2.1N $F_{1v} = F_{21v} + F_{31v} = 0 - F_{31} \cos\theta$ =-(1.8)(cos30°)= -1.6N $F_1 = \sqrt{F_{1x}^2 + F_{1y}^2} = 2.64(N)$ $\alpha = \arctan \frac{F_{1y}}{F_{1x}} = -52^{\circ}41'$

 q_2

 F_{31}

- Electric charge is quantized (Millikan)
 - # Electric charge (Franklin) continuous fluid
 - A $dq = \rho dV$, volume charge
 - A $dq = \sigma dS$, surface charge
 - A $dq = \lambda dl$, line charge
 - * Atomic theory: not continuous but quantized
 - ▲ Minimum charge *e*=1.6027733×10⁻¹⁹C.
 - Millikan's oil-drop experiment

Charge and Matter ***** Atom A proton, +e, $m_p = 1.6726485 \times 10^{-27} kg$ A neutron, 0, $m_n = 1.6749543 \times 10^{-27} kg$ A electron, -e, $m_{e} = 9.109534 \times 10^{-31} kg$ # Electric force and Gravity Gravity is much much ... smaller than Electric force!

Charge and Matter

Electric force and Gravity

Example 1.2 The distance r between the electron and the proton: 5.3×10^{-11} m. (a) the electrical force ? (b) the gravity

Solution:

According to the Coulomb's law, the electric force is $F_{Coulomb} = \frac{1}{4\pi\pi_0} \frac{q_1 q_2}{r_{12}^2}$ $= \frac{(9.0 \times 10^9 N \cdot m^2 / C^2)(1.6 \times 10^{-19} C)}{(5.3 \times 10^{-11} m)^2}$ $= 8.1 \times 10^{-8} N$

Electric force and Gravity

According to the Gravity's law, the gravity is

 $F_{Gravity} = G \frac{m_1 m_2}{r^2}$ = 6.67 × 10⁻¹¹ × $\frac{9.11 \times 10^{-31} \times 1.67 \times 10^{-27}}{(0.529 \times 10^{-10})^2} N$ = 3.63 × 10⁻⁴⁷ N

The ratio of F_{Coulomb} and F_{Gravity}: 10³⁹ orders!

- Charge is Conserved
 - * The algebraic sum of the charges in the universe is constant.

Thank you!

* a fundamental law of physics

If you have any question or problem come and talk to me You are welcome any time! My mobile phone: 13646225169 emaile: lichengjin @ suda. edu. cn QQ NO: 564184500 Course web site:

http://jpkc.suda.edu.cn/ec2006/C75/

C.F.du Fay (<u>14 September1698</u> – <u>16 July</u> <u>1739</u>) was a <u>French chemist</u> and superintendent of the <u>Jardin du</u> <u>Roi</u>.

He discovered the existence of two types of <u>electricity</u> and named them "vitreous" and "resinous" (later known as positive and negative charge respectively.) He noted the difference between conductors and insulators, calling them 'electrics' and 'non-electrics' for their ability to produce contact electrification. He also discovered that alike-charged objects would repel each other and that unlike-charged objects attract. He also disproved certain misconceptions regarding electric charge, such as that of Dr. Stephen Gray who believed that electric properties of a body depended on its colour.

