Chapter 2 Conductor & Dielectric

- 2.1 The Conductor in Electrostatic Field
- 2.2 Capacitance and Capacitor
- 2.3 Dielectrics in Electric Field
- 2.4 The Energy Storage in Electric Field

- Conductor: a material with free electrons
 - Excellent conductors: metals such as Au, Ag, Cu, Al,...
 - △ OK conductors: ionic solutions such as NaCl in H₂O

- Insulator: a material without free electrons
- Organic materials: rubber, plastic,...
- Inorganic materials: quartz, glass,...

The Conditions of Electrostatic Equilibrium

- Inexhaustible free charges
- ▲ Inside a conductor,**E**=0.
- ▲ Why?

If $E\neq 0$, migration doesn't stop.

▲ Finished in 10⁻¹⁷-10⁻¹⁶s

 $\vec{E} = \vec{E}_0 + \vec{E}'$

The Conditions of Electrostatic Equilibrium

- ▲ If there is no motion of charges (except thermal motion) in conductor, the state of the conductor is called electrostatic equilibrium.
- \triangle Electrostatic conditions is E=0 (everywhere inside).
- Electric potential inside a conductor is constant
- External field lines are perpendicular to surface
- Conductor's surface is equipotential

- The Distribution of Charge on a Conductor
 - Distribution of Charge
 - Inside conductor ρ=0 everywhere Gauss's Law
 - Net charge resides on the surface
 - \wedge σ will vary from point to point
 - * The Electric Field near Surface

$$E = \frac{\sigma}{\varepsilon_0}$$

- The Distribution of Charge on a Conductor
 - * The Electric Field near Surface

$$E = \frac{\sigma}{\mathcal{E}_0}$$
 Show Vander Graff and q

- A The electric field \boldsymbol{E} at points immediately above a charged surface is proportional to the charge density σ .
- \wedge The more density σ , the stronger field

- The Distribution of Charge on a Conductor
 - * The Distribution of Charge for Isolated
 - ▲ Isolated conductor: the smaller curvature, the bigger density σ , the stronger field, conversely.
 - <u>Lightning Stroke</u>
 - Glow Discharge

The Distribution of Charge on a Conductor

Example 2.1 A conducting sphere, R_1 , Q, connected with R_2 by a very long fine wire. (a) charges $q_1 \& q_2$; (b) density σ_1 , σ_2 .

Solution:

When connected, transient currents, Until same potential

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q_1}{R_1} = \frac{1}{4\pi\varepsilon_0} \frac{q_2}{R_2}$$

$$\begin{cases} \frac{q_{1}}{q_{2}} = \frac{R_{1}}{R_{2}} \\ q_{1} = \frac{R_{1}}{R_{1} + R_{2}} Q \end{cases}$$

$$\begin{cases} q_{1} = \frac{R_{1}}{R_{1} + R_{2}} Q \\ q_{2} = \frac{R_{2}}{R_{1} + R_{2}} Q \end{cases}$$

$$\sigma_{1} = \frac{q_{1}}{4\pi R_{1}^{2}}$$

$$\sigma_{2} = \frac{q_{2}}{4\pi R_{2}^{2}}$$

$$\sigma_{3} = \frac{q_{2}}{4\pi R_{2}^{2}}$$

The larger sphere has the larger total charge but the smaller charge density

Hollow Conductor

* No charge in the cavity, v=const; E=0; $\rho=0$; $\sigma=0$.

Why?

- ▲ Equilibrium state, E=0 inside conductor.
 - Gauss's law on S, $\Sigma q=0$, no net charge on the inner surface

Two equal but opposite charges on the inner surface?
 No, not equipotential.

Hollow Conductor

* Charge q in a cavity, -q appears on the inner surface. Other charges reside on the outer surface.

Why?

- Equilibrium state, E=0 inside conductor.
 - Gauss's law on S, got $\Sigma q=0$.

- * Applications for Electric Lines & Equilibrium
 - ▶ When a positively charged conductor A approaches a neutral isolated conductor B, Show that (a) B's potential is increased; (b) the induced charges on nearer side never be bigger than the charges on A.

Show that an isolated uncharged conductor has the same potential with earth.

- * Applications for Electric Lines & Equilibrium
 - A large, insulated, hollow conductor carries a charge +q. A small metal ball carrying a charge -q is lowered by a thread through a small opening in the top of the conductor, allowed to touch the inner surface, and then withdrawn. What is then the charge on (a) the conductor and (b) the ball?

