
MILP-Aided Bit-Based Division Property for
Primitives with Non-Bit-Permutation Linear

Layers

Ling Sun1, Wei Wang1, Meiqin Wang1,2

1 Key Laboratory of Cryptologic Technology and Information Security, Ministry of
Education, Shandong University, Jinan, 250100, China

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing, 100878, China
lingsun@mail.sdu.edu.cn; weiwangsdu@sdu.edu.cn; mqwang@sdu.edu.cn

Abstract. At ASIACRYPT 2016, Xiang et al. applied MILP method
to search integral distinguisher based on division property. This method
handled the huge time and memory complexities which had constituted
the main restriction of the bit-based division property proposed by Todo
and Morri, and showed its strength through finding some longer integral
distinguishers for various primitives. Although MILP-aided bit-based di-
vision property has given many interesting results for some ciphers, the
linear layers of these cipher are simple bit-permutations. Thus, the fea-
sibility of MILP method applying to ciphers with linear layers which are
not bit-permutations was left as a future work. In this paper, we handle
this problem. Following this way, MILP-aided bit-based division property
can operate on more primitives. As an illustration, we apply MILP-aided
bit-based division property to find integral distinguishers for AES, LED,
Joltik-BC, PHOTON, Serpent, Noekeon, SM4, and SPONGENT-88. We
can not find any integral distinguisher whose length is longer than four
rounds for AES. But for LED and Joltik-BC, which are AES-like block
ciphers, we obtain 6-round integral distinguishers. For PHOTON per-
mutations, which are also AES-like permutations, we obtain some better
integral distinguishers comparing with those provided in its design pa-
per. Based on these observations, the security of these AES-like block
ciphers may need to be reconsidered and directly copying AES-like se-
curity proofs for some attacks seems to be less reasonable. We also find
7-round integral distinguishers for Serpent and Noekeon, which attain
3.5 more rounds than the previous distinguishers found by Z’aba et al.
at FSE 2008. For SM4, we find a 12-round integral distinguisher, which
attains four more rounds than the previous distinguisher found by Liu
et al. at ACISP 2007. A 16-round higher-order integral distinguisher for
SPONGENT-88 is proposed and this newly found distinguisher attains
two more rounds than the previously known distinguishers.

Keywords: MILP-aided bit-based division property, AES, LED, PHO-
TON, Joltik-BC, Serpent, Noekeon, SM4, SPONGENT-88

1 Introduction

The integral cryptanalysis was first introduced as a dedicate attack for the block
cipher SQUARE [8]. In principle, integral attacks can be applied to bit-oriented
block ciphers. However, for a fairly long time, there do not exist specific tools
to define the attack on these ciphers. At FSE 2008 [30], Z’aba et al. firstly gave
an explicit tool to find integral distinguishers for bit-oriented block ciphers and
the bit-pattern based integral attack was successfully demonstrated on reduced-
round variants of the block ciphers Noekeon [9], PRESENT [5], and Serpent [1].

At EUROCRYPT 2015, Todo [25] generalized the integral property and first-
ly proposed division property. By using division property, we are allowed to ef-
fectively construct integral distinguishers even if block ciphers have non-bijective
functions, bit-oriented structures, and low-degree functions. But in [25], the S-
box was restricted to be a secret black box and only the algebraic degree of the
S-box was supposed to be known. At CRYPTO 2015, Todo [24] showed that
division property could be more useful if an S-box was supposed to be a public
function. He found a 6-round integral distinguisher for MISTY1 [18] by utilizing
the vulnerable property of S7 and gave the first attack against full MISTY1.

At FSE 2016, Todo and Morri [26] proposed bit-based division property and
applied it to find 14-round integral distinguisher for SIMON32 [3]. They point-
ed that the complexity requirements for the bit-based division property were
roughly 2n if an n-bit block cipher was under consideration. On the one hand,
the huge complexities restricted the applications of bit-based division property.
On the other hand, whether the bit-based division property could be used to
analyse other bit-oriented block ciphers other than SIMON was not known.

Based on these unsolvable questions, many further researches have occurred
in succession. At CRYPTO 2016, by introducing the notion of parity sets, Boura
and Canteaut [6] gave a new approach to deal with division property. For the
analysis of PRESENT, they provided some low-data integral distinguishers. By
replacing the Substitution rule, which managed the propagation of S-box, with
a more subtle propagation table, Sun and Wang [22] worked out table-aided bit-
based division property, and successfully applied it to some bit-oriented primi-
tives such as RECTANGLE [31] and SPONGENT-88 [4]. In this way, the prob-
lem about the usability of bit-based division property for ciphers other than SI-
MON was settled. At ASIACRYPT 2016, Xiang [28] et al. applied MILP method
to search integral distinguisher based on division property3, and found some
long integral distinguishers for SIMON family of block ciphers, PRESENT, and
RECTANGLE. For one thing, this work handled the problem about the com-
plexities and bit-based division property could be efficiently applied to some
ciphers whose block sizes are larger than 32. For another thing, they gave a
different idea to trace the propagation through S-box.

Indeed, MILP-aided bit-based division property has given some interesting
results for some ciphers, such as SIMON, SIMECK [29], PRESENT, RECTAN-
GLE, LBlock [27], and TWINE [23]. But the linear layers for these ciphers are

3 We name it MILP-aided bit-based division property in this paper.

2

simple bit-permutations. Thus, the feasibility of MILP method applying to ci-
phers with linear layers which are not bit-permutations was left as a future work
in [28].

1.1 Our Contributions

The contributions of this paper are concluded as follows.

1. By introducing some intermediate variables among the linear layer, we settle
the feasibility of MILP method applying to ciphers with more linear layers
which are not bit-permutations. Following this way, MILP-aided bit-based
division property can be applied to more primitives. We apply it to find
integral distinguishers for AES [20], LED [15], Joltik-BC [16], PHOTON
[14], Serpent [1], Noekeon [9], SM4 [11], and SPONGENT-88 [4].

2. The security evaluation of AES is always the key focus of many cryptogra-
phers because of its important and sensitive status. As we all know, AES
has some 4-round integral distinguishers with data complexity 232. The re-
searches to find new integral distinguishers of AES that cover more rounds
have never stopped. But after applying MILP-aided bit-based division prop-
erty, we find that there does not exist any integral distinguisher that covers
more than four rounds even though we traverse the first 127 bits of the input
multi-set. By no means do we judge that there is no integral distinguisher
more than four rounds for AES. We only say that we can not find better
integral distinguisher based on bit-based division property. Joltik-BC and
LED are AES-like ciphers. Profiting from the structural similarity, cryptog-
raphers are able to drive simple yet interesting AES-like security proofs for
Joltik-BC and LED regarding related- or single-key attacks. In this pa-
per, we also take effort to search integral distinguishers for Joltik-BC and
LED. Surprisingly, we find 6-round integral distinguishers for these two ci-
phers both with data complexity 260. For PHOTON permutations, which
are also AES-like permutations, we find some better integral distinguishers
comparing with those provided in [14]. Owing to the difference lying in the
lengths of integral distinguishers for AES and these AES-like ciphers, the
security of these AES-like block ciphers may need to be reconsidered and
directly copying AES-like security proofs for some attacks seems to be less
reasonable.

3. Serpent and Noekeon are two bit-oriented block ciphers. Due to their rela-
tively complicated linear layers and large block sizes, the works about the
integral cryptanalysis for these two ciphers are rarely seen. At FSE 2008 [30],
Z’aba et al. proposed 3.5-round integral distinguishers for Noekeon and Ser-
pent. In this paper, we observe that there is a 7-round integral distinguisher
for Noekeon if the last 127 bits of the input multi-set are traversed. For
Serpent, we also find some 7-round integral distinguishers. Comparing with
the former results, these newly found integral distinguishers are longer. We
expect that better integral cryptanalytic results for these two ciphers may
be deduced with these newly proposed distinguishers.

3

4. SM4 (formerly SMS4) is a block cipher used in the Chinese National Stan-
dard for Wireless LAN WAPI (Wired Authentication and Privacy Infras-
tructure). In this paper, we find a 12-round integral distinguisher, which
attains four more rounds than the one proposed by Liu [17] et al. at ACISP
2007.

5. SPONGENT is a family of lightweight hash functions. In this paper, we aim
to find higher-order integral distinguishers for SPONGENT-88. The existing
results are the 14-round higher-order integral distinguisher with complexity
284 found in [12] and the 14-round higher-order integral distinguisher with
complexity 280 found in [13]. Sun and Wang also provided a 14-round higher-
order integral distinguisher with complexity 280 in [22]. In this paper, one of
our resulting distinguishers attains one more round than the one in [13] while
keeping the complexity. The other one is a 16-round higher-order integral
distinguisher with complexity 284.

The resulting integral distinguishers in this paper and some former results
are listed in Table 1.

Outline of the Paper. The remainder of this paper is organized as follows.
In Section 2, we briefly review some notations, division property, bit-based
division property, and MILP-aided bit-based division property. Section 3 illus-
trates how to apply MILP-aided bit-based division property to ciphers with more
complicated linear layers. Section 4 gives some applications of MILP-aided bit-
based division property. We conclude the paper in Section 5. Some auxiliary
materials are given in Appendix.

2 Priliminary

2.1 Notations

In this subsection, we present the notations used throughout this paper. In order
to simplify the representation, we will express a bit-string in hexadecimal format
and make it verbatim font. For an n-bit bit-string, the bit positions are labeled
as 0 to n− 1 from left to right. The following notations was also used in [25].

For any a ∈ Fn2 , the i-th element is expressed as a[i] (i = 0, 1, . . . , n− 1) and

the hamming weight wt(a) is calculated by wt(a) =
∑n−1

i=0 a[i].

For any set K, |K| denotes the number of elements in K. Let φ be an empty
set.

For any a = (a0, a1, . . . , am−1) ∈ F`02 × F
`1
2 × · · · × F

`m−1

2 , the vectorial
Hamming weight of a is defined as Wt(a) = (wt(a0), wt(a1), . . . , wt(am−1)) ∈
Zm. For any k ∈ Zm and k′ ∈ Zm, we define k � k′ if ki ≥ k′i for all i. Otherwise,
k � k′. K← k means that K turns into K

⋃
{k}.

4

Table 1: Summarization of Results.

Cipher
Block

Length
Data

#{Zero-Sum Bits} Ref.
Size Requirement

AES 128
4 232 128 [10]†

4 232 128
Section 4.1

4 2127 128

LED 64
4 216 64

Section 4.3
6 260 64

Joltik-BC 64
4 216 64

Section 4.2
6 260 64

PHOTON

100

5 292 100 [14]
5 220 100 Section 4.4
6 298 100 [14]
6 292 100 Section 4.4

144
5 2124 144 [14]
5 224 144 Section 4.4

196
5 2158 196 [14]
5 228 196 Section 4.4

Serpent‡ 128
3.5 210 128 [30]
7 2124 128 Section 4.5

Noekeon 128
3.5 216 128 [30]
6 2124 128

Section 4.6
7 2127 128

SM4 128

8 28 32 [17]
10 294 32

Section 4.711 2104 32
12 2125 32

SPONGENT-88 88

14 284 - [12]
14 280 - [13]
14 280 - [22]
15 280 -

Section 4.8
16 284 -

†
Note that there is a 3-round integral distinguisher with complexity 28 in [10], and
this distinguisher can be easily extended into a 4-round integral distinguisher with
data complexity 232.
‡

For Serpent, since different rounds utilize different S-boxes, the lengths of the
integral distinguishers starting from different rounds may be different. But after
trying all possible cases of starting rounds, the lengths of the drawn integral
distinguishers are all equal.

Definition 1 (Bit Product Function [25]). Assume u ∈ Fn2 and x ∈ Fn2 .
The Bit Product Function πu is defined as

πu(x) =

n−1∏
i=0

x[i]u[i].

5

For u = (u0, u1, . . . , um−1) ∈ F`02 ×F
`1
2 ×· · ·×F

`m−1

2 , let x = (x0, x1, . . . , xm−1) ∈
F`02 × F

`1
2 × · · · × F

`m−1

2 be the input, the Bit Product Function πu is defined as

πu(x) =

m−1∏
i=0

πui
(xi).

2.2 Division Property and Bit-Based Division Property

The division property is a new method to find integral distinguishers, which was
firstly proposed in [25]. It is defined for a multi-set, and is calculated by using
the bit product function.

Definition 2 (Division Property [25]). Let X be a multi-set whose elements

takes a value of F`02 × F
`1
2 × · · · × F

`m−1

2 , and k(j)(j = 0, 1, . . . , q − 1) are m-
dimensional vectors whose i-th element takes a value between 0 and `i. When the
multi-set X has the division property D`0,`1,...,`m−1

{k(0),k(1),...,k(q−1)}, it fulfills the following

conditions: The parity of πu(x) over all x ∈ X is always even when

u ∈
{
u = (u0, u1, . . . , um−1)

∣∣∣Wt(u) � k(0),Wt(u) � k(1), . . . ,Wt(u) � k(q−1)
}
.

Moreover, the parity becomes unknown when u is used such that there exists an
i (0 6 i 6 q − 1) satisfying Wt(u) � k(i).

Remark 1 Note that `0, `1, . . ., `m−1 are restricted to 1 when we consider
bit-based division property.

Propagation Rules of Bit-Based Division Property [25] proves some prop-
agation rules for conventional division property and these rules are summarized
into five rules in [24], which are Substitution, Copy, Compression by XOR,
Split, and Concatenation, respectively. Among the five rules, only Copy and
Compression by XOR are necessary for bit-based division property. For the
propagation of S-box, the Substitution rule should be replaced with a subtle
propagation table which is introduced in [22]. We do not review the method
introduced in [22], please refer to [22] for more details. The two necessary rules
are restated in a bit-based look in the following.

Rule 1 (Copy) Let F be a copy function, where the input x takes a value of
F2 and the output is calculated as (y0, y1) = (x, x). Let X and Y be the input
multi-set and output multi-set, respectively. Assuming that the multi-set X has
the division property D1

k, the division property of the multi-set Y is D1×1
K′ . Then

the propagation only have two possible cases:{
k = 0→ K′ = {(0, 0)}
k = 1→ K′ = {(0, 1), (1, 0)}

6

Rule 2 (XOR) Let F be a function compressed by an XOR, where the input (x1, x2)
takes a value of F2 × F2 and the output is calculated as y = x1 ⊕ x2. Let X and
Y be the input multi-set and output multi-set, respectively. Assuming that the
multi-set X has division property D1×1

k , the division property of the multi-set Y
is D1

K′ . Then the propagation only have four possible cases:
k = (0, 0)→ K′ = {(0)}
k = (0, 1)→ K′ = {(1)}
k = (1, 0)→ K′ = {(1)}
k = (1, 1)→ K′ = ∅

For some bit-oriented block ciphers such as SIMON, AND is another non-
linear operation. The propagation for AND is given in [26] and we summarize it
as follows.

Rule 3 (AND) Let F be a function compressed by an AND, where the input (x1, x2)
takes a value of F2 × F2 and the output is calculated as y = x1 ∧ x2. Let X and
Y be the input multi-set and output multi-set, respectively. Assuming that the
multi-set X has division property D1×1

k , the division property of the multi-set Y
is D1

K′ . Then the propagation only have four possible cases:
k = (0, 0)→ K′ = {(0)}
k = (0, 1)→ K′ = {(1)}
k = (1, 0)→ K′ = {(1)}
k = (1, 1)→ K′ = {(1)}

2.3 MILP-Aided Bit-Based Division Property

At ASIACRYPT 2016, Xiang et al. proposed the method of characterising the
bit-based division property with the MILP model. In this subsection, we will
give a brief review.

When we want to utilize MILP method to solve a problem, a stopping rule
is necessary. To describe the stopping rule, Xiang et al. introduced the following
definition in [28].

Definition 3 (Division Trail). Let fr denote the round function of an iterat-
ed block cipher. Assume that the input multi-set to the block cipher has initial
division property D1n

k , and denote the division property after i-round propaga-
tion through fr by D1n

Ki
. Thus we have the following chain of division property

propagations:

{k} , K0
fr−→ K1

fr−→ K2
fr−→ · · · .

Moreover, for any vector k∗i in Ki (i > 1), there must exist an vector k∗i−1 in
Ki−1 such that k∗i−1 can propagate to k∗i by division property propagation rules.
Furthermore, for (k0,k1, . . . ,kr) ∈ K0×K1× · · · ×Kr, if ki−1 can propagate to
ki for all i ∈ {1, 2, . . . , r}, we call (k0,k1, . . . ,kr) an r-round division trail.

7

Remark 2 The considered division property for the above definition is restrict-
ed to D1n

∗ , i.e., only the bit-based division property for an n-bit block cipher
is considered. However, the Definition 2 of division trail given in [28] is de-
fined for conventional division property. Since we only consider bit-based division
property, the above definition is sufficient.

Then the following proposition can help us to describe the stopping rule.

Proposition 1. Denote the division property of the input multi-set to an iter-
ated block cipher by D1n

k , lef fr be the round function. Denote

{k} , K0
fr−→ K1

fr−→ K2
fr−→ · · · fr−→ Kr

the r-round division property propagation. Thus the set of the last vectors of all
r-round division trails which start with k is equal to Kr.

Remark 3 Again, the proposition given above holds for bit-based division prop-
erty. But the Proposition 5 of [28] is given for conventional division property.
Since we only consider bit-based division property, the above proposition is suf-
ficient.

According to Proposition 1, checking whether there exists useful zero-sum
property is equivalent to find all r-round division trails which start with k, and
check the last vectors in the division trails to judge if any available distinguisher
can be extracted.

Modeling Copy, AND and XOR In the following, we briefly review the method
of modeling bit-wise Copy, AND, and XOR operations by linear inequalities intro-
duced in [28].

Model 1 (Copy [28]) Denote (a)
Copy−−−→ (b0, b1) a division trail of Copy func-

tion, the following inequalities are sufficient to describe the division propagation
of copy. {

a− b0 − b1 = 0
a, b0, b1 are binaries

Model 2 (AND [28]) Denote (a0, a1)
AND−−→ (b) a division trail of AND function, the

following linear inequalities are sufficient to describe the division propagation of
AND. 

b− a0 > 0
b− a1 > 0
b− a0 − a1 6 0
a0, a1, b are binaries

Model 3 (XOR [28]) Denote (a0, a1)
XOR−−→ (b) a division trail through XOR func-

tion, the following inequalities can describe the division trail through XOR func-
tion. {

a0 + a1 − b = 0
a0, a1, b are binaries

8

Modelling S-box For the propagation of S-box, we firstly apply table-aided
bit-based division property introduced in [22] to generate the propagation table
of the S-box.4 After that, just as what has been introduced in [28], by using
the inequality generator() function in the Sage5 software, a set of linear
inequalities will be returned. Furthermore, this set can be reduced by Algorithm
1 (Greedy Algorithm) in [28].

Initial Division Property Integral distinguisher searching algorithm often
has a given initial division property D1n

k . To model the division trails starting
from the given initial division property, we have to model the initial division
property into the linear inequality system. Denote (a00, a

0
1, . . . , a

0
n−1) → · · · →

(ar0, a
r
1, . . . , a

r
n−1) an r-round division trail, L is a linear inequality system defined

on variables aji (i = 0, 1, · · · , n− 1, j = 0, 1, · · · , r) and some auxiliary variables.
Let D1n

k denote the initial input division property with k = (k0, k1, . . . , kn−1),
we need to add a0i = ki (i = 0, 1, . . . , n− 1) into L, and all feasible solutions of
L are division trails which start from vector k.

Stopping Rule

Proposition 2 (Proposition 6, [28]). Assume X is a multi-set with division
property D1n

K , then X does not have integral property if and only of K contains
all the n unit vectors.

Let D1n

Ki
denote the output division property after i rounds of encryption and

the input division property is denoted by D1n

K0
. If Kr+1 contains all the n unit

vectors for the first time, the division property propagation should stop and an
r-round distinguisher can be derived from D1n

Kr
.

Based on this observation, we only need to detect whetherKr contains all unit
vectors. According to Proposition 1, checking the vectors in Kr is equivalent to
check the last vectors of all r-round division trails. Let (a00, a

0
1, . . . , a

0
n−1)→ · · · →

(ar0, a
r
1, . . . , a

r
n−1) be an r-round division trail, and let L be a linear inequality

system whose feasible solutions are all division trails which start from the given
input division property. Then the objective function is set as

Obj : Min{ar0 + ar1 + · · ·+ arn−1}.

Note that we only review some key points here. For more details about divi-
sion property, bit-based division property, table-aided bit-based division prop-
erty, and MILP-aided bit-based division property, please refer to [22,24,25,28].

4 Another method to generate the propagation of the S-box was introduced in [28].
Both of these two methods consider the Boolean function expressions of the S-box.
Although the starting points of them are different, the resulting propagations are
exactly the same.

5 http://www.sagemath.org/

9

http://www.sagemath.org/

3 Modelling Complicated Linear Layers

In [28], the feasibility of MILP method applying to ciphers with more complicat-
ed linear layers was left as a future work. In this paper, we settle this problem by
introducing some intermediate variables among the linear layer. Following this
way, MILP-aided bit-based division property can be applied to more primitives.

3.1 Generalizing the Original Models for Copy and XOR

Note that we have many different ways to define a linear transformation. How-
ever, we always can represent the linear transformation as a matrix over F2.
We call this kind of representation the primitive representation of the linear
transformation.

No matter how complicated the linear layer is, the linear layer can always be
splitted into Copy and XOR operations. To establish the method of modelling
complicated linear layers, we need to generalize Model 1 and Model 3.

Model 4 (Generalizaion of Copy) Denote (a)
Copy−−−→ (b0, b1, . . . , bm) a divi-

sion trail of Copy function, the following inequalities are sufficient to describe
the division propagation of copy.{

a− b0 − b1 − · · · − bm = 0
a, b0, b1, . . . , bm are binaries

Model 5 (Generalization of XOR) Denote (a0, a1, . . . , am)
XOR−−→ (b) a division

trail through XOR function, the following inequalities can describe the division
trail through XOR function.{

a0 + a1 + · · ·+ am − b = 0
a0, a1, . . . , am, b are binaries

With Model 4 and Model 5, we can characteristic the propagation of the
linear layer by introducing some intermediate variables.

3.2 Modelling the MixNibbles of Joltik-BC

In the following, we use Joltik-BC’s linear layer [16] as an illustration. Joltik-BC
is an AES-like block ciphers. MixNibbles is a linear operation of Joltik-BC’s
round function, and it is like the MixColumn operation for AES [20]. It operates
by multiplying every column of the internal state by a 4×4 constant MDS matrix
MJoltik-BC.

10

For Joltik-BC, the primitive representation of MJoltik-BC is

MJoltik-BC =



1 0 0 0 0 0 1 0 0 0 0 1 0 0 1 1
0 1 0 0 1 0 0 1 1 0 0 0 0 0 0 1
0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0
0 0 0 1 0 1 0 0 0 0 1 1 0 1 1 1
0 0 1 0 1 0 0 0 0 0 1 1 0 0 0 1
1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 0
1 1 0 0 0 0 1 0 1 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 1 1 1 0 0 1 1
0 0 0 1 0 0 1 1 1 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 1 0 0 1 0 0 1
0 1 0 0 1 0 0 0 0 0 1 0 1 1 0 0
0 0 1 1 0 1 1 1 0 0 0 1 0 1 0 0
0 0 1 1 0 0 0 1 0 0 1 0 1 0 0 0
0 0 0 1 1 0 0 0 1 0 0 1 0 1 0 0
1 0 0 0 0 1 0 0 1 1 0 0 0 0 1 0
0 1 1 1 0 0 1 1 0 1 0 0 0 0 0 1



. (1)

Suppose that the input multi-set ofMJoltik-BC satisfies division propertyD116

x ,
where x = (x0, x1, . . . , x15). From the first column of (1), we known that x0 is
copied five times, and these copies should XOR with different branches of the
output to generate the division property of output multi-set. The remaining xi,
1 6 i 6 15, are also handled with similar operations.

There are 88 non-zero elements in MJoltik-BC. By introducing intermediate
variables t0 ∼ t87, MJoltik-BC is transformed into the following form



t0 0 0 0 0 0 t32 0 0 0 0 t59 0 0 t76 t81
0 t5 0 0 t22 0 0 t37 t44 0 0 0 0 0 0 t82
0 0 t10 0 t23 t27 0 0 0 t49 0 0 t66 0 0 0
0 0 0 t15 0 t28 0 0 0 0 t54 t60 0 t71 t77 t83
0 0 t11 0 t24 0 0 0 0 0 t55 t61 0 0 0 t84
t1 0 0 t16 0 t29 0 0 0 0 0 t62 t67 0 0 0
t2 t6 0 0 0 0 t33 0 t45 0 0 0 0 t72 0 0
0 t7 0 0 0 0 0 t38 0 t50 t56 t63 0 0 t78 t85
0 0 0 t17 0 0 t34 t39 t46 0 0 0 0 0 t79 0
t3 0 0 0 0 0 0 t40 0 t51 0 0 t68 0 0 t86
0 t8 0 0 t25 0 0 0 0 0 t57 0 t69 t73 0 0
0 0 t12 t18 0 t30 t35 t41 0 0 0 t64 0 t74 0 0
0 0 t13 t19 0 0 0 t42 0 0 t58 0 t70 0 0 0
0 0 0 t20 t26 0 0 0 t47 0 0 t65 0 t75 0 0
t4 0 0 0 0 t31 0 0 t48 t52 0 0 0 0 t80 0
0 t9 t14 t21 0 0 t36 t43 0 t53 0 0 0 0 0 t87



. (2)

11

Thus, to describe the Copy operations stated above, the following 16 linear
inequalities are sufficient by applying Model 4.

x0 − t0 − t1 − t2 − t3 − t4 = 0
x1 − t5 − t6 − t7 − t8 − t9 = 0
x2 − t10 − t11 − t12 − t13 − t14 = 0
x3 − t15 − t16 − t17 − t18 − t19 − t20 − t21 = 0
x4 − t22 − t23 − t24 − t25 − t26 = 0
x5 − t27 − t28 − t29 − t30 − t31 = 0
x6 − t32 − t33 − t34 − t35 − t36 = 0
x7 − t37 − t38 − t39 − t40 − t41 − t42 − t43 = 0
x8 − t44 − t45 − t46 − t47 − t48 = 0
x9 − t49 − t50 − t51 − t52 − t53 = 0
x10 − t54 − t55 − t56 − t57 − t58 = 0
x11 − t59 − t60 − t61 − t62 − t63 − t64 − t65 = 0
x12 − t66 − t67 − t68 − t69 − t70 = 0
x13 − t71 − t72 − t73 − t74 − t75 = 0
x14 − t76 − t77 − t78 − t79 − t80 = 0
x15 − t81 − t82 − t83 − t84 − t85 − t86 − t87 = 0
xi, ti are binaries

(3)

On the other hand, the copies of xi should XOR with the corresponding output

bit potisitons. Denote (x0, x1, . . . , x15)
MJoltik-BC−−−−−−→ (y0, y1, . . . , y15) a division trail

of MJoltik-BC operation. From (2), we know that the variables located at the
same line are those variables XORing to the same branch of the output. Thus, to
describe the XOR operations, the following 16 linear inequalities are sufficient by
using Model 5.

t0 + t32 + t59 + t76 + t81 − y0 = 0
t5 + t22 + t37 + t44 + t82 − y1 = 0
t10 + t23 + t27 + t49 + t66 − y2 = 0
t15 + t28 + t54 + t60 + t71 + t77 + t83 − y3 = 0
t11 + t24 + t55 + t61 + t84 − y4 = 0
t1 + t16 + t29 + t62 + t67 − y5 = 0
t2 + t6 + t33 + t45 + t72 − y6 = 0
t7 + t38 + t50 + t56 + t63 + t78 + t85 − y7 = 0
t17 + t34 + t39 + t46 + t79 − y8 = 0
t3 + t40 + t51 + t68 + t86 − y9 = 0
t8 + t25 + t57 + t69 + t73 − y10 = 0
t12 + t18 + t30 + t35 + t41 + t64 + t74 − y11 = 0
t13 + t19 + t42 + t58 + t70 − y12 = 0
t20 + t26 + t47 + t65 + t75 − y13 = 0
t4 + t31 + t48 + t52 + t80 − y14 = 0
t9 + t14 + t21 + t36 + t43 + t53 + t87 − y15 = 0
yi, ti are binaries

(4)

12

In summary, to characterize the division property propagation of MJoltik-BC,
we only need to combine linear inequality systems (3) and (4) and make it a
bigger linear inequality system.

4 Applications of MILP-Aided Bit-Based Division
Property

In this section, we show some applications of MILP-aided bit-based division
property.

4.1 Application to AES

AES [20] AES, also known as Rijndael [10], is a SPN based symmetric cipher.
AES has a fixed block size of 128 bits, and a key size of 128, 192 or 256 bits.
The 128-bit plaintext and the intermediate state are commonly treated as byte
matrices of size 4× 4. Each round is composed of four operations applied to the
internal state in the order specified below:

– SubByte(SB): Applying the 8-bit S-box on each byte.
– ShiftRow(SR): The i-th row is shifted by i bytes to the left, i = 0, 1, 2, 3.
– MixColumn(MC): Multiplying each column by a constant 4×4 matrix MAES

over the field F28 , where MAES is

MAES =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

 .

And the base field is defined by the irreducible polynomial x8+x4+x3+x+1.
– AddRoundKey(AK): XOR the state and a 128-bit subkey.

Before the first round, an additional AddRoundKey operation is performed to deal
with the plaintext.

Since XORing with constants does not influence the division property, we do
not consider AddRoundKey in our analysis. Thus the key schedule of AES is not
introduced. For more details about AES, please refer to [20].

Former Results of AES According to the structural property of AES, there
exist some 4-round integral distinguishers if we traverse 32 specific bits of the
input.

Applying MILP-Aided Bit-Based Division Property to AES The prop-
agation table for the S-box of AES has 2001 elements. By using the function
called inequality generator() in the Sage software, 179657 linear inequalities
are returned. After using Greedy Algorithm, we get 32 linear inequalities.

13

These linear inequalities are sufficient to describe the division property propa-
gation of the AES’s S-box and they are given in Appendix A. There are 184
non-zero elements in the primitive representation of MAES and 184 × 4 = 736
intermediate variables (t0 ∼ t735) are required for one round of encryption. The
naming rule of variables for one round of encryption is illustrated in Fig. 1. The
naming rule determines the order of elements in division property. For example,
if we say that the input multi-set of AES satisfies the division property D1128

k ,
where k = (k0, k1, . . . , k127), we mean that a0 = k0, a1 = k1, . . ., a127 = k127. In
the following, the naming rule has exactly the same meaning.


a0 ∼ a7 a32 ∼ a39a64 ∼ a71 a96 ∼ a103

a8 ∼ a15 a40 ∼ a47a72 ∼ a79a104 ∼ a111

a16 ∼ a23a48 ∼ a55a80 ∼ a87a112 ∼ a119

a24 ∼ a31a56 ∼ a63a88 ∼ a95a120 ∼ a127

 SB−−→


b0 ∼ b7 b32 ∼ b39 b64 ∼ b71 b96 ∼ b103
b8 ∼ b15 b40 ∼ b47 b72 ∼ b79 b104 ∼ b111
b16 ∼ b23 b48 ∼ b55 b80 ∼ b87 b112 ∼ b119
b24 ∼ b31 b56 ∼ b63 b88 ∼ b95 b120 ∼ b127



SR−−→


b0 ∼ b7 b32 ∼ b39 b64 ∼ b71 b96 ∼ b103
b40 ∼ b47 b72 ∼ b79 b104 ∼ b111 b8 ∼ b15
b80 ∼ b87 b112 ∼ b119 b16 ∼ b23 b48 ∼ b55
b120 ∼ b127 b24 ∼ b31 b56 ∼ b63 b88 ∼ b95



MC−−−−−−→
t0∼t735


a128 ∼ a135a160 ∼ a167a192 ∼ a199a224 ∼ a231

a136 ∼ a143a168 ∼ a175a200 ∼ a207a232 ∼ a239

a144 ∼ a151a176 ∼ a183a208 ∼ a215a240 ∼ a247

a152 ∼ a159a184 ∼ a191a216 ∼ a223a248 ∼ a255


Fig. 1: Variables for One Round of AES.

4-Round Integral Distinguisher Let the division property of the input multi-
set be D1128

{[ff000000,00ff0000,0000ff00,000000ff]}, i.e., we traverse the 32 bits located
at the diagonal of the matrix. We find that the objective function is equal to 2
after four rounds of encryption, which indicates that all the 128 bits satisfy zero-
sum property after four rounds of encryption. The objective function is equal to
1 after five rounds of encryption and the experimental results show that all the
128 unit vectors exist under this situation. This fact indicates that there does
not exist any bit satisfying zero-sum property after five rounds of encryption if
we only traverse the 32 bits located at the specific position of the input. The
experimental results are also in accordance with the theoretical deduction.

4-Round Integral Distinguisher Let the division property of the input multi-
set be D1128

{[ffffffff,ffffffff,ffffffff,ffffff00]}, i.e., we traverse the first 120 bits. We
find that the objective function is equal to 4 after four rounds of encryption,
which indicates that all the 128 bits satisfy zero-sum property after four rounds
of encryption. The objective function is equal to 1 after five rounds of encryption
and the experimental results show that all the 128 unit vectors occur under this
setting. This fact tells that there does not exist any bit satisfying zero-sum
property after five rounds of encryption if we only traverse the specific 120 bits
at the input.

14

4-Round Integral Distinguisher Let the division property of the input multi-
set be D1128

{[ffffffff,ffffffff,ffffffff,fffffffe]}, i.e., we traverse the first 127 bits. We
find that the objection function is equal to 1 after five rounds of encryption and
the experimental results show that all the 128 unit vectors exist under this
setting. This fact indicates that there does not exist any bit satisfying zero-sum
property after five rounds of encryption even though we traverse the specific 127
bits at the input.

4.2 Application to Joltik-BC

Joltik-BC [16] Joltik-BC is a 64-bit lightweight tweakable block cipher that
uses an AES-like round function as a building block. It is a building block of
Joltik, which is a new authenticated encryption disign. As most AES-like de-
signs, the state of Joltik-BC is seen as 4 × 4 matrix of nibbles. The base field
is F24 and is defined by the irreducible polynomial x4 + x + 1. Joltik-BC has
two versions depending on the length of the tweak. The number r of rounds is
24 for Joltik-BC-128 and 32 for Joltik-BC-192. One round has the following
four transformations applied to the internal state in the order specified below:

– AddRoundTweakey(AT): XOR the 64-bit round subtweakey to the internal
state.

– SubNibble(SN): Apply the 4-bit S-box to the 16 nibbles of the internal state.

– ShiftRows(SR): Rotate the 4-nibble i-th row left by ρ[i] positions, where
ρ = 0, 1, 2, 3.

– MixNibbles(MN): Multiply the internal state by the 4 × 4 constant MDS
matrix MJoltik-BC.

After the last round, a final AddRoundTweakey operation is performed to produce
the ciphertext.

The 4-bit S-box SJoltik-BC is the one selected for Piccolo [21], and is given in
Table 2. The MDS matrix MJoltik-BC with coefficients in F24 used in Joltik-BC

is non-circulant, MDS and involutory:

MJoltik-BC =


1 4 9 d

4 1 d 9

9 d 1 4

d 9 4 1

 = M−1Joltik-BC.

Since XORing with constant does not influence the division property, we do not
consider AddRoundTweakey in our analysis. For more details about Joltik and
Joltik-BC, please refer to [16].

15

Table 2: Joltik-BC’s S-Box SJoltik-BC [16]

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] e 4 b 2 3 8 0 9 1 a 7 f 6 c 5 d



x0 + x1 + x2 + x3 − y0 − y1 − y2 − y3 > 0

−2x0 − x1 − x2 − 3x3 + 2y1 + y2 + 2y3 > −3

−x0 − x1 − x3 + y0 − y1 + y2 > −2

x3 − y0 + y1 − y2 − y3 > −1

3x0 − y0 − y1 − y2 − 2y3 > −2

−x0 − x2 + 2x3 + y0 − 2y1 − y2 − y3 > −3

−x0 − x1 − 2x3 + 2y0 + y1 + 2y2 + 3y3 > 0

−x2 − y0 + y1 > −1

x1 + x2 − y0 − y2 − y3 > −1

x0 + x1 + x3 − y0 − 2y1 − 2y2 > −2

x2 + 2x3 − y0 − y1 − y2 − y3 > −1

−x0 − x2 − x3 + y0 + y1 + 2y2 + 2y3 > 0

x0 + x3 − y0 − y1 − y3 > −1

xi, yi are binaries

(5)

Applying MILP-Aided Bit-Based Division Property to Joltik-BC The
naming rule of variables for one round of encryption is illustrated in Fig. 2.
From Section 3, We know that there are 88 non-zero elements in the primitive
representation of MJoltik-BC. Since there are four columns in the internal state
of Joltik-BC, 88×4 = 352 intermediate variables (t0 ∼ t351) are needed for one
round of encryption.

The propagation table for Joltik-BC’s S-box have 46 elements, which are
given in Table 3. By using the inequality generator() in the Sage software,
100 linear inequalities are returned. After utilizing Greedy Algorithm intro-
duced in [28], we get 13 linear inequalities, which are given in linear inequality
system (5), where (x0, x1, x2, x3)→ (y0, y1, y2, y3) denotes a division trail for the
S-box.

4-Round Integral Distinguisher Let the division property of the input multi-
set be D164

{[f000,0f00,00f0,000f]}, i.e., we traverse the 16 bits which are located at
the diagonal of the matrix. We find that the objective function is equal to 2
after four rounds of encryption, which indicates that all 64 bits satisfy zero-sum
property after four rounds of encryption. The objective function is equal to 1
after five rounds of encryption and the experimental results show that all the 64
unit vectors exist under this setting. This fact indicates that there does not exist

16


a0 ∼ a3 a16 ∼ a19a32 ∼ a35a48 ∼ a51

a4 ∼ a7 a20 ∼ a23a36 ∼ a39a52 ∼ a55

a8 ∼ a11 a24 ∼ a27a40 ∼ a43a56 ∼ a59

a12 ∼ a15a28 ∼ a31a44 ∼ a47a60 ∼ a63

 SN−−→


b0 ∼ b3 b16 ∼ b19 b32 ∼ b35 b48 ∼ b51
b4 ∼ b7 b20 ∼ b23 b36 ∼ b39 b52 ∼ b55
b8 ∼ b11 b24 ∼ b27 b40 ∼ b43 b56 ∼ b59
b12 ∼ b15 b28 ∼ b31 b44 ∼ b47 b60 ∼ b63



SR−−→


b0 ∼ b3 b16 ∼ b19 b32 ∼ b35 b48 ∼ b51
b20 ∼ b23 b36 ∼ b39 b52 ∼ b55 b4 ∼ b7
b40 ∼ b43 b56 ∼ b59 b8 ∼ b11 b24 ∼ b27
b60 ∼ b63 b12 ∼ b15 b28 ∼ b31 b44 ∼ b47



MN−−−−−−→
t0∼t351


a64 ∼ a67a80 ∼ a83 a96 ∼ a99 a112 ∼ a115

a68 ∼ a71a84 ∼ a87a100 ∼ a103a116 ∼ a119

a72 ∼ a75a88 ∼ a91a104 ∼ a107a120 ∼ a123

a76 ∼ a79a92 ∼ a95a108 ∼ a111a124 ∼ a127


Fig. 2: Variables for One Round of Joltik-BC.

Table 3: Propagation of Division Property for Joltik-BC’s S-box

Input D14

k Output D14

K′

k = [0, 0, 0, 0] K′ = {[0, 0, 0, 0]}

k = [0, 0, 0, 1] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0]}

k = [0, 0, 1, 0] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]}

k = [0, 0, 1, 1] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [1, 1, 0, 0]}

k = [0, 1, 0, 0] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]}

k = [0, 1, 0, 1] K′ = {[0, 0, 0, 1], [0, 1, 1, 0], [1, 0, 1, 0], [1, 1, 0, 0]}

k = [0, 1, 1, 0] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0]}

k = [0, 1, 1, 1] K′ = {[0, 0, 0, 1], [0, 1, 1, 0], [1, 1, 0, 0]}

k = [1, 0, 0, 0] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0], [1, 0, 0, 0]}

k = [1, 0, 0, 1] K′ = {[0, 0, 0, 1], [0, 1, 1, 0], [1, 1, 0, 0]}

k = [1, 0, 1, 0] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [1, 1, 0, 0]}

k = [1, 0, 1, 1] K′ = {[0, 0, 1, 1], [0, 1, 1, 0], [1, 1, 0, 1]}

k = [1, 1, 0, 0] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [1, 0, 0, 0]}

k = [1, 1, 0, 1] K′ = {[0, 0, 1, 1], [1, 1, 1, 0]}

k = [1, 1, 1, 0] K′ = {[0, 0, 0, 1], [0, 0, 1, 0], [1, 1, 0, 0]}

k = [1, 1, 1, 1] K′ = {[1, 1, 1, 1]}

17

any bit satisfying zero-sum property after five rounds of encryption if we only
traverse the 16 bits located at the specific positions. The experimental results
are also in accordance with the theoretical deduction.

6-Round Integral Distinguisher Let the division property of the input multi-
set be D164

{[0fff,ffff,ffff,ffff]}, i.e., we traverse the last 60 bits of the input. We
find that the objective function is equal to 2 after six rounds of encryption,
which indicates that all the 64 bits satisfy zero-sum property after six rounds of
encryption. The objective function is equal to 1 after seven rounds of encryption
and the experimental results show that all the 64 unit vectors occur. This fact
indicates that there does not exist any bit satisfying zero-sum property after
seven rounds of encryption if we only traverse the last 60 bits at the input.

We also try to propagate the input division property D164

{[7fff,ffff,ffff,ffff]},
but the objective function is equal to 1 after seven rounds of encryption and the
experimental results tell that all 64 unit vectors exist. This observation illustrates
that we can not go on extending the length of the distinguisher even though we
traverse more bits at the input.

4.3 Application to LED

LED [15] LED, which is an AES-like block cipher, has 64-bit block size with two
primary instances taking 64 and 128 bit keys. The cipher state is conceptually
arranged in a 4 × 4 matrix where each nibble represents an element from F24
with the underlying polynomial for field multiplication given by x4 + x+ 1. The
basic structure of LED consists of alternating operations of AddRoundKey and
Step. The number of Step’s s during encryption depends on the key size. For
64-bit key, s = 8. For bigger key sizes up to 128 bits, s = 12. The illustration for
the encryption of LED is given in Fig. 3.

P 4 Rounds 4 Rounds 4 Rounds

K0 K1 K2 KsKs-1

C

One Step

Fig. 3: An Illustration of LED.

Each round is composed of the following four operations applied to the in-
ternal state in the order specified below:

– AddConstants(AC): The state is combined with the pre-defined constant
matrix, using bitwise XOR.

– SubCells(SC): Each nibble in the state is replaced by the nibble generated
after using the PRESENT’s [5] S-box.

18

– ShiftRow(SR): Row i of the state is rotated i nibbles to the left, for i =
0, 1, 2, 3.

– MixColumns(MC): Multiplying each column by a constant 4×4 matrix MLED

over the field F24 , where MLED is

MLED =


4 1 2 2

8 6 5 6

b e a 9

2 2 f b

 .

Since AddRoundKey and AddConstants operations does not affect the propaga-
tion of division property, we do not consider these operations in our analysis.
Thus the way of generating constants and the key schedule are left behind. For
more details about LED, please refer to [15].

Former results of LED There are several known 4-round integral distinguish-
ers for LED. For example, we know that all 64 bits satisfy zero-sum property
after four rounds of encryption if we traverse the 16 bits located at the diagonal
of the matrix.

Applying MILP-Aided Bit-Based Division Property to LED Since LED
takes PRESENT’s S-box as its S-box and the propagation table and linear in-
equality system for PRESENT’s S-box are already given in [28], these details
are not covered again here. There are 124 non-zero elements in the primitive
representation of MLED and 124 × 4 = 496 intermediate variables (t0 ∼ t495)
are required for one round of encryption. The naming rule of variables for LED
is exactly the same to the one for Joltik-BC except for the number of the
intermediate variables.

4-Round Integral Distinguisher Let the division property of the input multi-
set be D164

{[f000,0f00,00f0,000f]}, i.e., we traverse the 16 bits located at the diagonal
of the matrix. We find that the objective function is equal to 3 after four rounds
of encryption. The objective function is equal to 1 after five rounds of encryption
and the experimental results show that all the 64 unit vectors occur under this
setting. This fact indicates that there does not exist any bit satisfying zero-sum
property after five rounds of encryption if we only traverse the corresponding
16 bits. The experimental results are also in accordance with the theoretical
deduction.

6-Round Integral Distinguisher Let the division property of the input multi-
set be D164

{[ffff,ffff,ffff,fff0]}, i.e., we traverse the first 60 bits of the input. We
observe that the objective function is equal to 2 after six rounds of encryption,
which indicates that all 64 bits satisfying zero-sum property after six rounds of
encryption. The objective function is equal to 1 after seven rounds of encryption

19

and the experimental results show that all 64 unit vectors occur under this
setting. This fact shows that there does not exist any bit satisfying zero-sum
property after seven rounds of encryption if we traverse the corresponding 60
bits.

We also try to propagate the input division property D164

{[ffff,ffff,ffff,fff7]},
but the objective function is equal to 1 after seven rounds of encryption and
all 64 unit vectors occur. This observation indicates that we can not continue
extending the length of the distinguisher even though we traverse more bits at
the input.

4.4 Application to PHOTON

PHOTON [14] PHOTON is a family of hash function. In this paper we discuss
the integral property of its internal permutations. The internal permutation of
PHOTON is defined by Pt, where t ∈ {100, 144, 196, 256, 288}. The internal
state of the Nr-round permutation is viewed as a d×d matrix of s-bit cells. The
parameters of the internal permutations Pt are listed in Table 4.

Table 4: The Parameters of the Internal Permutations Pt.

Permutation t d s Nr Irreducible Polynomial

P100 100 5 4 12 x4 + x + 1

P144 144 6 4 12 x4 + x + 1

P196 196 7 4 12 x4 + x + 1

P256 256 8 4 12 x4 + x + 1

P288 288 6 8 12 x8 + x4 + x3 + x + 1

Irreducible Polynomial: The irreducible polynomials
used to define the base field.

Pt’s are also AES-like permutation. One round has the following four layers
applied to the internal state in the order stated below:

– AddConstant(AC): XOR two (d × s)-bit constants to the first column of the
internal state.

– SubCell(SC): Apply an s-bit S-box to each of the cells of the internal state.
In the case of 4-bit cells, we use PRESENT’s S-box while for the 8-bit cells
we use AES’s S-box.

– ShiftRows(SR): Rotate all cells to the left by i column positions for each
row i.

– MixColumnsSerial(MCS): Multiply the internal state by a d×d MDS matrix
MPt

. The irreducible polynomials used to define the base field Fs2 are given
in Table 4.

20

Since XOR with constants does not influence the propagation of division property,
we do not introduce the constants used in the permutations. For space limita-
tion, the MDS matrices used in different variants are also left behind. For more
information, please refer to [14].

Former Results of PHOTON In the design paper of PHOTON [14], the
authors applied the most recent developed cube testers [2] and its zero-sum
distinguishers to the PHOTON permutations, the best they could find within
practical time complexity is at most 3 rounds for all PHOTON variants. And
the better bounds on the algebraic degree were recently published [7] and the
results for PHOTON permutations were summarized in [14]. These bounds are
listed in Table 5. For more information, please refer to [14].

Table 5: Bounds on the Algebraic degree of the PHOTON Internal Permutation.

Rounds 1 2 3 4 5 6 7 8 9

P100 3 9 27 75 91 97 99 99 91

P144 3 9 27 81 123 137 141 143 143

P196 3 9 27 81 157 183 191 194 195

P256 3 9 27 81 197 236 249 253 255

P288 7 42 252 282 287 287 287 287 287

Applying MILP-Aided Bit-Based Division Property to PHOTON S-
ince PHOTON permutations use the S-boxes of PRESENT and AES, and the
propagation tables and the linear inequality systems for these two S-boxes are
already given in [28] and Section 4.1 of these paper, there details are not cov-
ered again here. In this paper, we analysis the integral property of the first three
PHOTON permutations. For P100, there are 194 non-zero elements in the prim-
itive representation of its MDS matrix and 194× 5 = 970 intermediate variables
are required for one round of encryption. For P144, the number of non-zero ele-
ments in the primitive representation of the corresponding MDS matrix is 269
and 269 × 6 = 1614 intermediate variables are needed for one round of encryp-
tion. As to P96, there are 406 non-zero elements in the primitive representation
of its corresponding MDS matrix and 406× 7 = 2842 intermediate variables are
required for one round of encryption.

For space limitation, we only state the resulting integral distinguishers in the
following.

5-Round Integral Distinguisher for P100 Let the division property of the
input multi-set be D1100

{[f0000,0f000,00f00,000f0,0000f]}, i.e., we traverse the 20 bits

21

located at the diagonal of the internal state. We find that the objective function
is equal to 2 after five rounds of encryption. The objective function is equal to
1 after six rounds of encryption and the experimental results show that all 100
unit vectors occur under this setting. This fact indicates that there does not
exist any bit satisfying zero-sum property after six rounds of encryption if we
only traverse the corresponding 20 bits.

From Table 5, the bound on the algebraic degree for five rounds P100 is equal
to 91. In other word, this bound indicates that all the 100 bits satisfy zero-sum
property after five rounds of encryption if we traverse 92 bits of the input state.
Note that our newly found integral distinguisher is much better than the results
deduced by the bounds on the algebraic degree.

6-Round Integral Distinguisher for P100 Let the division property of the
input multi-set be D1100

{[00fff,fffff,fffff,fffff,fffff]}, i.e., we traverse the last 92
bits. We find that the objective function is equal to 2 after six rounds of encryp-
tion. The objective function is equal to 1 after seven rounds of encryption and
the experimental results show that all 100 unit vectors exist under this setting.
This fact indicates that there does not exist any bit satisfying zero-sum property
after seven rounds of encryption if we only traverse the corresponding 92 bits.

From Table 5, we known that the bound on the algebraic degree for six
rounds P100 is equal to 97, which indicates that all the 100 bits satisfy zero-
sum property after six rounds of encryption if we traverse 98 bits of the input
state. Note that our newly found 6-round integral distinguisher is better than
the results deduced by the bounds on the algebraic degree.

5-Round Integral Distinguisher for P144 Let the division property of the
input multi-set be D1144

{[f00000,0f0000,00f000,000f00,0000f0,00000f]}, i.e., we traverse the
24 bits located at the diagonal of the internal state. We find that the objective
function is equal to 2 after five rounds of encryption. The objective function is
equal to 1 after six rounds of encryption, and the experimental results also show
that all 144 unit vectors occur under this setting. This fact indicates that there
does not exist any bit satisfying zero-sum property after six rounds of encryption
if we only traverse the corresponding 24 bits.

Note Table 5 shows that the bounds on the algebraic degree for five rounds
P144 is equal to 123, which indicates that that all the 144 bits satisfy zero-sum
property after five rounds of encryption if we traverse 124 bits of the input state.
Again, our newly found 5-round integral distinguisher is much better than the
results deduced by the bounds on the algebraic degree.

5-Round Integral Distinguisher for P196 Let the division property of the
input multi-set be D1196

{[f000000,0f00000,00f0000,000f000,0000f00,00000f0,000000f]}, i.e., we
traverse the 28 bits located at the diagonal of the internal state. We find that
the objective function is equal to 2 after five rounds of encryption. The objective
function is equal to 1 after six rounds of encryption, and the experimental results

22

also show that all 196 unit vectors occur under this setting. This fact indicates
that there does not exist any bit satisfying zero-sum property after six rounds
of encryption if we only traverse the corresponding 28 bits.

From Table 5, we know that the bounds on the algebraic degree for five
rounds P196 is equal to 157, which tells that all the 196 bits satisfy zero-sum
property after five rounds of encryption if we traverse 158 bits of the input state.
Also note that our newly found 5-round integral distinguisher is much better that
the results deduced by the bounds on the algebraic degree.

Introspection The AES-like design principle is convenient for designers and
this kind of design principle allows designers to derive very simple bounds on
the number of active S-boxes during the encryption. Profiting from the struc-
tural similarity, cryptographers are able to drive simple yet interesting AES-like
security proofs for these AES-like block ciphers regarding related- or single-key
attacks. But in this paper, we find that the lengths of the integral distinguishers
for AES, Joltik-BC, and LED are different, which indicates that directly copy-
ing AES-like security proofs for some kinds of attacks seems to be less reasonable
and the security of these AES-like design may need to be reconsidered.

4.5 Application to Serpent

Serpent [1] Serpent is a block cipher which was selected to be among the
five finalists for Advanced Encryption Standard [19]. Serpent is a 32-round SPN
structure operating on four 32-bit words (X0, X1, X2, and X3), thus giving a
block size of 128 bits. Its round function consists of alternating layers of key
mixing, S-boxes, and linear transformation. Serpent has eight S-boxes (S0 ∼ S7)
and the set of eight S-boxes is used four times. Each round function uses a single
S-box 32 times in parallel. The first round uses S0 and the second round uses
S1. After using S7 in the eighth round, S0 is used again in the ninth round. In
the linear transformation, X0 ∼ X3 are linearly mixed by

X0 := X0 ≪ 13

X2 := X2 ≪ 3

X1 := X1 ⊕X0 ⊕X2

X3 := X3 ⊕X2 ⊕ (X0 � 3)

X1 := X1 ≪ 1

X3 := X3 ≪ 7

X0 := X0 ⊕X1 ⊕X3

X2 := X2 ⊕X3 ⊕ (X1 � 7)

X0 := X0 ≪ 5

X2 := X2 ≪ 22

where ‘≪’ denotes rotation, and ‘�’ denotes shift.

23

Since XORing with a constant does not influence the division property of a
multi-set, we do not consider key mixing in our analysis. Also the key schedule
is left behind. For more informations about Serpent, please refer to [1].

Former Results of Serpent At FSE 2008, Z’aba [30] et al. proposed bit-
pattern based integral attack which was a generic method of finding integral dis-
tinguishers for bit-oriented block ciphers. They successfully utilized this method
to find 3.5-round integral distinguisher for Serpent.

Applying MILP-Aided Bit-Based Division Property to Serpent For
space limitation, we do not give the propagation tables and the linear inequality
systems for the eight S-boxes of Serpent. For the linear layer, we treat it as a
large 128 × 128 matrix and there are 610 non-zero elements in the primitive
representation of Serpent’s linear layer. Thus 610 intermediate variables (t0 ∼
t609) are needed for one round of encryption. The naming rule of variables for
one round of encryption is illustrated in Fig. 4. When across the linear layer,
the first line of the variables represents X0 and the last line of the variables
represents X3.


a124a120a116 · · ·a4a0

a125a121a117 · · ·a5a1

a126a122a118 · · ·a6a2

a127a123a119 · · ·a7a3

 S-box−−−−→


b124 b120 b116 · · ·b4 b0
b125 b121 b117 · · ·b5 b1
b126 b122 b118 · · ·b6 b2
b127 b123 b119 · · ·b7 b3

 Linear−−−−−−→
t0∼t609


a252a248a244 · · ·a132a128

a253a249a245 · · ·a133a129

a254a250a246 · · ·a134a130

a255a251a247 · · ·a135a131


Fig. 4: Variables for One Round of Serpent.

7-Round Integral Distinguisher Let the division property of the input multi-
set be D1128

{[0fffffff,ffffffff,ffffffff,ffffffff]}, i.e., we traverse the last 124 bits.
Since different rounds use different S-boxes, the starting round may influence
the length of the resulting integral distinguisher. But after trying all possible
cases of starting round, we find that the objective functions are all equal to 2
after seven rounds of encryption, which indicates that all the 128 bits satisfy
zero-sum property after seven rounds of encryption. And the objective functions
are all equal to 1 after eight rounds of encryption and the experimental results
show that all the 128 unit vectors occur under this setting. This fact tells that
there does not exist any bit satisfying zero-sum property after eight rounds of
encryption if we only traverse the last 124 bits of the input multi-set.

We also try to propagate D1128

{[ffffffff,ffffffff,ffffffff,fffffffe]}, but the objec-
tive function is also equal to 1 after eight rounds of encryption and all the 128
unit vectors occur. This observation indicates that we can not continue extend-
ing the length of the distinguisher even though we traverse more bits at the
input.

24

4.6 Application to Noekeon

Noekeon [9] Noekeon accepts a 128-bit plaintext, and a 128-bit master key
K. It runs in 16 rounds and each round consists of a linear function called L0,
three rotations called L1, S-box layer, and three rotations L−11 . The S-box layer
of Noekeon uses a single S-box 32 times in parallel, which is given in Table 6.
Let P = X0 = (X0

0 , X
0
1 , X

0
2 , X

0
3) denote the 128-bit plaintext block formed by

the concatenation of four 32-bit wrods X0
i . Denote the input block of the r-th

round by Xr = (Xr
0 , X

r
1 , X

r
2 , X

r
3). The round function of Noekeon is illustrated

in Fig. 5. When across the S-box layer, every word contributes one bit to the
input of the S-box. Denote the input block for the S-box layer of the r-th round
by Y r = (Y r

0 , Y
r
1 , Y

r
2 , Y

r
3). Then the 4-bit nibbles (Y r

0 [i], Y r
1 [i], Y r

2 [i], Y r
3 [i]), 0 6

i 6 31, constitute the inputs of the S-boxes.

Table 6: Noekeon’s S-Box SNoekeon [9]

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] 7 a 2 c 4 8 f 0 5 9 1 e 3 d b 6

0

rX

rRC

1

rX

8 8 8 8

1 5 2

S

1 5 2

2

rX
3

rX

0K

1K

2K

3K

1

0

rX  1

1

rX  1

2

rX  1

3

rX 

0L

1L

1

1L

Fig. 5: Round Function of Noekeon.

Former Results of Noekeon At FSE 2008, Z’aba [30] et al. proposed bit-
pattern based integral attack which was a generic method of finding integral dis-

25

tinguishers for bit-oriented block ciphers. They successfully utilized this method
to find 3.5-round integral distinguisher for Noekeon.

Applying MILP-Aided Bit-Based Division Property to Noekeon The
propagation table for Noekeon’s S-box has 46 vectors. 147 linear inequalities are
returned by using inequality generator(). After using Greedy Algorithm,
we get 12 linear inequalities. These linear inequalities are given in Appendix B.
For the linear layer, we combine L0 and L1 and treat it as a large 128×128 matrix.
There are 896 non-zero elements in the primitive representation of L1 ◦L0. Thus
896 intermediate variables (t0 ∼ t895) are required for one round of encryption.
Since L−11 is composed of three rotations, we do not introduce new intermediate
variable and all we need to do is rotating the variables as needed. The naming
rule for one round of encryption is illustrated in Fig. 6.

[
a0a1a2 · · ·a126a127

] L1◦L0−−−−−−→
t0∼t895

[
b0 b1 b2 · · ·b126 b127

] Rearrange−−−−−−−→


b0 b1 b2 · · · b30 b31
b32 b33 b34 · · · b62 b63
b64 b65 b66 · · · b94 b95
b96 b97 b98 · · ·b136 b127



S-box−−−−→


a128a129a130 · · ·a158a159

a161a162a163 · · ·a191a160

a197a198a199 · · ·a195a196

a226a227a228 · · ·a224a225

 L
−1
1−−−→


a128a129a130 · · ·a158a159

a160a161a162 · · ·a190a191

a192a193a194 · · ·a222a223

a224a225a226 · · ·a254a255


Rearrange−−−−−−−→

[
a128a129a130 · · ·a254a255

]
Fig. 6: Variables for One Round of Noekeon.

6-Round Integral Distinguisher Let the division property of the input multi-
set be D1128

{[0fffffff,ffffffff,ffffffff,ffffffff]}, i.e., we traverse the last 124 bits.
We find that the objective function is equal to 2 after six rounds of encryption,
which indicates that all the 128 bits satisfy zero-sum property after six rounds of
encryption. The objective function is equal to 1 after seven rounds of encryption
and the experimental results show that all the 128 unit vectors occur under
this setting. This fact tells that there does not exist any bit satisfying zero-sum
property after seven rounds of encryption if we traverse the 124 corresponding
bits.

7-Round Integral Distinguisher Let the division property of the input multi-
set be D1128

{[7fffffff,ffffffff,ffffffff,ffffffff]}, i.e., we traverse the last 127 bits. We
find that the objective function is equal to 2 after seven rounds of encryption,
which indicates that all the 128 bits satisfy zero-sum property after seven rounds
of encryption. The objective function is equal to 1 after eight rounds of encryp-
tion and the experimental results show that all the 128 unit vectors occur under
this setting. This fact tells that there does not exist any bit satisfying zero-sum
property after eight rounds of encryption even though we traverse 127 bit of the
input multi-set.

26

4.7 Application to SM4

SM4 [11] SM4 (formerly SMS4) is a block cipher used in the Chinese Na-
tional Standard for Wireless LAN WAPI (Wired Authentication and Priva-
cy Infrastructure). SM4 is a block cipher with 128-bit block size and 128-bit
key size. It is a kind of unbalanced Feistel network. Let (X0, X1, X2, X3) and
(Y0, Y1, Y2, Y3) ∈ (F322)4 denote the 128-bit plaintext P and the 128-bit ciphertext
C, respectively. The i-th round of SM4 can be expressed as:

(Xi, Xi+1, Xi+2, Xi+3)→ (Xi+1, Xi+2, Xi+3, Xi+4),

where Xi+4 = Xi⊕(L◦S)(Xi+1⊕Xi+2⊕Xi+3⊕RKi), and RKi is the subkey of
the i-th round. The round function of SM4 is illustrated in Fig. 7. The function
S uses a single 8-bit S-box 4 times in parallel. The linear function L, which
operates on 32-bit word, is given by

L(x) = x⊕ (x≪ 2)⊕ (x≪ 10)⊕ (x≪ 18)⊕ (x≪ 24).

L S

Xi Xi+1 Xi+2 Xi+3

Xi+1 Xi+2 Xi+3 Xi+4

RKi

Fig. 7: The Round Function of SM4.

Applying MILP-Aided Bit-Based Division Property to SM4 The prop-
agation table for SM4’s S-box has 2009 vectors, and 46409 linear inequalities are
returned by using inequality generator(). After using Greedy Algorithm,
we get 27 linear inequalities. These linear inequalities are given in Appendix D.

10-Round Integral Distinguisher Let the division property of the input
multi-set be D1128

{[ffffffff, ffffffff, fffffffc, 00000000]}, i.e., we traverse the first 94
bits of the input. The values of the objective functions for different number of
rounds are given in Table 7.

Combining with the results of Table 7, we know that there still are 32 bits
satisfying zero-sum property after ten rounds of encryption if we traverse the
first 94 bits of the input. But there does not exist any bit meeting zero-sum

27

Table 7: Zero-Sum Property for SM4 with Input Division Property
D1128

{[ffffffff, ffffffff, fffffffc, 00000000]}

Round Values of Objective Function #{Unit Vectors} #{Zero-Sum Bits}

7 2 0 128

8 1 32 96

9 1 64 64

10 1 96 32

11 1 128 0

property after eleven rounds of encryption. The 10-round integral distinguisher
can be expressed as:

(A8A8A8A8,A8A8A8A8,A8A8A8A6, C8C8C8C8)
10 Rounds−−−−−−→ (B8B8B8B8,U8U8U8U8,U8U8U8U8,U8U8U8U8),

where ‘A8’ represents an active byte, ‘A6’ represents a byte whose first six bits
and last two bits are respectively active and constant, ‘C8’ represents a constant
byte, ‘B8’ represents a byte with every bit satisfying zero-sum property, and ‘U8’
represents an unknown byte.

11-Round Integral Distinguisher Let the division property of the input
multi-set be D1128

{[ffffffff, ffffffff, ffffffff, ff000000]}, i.e., we traverse the first 104
bits of the input. The values of the objective functions for different number of
rounds are listed in Table 8.

Table 8: Zero-Sum Property for SM4 with Input Division Property
D1128

{[ffffffff, ffffffff, ffffffff, ff000000]}

Round Values of Objective Function #{Unit Vectors} #{Zero-Sum Bits}

8 2 0 128

9 1 32 96

10 1 64 64

11 1 96 32

12 1 128 0

Combining with the results of Table 8, we know that there still are 32 bits
satisfying zero-sum property after eleven rounds of encryption if we traverse the
first 104 bits of the input. But there does not exist any bit meeting zero-sum

28

property after twelve rounds of encryption. The 11-round integral distinguisher
can be expressed as:

(A8A8A8A8,A8A8A8A8,A8A8A8A8,A8C8C8C8)
11 Rounds−−−−−−→ (B8B8B8B8,U8U8U8U8,U8U8U8U8,U8U8U8U8),

where ‘A8’ represents an active byte, ‘C8’ represents a constant byte, ‘B8’ repre-
sents a byte with every bit satisfying zero-sum property, and ‘U8’ represents an
unknown byte.

12-Round Integral Distinguisher Let the division property of the input
multi-set be D1128

{[ffffffff, ffffffff, ffffffff, fffffff8]}, i.e., we traverse the first 125
bits of the input. The values of the objective functions for different number of
rounds are listed in Table 9.

Table 9: Zero-Sum Property for SM4 with Input Division Property
D1128

[ffffffff, ffffffff, ffffffff, fffffff8]

Round Values of Objective Function #{Unit Vectors} #{Zero-Sum Bits}

9 2 0 128

10 1 32 96

11 1 64 64

12 1 96 32

13 1 128 0

Combining with the results of Table 9, we know that there still are 32 bits
satisfying zero-sum property after twelve rounds of encryption if we traverse the
first 125 bits of the input. But there does not exist any bit meeting zero-sum
property after thirteen rounds of encryption. The 12-round integral distinguisher
can be expressed as:

(A8A8A8A8,A8A8A8A8,A8A8A8A8,A8A8A8A5)
12 Rounds−−−−−−→ (B8B8B8B8,U8U8U8U8,U8U8U8U8,U8U8U8U8),

where ‘A8’ represents an active byte, ‘A5’ represents a byte whose first five bits
and last three bits are respectively active and constant, ‘B8’ represents a byte
with every bit satisfying zero-sum property, and ‘U8’ represents an unknown
byte.

4.8 Application to SPONGENT-88

SPONGENT [4] SPONGENT is a family of lightweight hash functions with
different hash sizes. In this paper, we only analyze the variant with hash size 88

29

which is denoted by SPONGENT-88. SPONGENT-88 also uses SP-network and
utilizes a PRESENT-type permutation which iterates 45 times. The non-linear
layer uses a 4-bit S-box which is given in Table 10. An illustration of the round
function is given in Fig. 8. For more details about SPONGENT, please refer
to [4].

Table 10: SPONGENT’s S-Box SSPONGENT [4]

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S[x] e d b 0 2 1 4 f 7 a 8 5 9 c 3 6

S S



Fig. 8: Round Function of SPONGENT-88.

Former Results of SPONGENT-88 In 2012, Dong et al. [12] combined the
higher-order differential attack and integral attack to construct a zero-sum dis-
tinguisher for 14-round SPONGENT-88 in computational complexity 284. First-
ly, they found two short zero-sum distinguishers going to opposite directions by
tracking the algebraic degree round by round. Then they tried to combine these
two distinguishers by expanding them under a considerable data requirement.
In 2015, Fan and Duan [13] utilized the same idea to construct an improved
zero-sum distinguisher for 14-round SPONGENT-88 in computational complex-
ity 280, which is 24 less than the one in [12]. By integrating table-aided bit-based
division property and higher-order differential attack, Sun and Wang [22] pro-
vided a 14-round higher-order integral distinguisher with complexity 280.

Applying MILP-Aided Bit-Based Division Property to SPONGENT-
88 Since we need to find zero-sum distinguishers in opposite directions, the prop-
agation table for SSPONGENT and S−1SPONGENT are required. When we need to find
the zero-sum distinguishers in the forward direction, we use the SSPONGENT’s
propagation table. If we turn to search the zero-sum distinguishers in the back-
ward direction, we apply the propagation table of S−1SPONGENT.

There are 48 vectors in the propagation table of SSPONGENT. By using the
inequality generator() in the Sage software, 197 inequalities are returned.

30

After utilizing Greedy Algorithm, we get 10 inequalities. For the propaga-
tion table of S−1SPONGENT, 48 elements return 180 inequalities. After utilizing
Greedy Algorithm, 11 inequalities are gotten. The linear inequality systems
for SSPONGENT and S−1SPONGENT are given in Appendix C. The naming rule
of variables for SPONGENT-88 is simply a0 ∼ a87, from left to right. Since the
linear layer of SPONGENT-88 is just a permutation, 88 × 2 = 176 variables
(including the 88 variables representing the division property for the input bits
of the next round) are enough to constitute the linear inequality system for one
round.

15-Round Zero-Sum Distinguisher Let the division property for the input
multi-set of the seventh round be D188

{[fffffffffff,fffffffff00]}, i.e., we traverse the
first 80 bits.

– In the forward direction, we find that the objective function is equal to
1 after eight rounds of encryption. But there are only 59 unit vectors. The
absence of the other 29 unit vectors indicates that there are 29 bits satisfying
zero-sum property after eight rounds of encryption. Those 29 bits satisfying
zero-sum property are labeled as 10, 18 ∼ 21, 38, 41 ∼ 43, 60, 63 ∼ 65, 68,
70, 72 ∼ 73, 75 ∼ 76, and 78 ∼ 87.

– In the backward direction, we find that the objective function is equal to
1 after seven rounds of decryption. But there are only 68 unit vectors. The
absence of the other 20 unit vectors indicates that there are 20 bits satisfying
zero-sum property after seven rounds of decryption. Those 20 bits satisfying
zero-sum property are labeled as 0, 8, 16, 20, 24, 28, 32, 36, 40, 44, 48, 56,
60, 64, 68, 72, 80 ∼ 82, and 84.

Combining these short integral distinguishers in different directions, we get a 15-
round higher-order integral distinguisher for SPONGENT-88 with complexity
280. Comparing with the former results, our newly found distinguisher achieves
one more round than the one proposed in [13] while keeping the data complexity.

16-Round Zero-Sum Distinguisher Let the division property for the input
multi-set of the eighth round be D188

{[fffffffffff,ffffffffff0]}, i.e., we traverse the
first 84 bits.

– In the forward direction, we find that the objection function is equal to 1
after eight rounds of encryption. But there are only 55 unit vectors. The
absence of the other 33 unit vectors tells that there are 33 bits satisfying
zero-sum property after eight rounds of encryption. Those 33 bits satisfying
zero-sum property are labeled as 10, 18 ∼ 21, 38 ∼ 39, 41 ∼ 43, 60 ∼ 61,
63 ∼ 65, 68 ∼ 73, 75 ∼ 76, and 78 ∼ 87.

– In the backward direction, we observe that the objective function is equal to
1 after eight rounds of decryption. But there are only 82 unit vectors. The
absence of the other 6 unit vectors indicates that there are 6 bits satisfying
zero-sum property after eight rounds of decryption. Those 6 bits satisfying
zero-sum property are labeled as 0, 16, 24, 40, 56, and 72.

31

Combining the above two short integral distinguishers in different directions,
we get a 16-round higher-order integral distinguisher for SPONGENT-88 with
complexity 284. Note that this newly found distinguisher achieves two more
rounds than the one given in [13].

5 Conclusion

In this paper, we settle the feasibility of MILP method applying to ciphers with
linear layers which are not bit-permutations by introducing some intermediate
variables among the linear layer and make the MILP-aided bit-based division to
be more helpful. MILP-aided bit-based division property is also applied to find
integral distinguishers for AES, LED, Joltik-BC, PHOTON, Serpent, Noekeon,
SM4, and SPONGENT-88. By no means do we judge that there are no longer
integral distinguishers for these primitives. We only say that we can not find
longer integral distinguishers based on bit-based division property.

References

1. R. Anderson, E. Biham, and L. Knudsen. Serpent: A proposal for the advanced
encryption standard, volume 174, pages 1–23. 1998.

2. J. P. Aumasson, I. Dinur, W. Meier, and A. Shamir. Cube Testers and Key Re-
covery Attacks on Reduced-Round MD6 and Trivium, pages 1–22. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

3. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The simon and speck lightweight block ciphers. In Proceedings of the 52nd Annual
Design Automation Conference, page 175. ACM, 2015.

4. A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede.
Spongent: The design space of lightweight cryptographic hashing. IEEE Transac-
tions on Computers, 62(10):2041–2053, 2013.

5. A. Bogdanov, L.R. Knudsen, G. Leander, C. Paar, A. Poschmann, M.J.B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher,
pages 450–466. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

6. C. Boura and A. Canteaut. Another view of the division property. Cryptology
ePrint Archive, Report 2016/554, 2016. http://eprint.iacr.org/2016/554.

7. C. Boura, A. Canteaut, and C. De Cannière. Higher-Order Differential Properties
of Keccak and Luffa, pages 252–269. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

8. J. Daemen, L. Knudsen, and V. Rijmen. The block cipher Square, pages 149–165.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1997.

9. J. Daemen, M. Peeters, G. Van Assche, and V. Rijmen. Nessie proposal: Noekeon.
In First Open NESSIE Workshop, pages 213–230, 2000.

10. J. Daemen and V. Rijmen. Aes proposal: Rijndael. 1999.
11. W. Diffie and G. Ledin. Sms4 encryption algorithm for wireless networks. IACR

Cryptology ePrint Archive, 2008:329, 2008.
12. L. Dong, W.L. Wu, S. Wu, and J. Zou. Another look at the integral attack by the

higher-order differential attack. Jisuanji Xuebao(Chinese Journal of Computers),
35(9):1906–1917, 2012.

32

http://eprint.iacr.org/2016/554

13. S. Fan and M. Duan. Improved zero-sum distinguisher for spongent-88. 2015.
14. J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight Hash

Functions, pages 222–239. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
15. J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw. The LED Block Cipher, pages

326–341. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.
16. J. Jean, I. Nikolić, and T. Peyrin. Joltik v1. 3. CAESAR Round, 2, 2015.
17. F. Liu, W. Ji, L. Hu, J. Ding, S. Lv, A. Pyshkin, and R. P. Weinmann. Analysis

of the SMS4 Block Cipher, pages 158–170. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2007.

18. M. Matsui. New block encryption algorithm MISTY, pages 54–68. Springer Berlin
Heidelberg, Berlin, Heidelberg, 1997.

19. A. NIST. Request for candidate algorithm nominations for the aes. Available
on-line at http://www. nist. gov/aes.

20. NIST FIPS Pub. 197: Advanced encryption standard (aes). Federal Information
Processing Standards Publication, 197:441–0311, 2001.

21. K. Shibutani, T. Isobe, H. Hiwatari, A. Mitsuda, T. Akishita, and T. Shirai. Picco-
lo: An Ultra-Lightweight Blockcipher, pages 342–357. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2011.

22. L. Sun and M. Wang. Towards a further understanding of bit-based division prop-
erty. Cryptology ePrint Archive, Report 2016/392, 2016. http://eprint.iacr.

org/2016/392.
23. T. Suzaki, K. Minematsu, S. Morioka, and E. Kobayashi. TWINE: A Lightweight

Block Cipher for Multiple Platforms, pages 339–354. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

24. Y. Todo. Integral cryptanalysis on full misty1. In Annual Cryptology Conference,
pages 413–432. Springer, 2015.

25. Y. Todo. Structural Evaluation by Generalized Integral Property, pages 287–314.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

26. Y. Todo and M. Morii. Bit-based division property and application to simon family.
Pre-Proceedings of FSE, 2016.

27. W. Wu and L. Zhang. LBlock: A Lightweight Block Cipher, pages 327–344. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2011.

28. Z. Xiang, W. Zhang, Z. Bao, and D. Lin. Applying milp method to search integral
distinguishers based on division property for 6 lightweight block ciphers. To appear
at ASIACRYPT 2016.

29. G. Yang, B. Zhu, V. Suder, M. D. Aagaard, and G. Gong. The Simeck Family
of Lightweight Block Ciphers, pages 307–329. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2015.

30. M.R. Z’aba, H. Raddum, M. Henricksen, and E. Dawson. Bit-Pattern Based Inte-
gral Attack, pages 363–381. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

31. W. Zhang, Z. Bao, D. Lin, V. Rijmen, B. Yang, and I. Verbauwhede. Rectangle:
a bit-slice lightweight block cipher suitable for multiple platforms. Science China
Information Sciences, 58(12):1–15, 2015.

A Linear Inequalities of AES’s S-Box

Denote (x0, x1, . . . , x7)
SAES−−−→ (y0, y1, . . . , y7) a division trail of AES’s S-box. The

32 linear inequalities used to describe the propagation is given in Table 11. For

33

http://eprint.iacr.org/2016/392
http://eprint.iacr.org/2016/392

simplicity, we only list the coefficients of the linear inequalities. For example, the
first line of Table 11 refers to as:

x0 + x1 + x2 + x3 + 41x4 + x5 + x6 + x7 − 6y0 − 7y1 − 7y2 − 6y3 −
7y4 − 7y5 − 7y6 − 7y7 > −6.

Table 11: Linear Inequalities Used to Describe SAES.

Number Linear Inequalities Used to Describe SAES

1 (1, 1, 1, 1, 41, 1, 1, 1,−6,−7,−7,−6,−7,−7,−7,−7,−6)
2 (1, 1, 45, 1, 1, 1, 1, 1,−6,−6,−7,−8,−8,−8,−8,−8,−7)
3 (0, 0, 0, 0, 0, 11, 0, 0,−2,−2,−1,−1,−2,−2,−2,−1,−2)
4 (0, 0, 0, 14, 0, 0, 0, 0,−2,−1,−3,−1,−3,−3,−3,−1,−3)
5 (44, 1, 1, 2, 1, 1, 1, 1,−7,−1,−8,−9,−10,−10,−8,−8,−9)
6 (0, 0, 0, 0, 0, 0, 5, 0,−1,−1, 0,−1,−1,−1, 0,−1,−1)
7 (2, 49, 2, 2, 1, 1, 1, 1,−9,−9,−9,−11,−11,−9,−9,−2,−10)
8 (−4,−3,−5,−6,−8,−11,−11,−1, 38, 41, 43, 46, 45, 48, 44, 44, 0)
9 (−2,−2,−3,−3,−3,−1, 6,−1,−4, 22,−7,−4,−4,−4,−5,−4,−19)
10 (−8,−15,−15, 0,−7,−7,−6,−1,−8,−9, 7, 6,−2,−1,−1, 6,−61)
11 (0, 0, 2,−5, 1, 0, 1, 1, 22,−5,−5,−6,−5,−7, 0,−6,−12)
12 (−10,−3,−4,−10, 0,−2,−3,−10,−7,−2,−5,−8, 3, 14,−1, 1,−47)
13 (2, 3, 1, 4, 1, 1, 1, 16,−13,−14,−1,−16, 42,−18,−14,−12,−17)
14 (−1,−5,−4,−7,−8,−8,−2,−2, 4,−3, 3, 6, 4, 7, 3, 7,−32)
15 (−1,−3,−7,−4,−7,−2,−7,−5, 6, 6, 4, 6, 7, 6, 6, 1,−28)
16 (1,−1, 0, 0, 0, 4, 0, 1,−8, 3,−7, 17,−6,−3,−6,−4,−9)
17 (−3, 3,−2,−2,−2,−3,−2,−1, 1, 1, 2,−4,−4, 1, 2,−6,−19)
18 (−2, 0,−2, 3,−2,−2, 0,−5, 2,−5, 2, 5,−3,−1,−3,−3,−16)
19 (−4,−7,−5,−4,−1,−8,−8,−3, 2, 9, 9, 5, 6, 7, 9, 9,−30)
20 (−2,−3,−1,−5,−5, 0,−4,−4, 1, 2,−4, 3, 2, 2, 3, 2,−23)
21 (2, 8, 6, 1, 1, 1, 1, 1,−18,−11,−6,−18,−12,−18,−10, 55,−17)
22 (−2,−2, 1, 3,−2,−2,−1,−1,−1,−5,−3,−3,−1, 2, 0, 4,−13)
23 (0,−3, 2, 0, 0, 0, 0, 1,−3, 1,−3, 11,−2,−4,−4,−3,−7)
24 (−1, 0,−4,−3,−5,−5,−5,−1, 2, 5, 6, 7, 6, 6, 5, 4,−17)
25 (1, 2, 1,−2, 2, 0,−2,−2, 19,−4,−5,−5,−4,−4,−4,−4,−11)
26 (−3,−4,−4,−2,−1,−1,−4,−2, 3, 3, 3, 0, 3, 3, 3, 3,−17)
27 (−3,−1,−4,−4,−4,−2,−1, 0, 4, 3, 1, 4, 4, 5, 3, 4,−14)
28 (−4,−5,−9,−9,−9,−9, 6, 0,−5,−15, 4, 3,−6,−1, 5, 3,−51)
29 (−1,−2,−2, 0,−2,−1,−2,−1, 2, 1, 1, 1,−2,−2, 1,−4,−13)
30 (−1,−2, 0,−1,−1,−1,−1,−2, 1, 1,−1, 0,−1, 0, 0, 0,−9)
31 (0,−1,−1, 0, 1,−1,−1,−1,−2,−1, 1, 1,−1, 1,−1, 0,−6)
32 (0, 1,−1, 1,−1,−1,−1,−1,−1, 1, 0, 0, 0, 0, 0, 0,−5)

34

B Linear Inequalities of Noekeon’s S-Box

Denote (x0, x1, x2, x3)
SNoekeon−−−−−→ (y0, y1, y2, y3) a division trail of SNoekeon. The

linear inequality system (6) is sufficient to describe the propagation.

x0 + x1 + x2 + x3 − y0 − y1 − y2 − y3 > 0

−x0 − x1 − 2x2 − 3x3 + 2y0 − y1 + y2 + y3 > −4

−2x0 − x1 − 3y0 + 2y1 − y2 + y3 > −4

x0 + x1 + x2 + x3 + y0 − 2y1 − 2y2 − 2y3 > −1

−x0 − x2 − x3 + y0 + y1 + 2y2 + 2y3 > 0

x2 + x3 − 2y0 − y1 + y2 − 2y3 > −2

−2x1 − x2 + y0 + y1 − y2 − 2y3 > −4

−x0 − x1 − x3 − 3y0 + 2y1 − y2 + y3 > −4

x0 + x3 − y0 − y1 − y3 > −1

−x0 − x1 − x2 − 2x3 + 2y0 − 2y1 + y3 > −4

x0 + x1 − y0 − y2 − y3 > −1

−x1 − x3 + y0 + y1 + 2y2 + 2y3 > 0

xi, yi are binaries

(6)

C Linear Inequalities of SPONGENT’s S-Box

C.1 Linear Inequality System of SSPONGENT

Denote (x0, x1, x2, x3)
SSPONGENT−−−−−−−−→ (y0, y1, y2, y3) a division trail of SSPONGENT.

The linear inequality system (7) is sufficient to describe the propagation.

x0 + x1 + x2 + x3 − y0 − y1 − y2 − y3 > 0

−x1 − x2 − 2x3 + 2y0 + y1 + y2 + y3 > −1

3x3 − y0 − y1 − y2 − y3 > −1

−x0 + x1 − 3y0 + 3y1 − 2y2 − 2y3 > −4

−x0 + x2 − 3y0 − 2y1 + 3y2 − 2y3 > −4

−2x0 − x1 − x2 − 2x3 + 5y0 + 4y1 + 4y2 + 2y3 > 0

−x0 − y0 − y1 − y2 + 2y3 > −2

−x0 + x2 + y0 − 2y1 − y2 − y3 > −3

−x1 − x2 + y1 + y2 + y3 > −1

3x0 + x1 + x2 + x3 − 3y0 − 2y1 − 2y2 − y3 > −2

xi, yi are binaries

(7)

35

C.2 Linear Inequality System of S−1
SPONGENT

Denote (x0, x1, x2, x3)
S−1
SPONGENT−−−−−−−−→ (y0, y1, y2, y3) a division trail of S−1SPONGENT.

The linear inequality system (8) is sufficient to describe the propagation.

x0 + x1 + x2 + x3 − y0 − y1 − y2 − y3 > 0

−5x0 − 3x1 − 3x2 − 4x3 − y0 + 2y1 + 2y2 + 4y3 > −8

3x0 − y0 − y1 − y2 − y3 > −1

−2x0 − x1 − x3 + y0 − 3y1 + 2y2 − y3 > −5

−2x0 − x2 − x3 + y0 + 2y1 − 3y2 − y3 > −5

−x1 − x2 + 2y0 + 2y1 + 2y2 + y3 > 0

3x2 + x3 − y0 − y1 − 2y2 − 2y3 > −2

3x1 + x3 − y0 − 2y1 − y2 − 2y3 > −2

−2x0 − x1 − x2 − x3 + 2y0 + 3y1 + 3y2 + 4y3 > 0

x2 − y0 − y3 > −1

−2x0 − 2x1 − x2 + y0 + y2 + y3 > −3

xi, yi are binaries

(8)

D Linear Inequalities of SM4’s S-Box

Denote (x0, x1, . . . , x7)
SSM4−−−→ (y0, y1, . . . , y7) a division trail of SSM4. The 27

linear inequalities used to describe the propagation is given in Table 12. For
simplicity, we only list the coefficients of the linear inequalities. For example, the
first line of Table 12 refers to as

x0 + x1 + x2 + x3 + x4 + x5 + 36x6 + x7 − 6y0 − 6y1 − 6y2

−6y3 − 6y4 − 6y5 − 6y6 − 6y7 > −5.

Table 12: Linear Inequalities Used to Describe SSM4.

Number Linear Inequalities Used to Describe SSM4

1 (1, 1, 1, 1, 1, 1, 36, 1,−6,−6,−6,−6,−6,−6,−6,−6,−5)
2 (0, 0, 0, 0, 0, 0, 0, 7,−1,−1,−1,−1,−1,−1,−1,−1,−1)
3 (40, 1, 1, 1, 1, 1, 1, 1,−6,−6,−7,−6,−7,−7,−7,−7,−6)
4 (1, 1, 40, 1, 1, 1, 1, 1,−7,−6,−7,−6,−7,−7,−6,−7,−6)
5 (0, 0, 0, 11, 0, 0, 0, 0,−2,−1,−2,−1,−2,−2,−2,−1,−2)
6 (1, 1, 1, 1, 1, 37, 1, 1, 1,−8,−8,−8,−8,−7,−6,−7,−7)
7 (−4, 5,−4,−4, 0,−4,−4,−4,−5,−1,−1,−1,−1,−1,−1, 5,−25)
8 (−4, 0,−4,−5, 0,−5,−4,−4, 4,−1, 0, 4,−1,−1,−1,−5,−27)
9 (−2,−4,−1,−2,−1,−5,−4,−5, 23, 23, 23, 19, 23, 22, 22, 23, 0)
10 (0, 2,−5, 0, 7, 1, 1, 0,−5,−12,−11,−11,−11, 42,−10,−5,−17)

Continued on next page

36

Table 12 – continued from previous page
Number Linear Inequalities Used to Describe SSM4

11 (−14,−13,−16,−16,−15,−12,−14,−16,−2, 3, 3, 2, 2, 1, 4, 1,−102)
12 (0,−1, 0, 0, 5, 0, 0, 0,−1,−1,−1, 0,−1, 0,−1,−1,−2)
13 (0, 3, 1, 0,−4, 1, 1, 0, 1,−8, 27,−6,−9,−7,−6,−7,−13)
14 (0,−3,−5, 0,−8,−4,−1, 0,−1,−1,−3,−3, 17,−5,−5,−4,−26)
15 (−3,−4,−1,−1,−4,−3,−2,−4, 2,−4,−1, 3,−1,−1, 3, 3,−22)
16 (−3,−1,−4,−6,−9,−10,−6,−10, 4, 7, 5,−2, 7, 7, 7, 5,−41)
17 (−3,−3,−1,−3, 0,−2,−2,−3, 1, 2, 2, 2, 2, 2,−1, 1,−15)
18 (−2,−2,−2,−2,−1, 0,−2,−2, 4,−2,−2, 0,−1,−3, 1, 2,−14)
19 (0,−4,−5,−5,−4,−1,−5,−5,−3, 5, 2, 1, 5, 2, 4, 2,−27)
20 (−3,−5,−5,−5,−5,−5,−2,−4, 2, 2, 3, 2, 1, 4, 3, 4,−28)
21 (−2,−1,−2,−1,−2, 0,−2,−2, 0, 2, 2, 1, 1, 2, 2,−1,−11)
22 (0, 0, 0, 0, 0, 1, 0, 0,−2, 1, 1, 0,−1,−1, 0,−1,−2)
23 (0,−2,−2,−1,−2,−1,−2,−2, 2,−3,−1, 2,−2,−1, 1, 1,−13)
24 (0,−1,−2, 0, 0,−1,−2,−1, 1, 1,−1,−2, 1, 2,−1, 1,−8)
25 (1,−6, 4, 0, 1,−6, 0, 0,−6,−5,−6,−3, 22,−5,−3,−6,−18)
26 (−2,−1,−2,−1, 0,−3,−2,−2, 1, 1, 0, 2, 0,−1,−1,−2,−13)
27 (−2,−2, 0,−1,−2,−1,−2,−2, 0,−4,−2, 2,−2, 1, 2, 1,−14)

37

	MILP-Aided Bit-Based Division Property for Primitives with Non-Bit-Permutation Linear Layers

