Chapter 2 Conductor \& Dielectric

2.1 The Conductor in Electrostatic Field
2.2 Capacitance and Capacitor
2.3 Dielectrics in Electric Field
2.4 The Energy Storage in Electric Field

- - 2.4 Energy Storage in Electric Field

$\stackrel{\Delta}{ })$ Energy stored in electric field

^ Consider a capacitor with charge +/-q
^ How much work is needed to bring a positive charge dq from the negative plate to the positive plate?
^ Note: we are charging the capacitor!

$$
d W=V(q) d q=\frac{q}{C} d q
$$

^ How much work is needed to charge the capacitor from scratch?

\# $\boldsymbol{7}$ \# \quad \#

2.4 Energy Storage in Electric Field

人 Energy stored in electric field

- The work is needed to charge the capacitor from scratch

$$
W=\int_{0}^{Q} \frac{q}{C} d q=\frac{1}{2} \frac{Q^{2}}{C}
$$

A Energy stored in the capacitor:

$$
W=\frac{1}{2} \frac{Q^{2}}{C}=\frac{1}{2} C V^{2}=\frac{1}{2} Q V
$$

Show Energy storage in Cap.

2.4 Energy Storage in Electric Field

\wedge Energy stored in electric field
A Where does the energy store?
Consider a small capacitor

Field

$$
\begin{aligned}
& \Delta C=\frac{\varepsilon_{0}(\Delta l)^{2}}{\Delta l} \\
& \Delta W=\frac{1}{2} \Delta C V^{2} \\
& V=E \Delta l \\
& \Delta W=\frac{1}{2} \Delta C V^{2}=\frac{1}{2} \frac{\varepsilon_{0}(\Delta l)^{2}}{\Delta l}(E \Delta l)^{2} \\
& \Delta W=\frac{1}{2} \varepsilon_{0} E^{2}(\Delta l)^{3}==\frac{1}{2} \varepsilon_{0} E^{2} \Delta v
\end{aligned}
$$

2.4 Energy Storage in Electric Field

\diamond Energy stored in electric field
A Energy density w_{e} : energy per unit volume

$$
w=\lim _{\Delta v \rightarrow 0} \frac{\Delta W}{\Delta v}=\frac{1}{2} \varepsilon_{0} E^{2}
$$

A If there are dielectrics in electric field

$$
w=\frac{1}{2} \varepsilon_{\mathrm{r}} \varepsilon_{0} E^{2}=\frac{1}{2} \overrightarrow{\boldsymbol{D}} \cdot \overrightarrow{\boldsymbol{E}}
$$

ג What is the essential part of energy?

2.4 Energy Storage in Electric Field

\wedge Energy stored in electric field
A What is the essential part of energy?

$$
\begin{aligned}
w & =\frac{1}{2} \overrightarrow{\boldsymbol{D}} \cdot \overrightarrow{\boldsymbol{E}}=\frac{1}{2}\left(\varepsilon_{0} \overrightarrow{\boldsymbol{E}}+\overrightarrow{\boldsymbol{P}}\right) \cdot \overrightarrow{\boldsymbol{E}} \\
& =\frac{1}{2} \varepsilon_{0} \boldsymbol{E}^{2}+\frac{1}{2} \overrightarrow{\boldsymbol{P}} \cdot \overrightarrow{\boldsymbol{E}}
\end{aligned}
$$

In free space, $\mathrm{P}=0$

$$
w=\frac{1}{2} \varepsilon_{0} \boldsymbol{E}^{2}
$$

E is the essential part

- • 2.4 Energy Storage in Electric Field

\diamond Energy stored in electric field
A The total energy stored in field

$$
W=\iiint_{V} w d v=\frac{1}{2} \iiint_{V} \varepsilon E^{2} d v
$$

Example 2.7 An isolated conducting sphere of radius R, in a vacuum, carries a charge q,
(a) Compute the total energy stored in the surrounding space.
(b) What is the radius R_{0} of a spherical surface such that half the stored energy lies with it?

2.4 Energy Storage in Electric Field

- Energy stored in electric field

Solution:

$$
E=\left\{\begin{array}{cc}
0 & (r<R) \\
\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r^{2}}
\end{array}\right.
$$

The energy $\mathrm{d} W$ that lies in a spherical shell betweens the radii r and $r+\mathrm{d} r$ is

$$
\begin{aligned}
& \mathrm{d} W=\varepsilon E^{2} 4 \pi r^{2} d r=\frac{q^{2}}{8 \pi \varepsilon_{0}} \frac{d r}{r^{2}} \\
& W=\int \mathrm{d} W=\frac{q^{2}}{8 \pi \varepsilon_{0}} \int_{R}^{\infty} \frac{\mathrm{d} r}{r^{2}}=\frac{q^{2}}{8 \pi \varepsilon_{0} R}=\frac{1}{2} \frac{q^{2}}{C} ?
\end{aligned}
$$

2.4 Energy Storage in Electric Field

人 Energy stored in electric field
(b) Find R_{0} which makes the energy stored from radius R to R_{0} equal to the total.

$$
\begin{aligned}
& \frac{1}{2} W=\frac{q^{2}}{8 \pi \varepsilon_{0}} \int_{R}^{R_{0}} \frac{\mathrm{~d} r}{r^{2}} \\
& \frac{q^{2}}{16 \pi \varepsilon_{0} R}=\frac{q^{2}}{8 \pi \varepsilon_{0}}\left(\frac{1}{R}-\frac{1}{R_{0}}\right) \\
& \mathrm{R}_{0}=2 \mathrm{R}
\end{aligned}
$$

