. 断层解剖与影像.

腰椎椎基静脉孔的 CT 多平面重组观测

康小燕 薛咏春 王星 刘路 张少杰 李志军

【摘要】目的 探讨 CT 影像观测下腰椎椎基静脉孔(BF)形态及不同椎体间 BF 的差异。方法 选择 2011 年 9 月—2012 年 9 月内蒙古医科大学附属医院和第二附属医院行腰椎 MSCT 检查的18 ~ 55 岁健康成人的 30 例 CT 扫描数据,观察腰椎 BF 的形态,运用 Mimics 16.0 在各节段多平面重组图 像上测量 BF 宽(BFW)、深(BFD)、高(BFH)的绝对值。结果 在观察的 30 例 150 个 L₁ ~ L₅ 椎体中, BF 近似梯形或三角形者占 84.6%(127/150),矩形占 10.0%(15/150),不规则形占 5.4%(8/150); 其中 BF 内部出现骨性间隔占 8.0%(12/150)。BFW 值总体随椎序增长呈平缓递增趋势,最小值位 于 L₁,最大值位于 L₄;L₁ 与 L₃ ~ L₅ 间差异均有统计学意义(P 值均 <0.01),其余椎体间比较差异均 无统计学意义(P 值均 >0.05)。BFD 值总体走势呈递增趋势,最小值位于 L₁,最大值在 L₄;L₁ 与 L₂ ~ L₅ 间差异均有统计学意义(P 值均 <0.05),L₂ 与 L₃ 间差异有统计学意义(P 值均 <0.05),其余椎 体间比较差异均无统计学意义(P 值均 >0.05)。BFH 值总体走势呈"波浪型"趋势,最小位于 L₅,最 大值位于 L₄;L₁ ~ L₄ 与 L₅ 间比较差异均有统计学意义(P 值均 <0.01)。结论 人体腰椎均存在 BF,主要有三角形、矩形和不规则形 3 种形态,且腰椎 BFW 总体随椎序增长呈平缓递增趋势,BFD 总 体走势呈递增趋势,BFH 总体走势呈"波浪型"趋势。本研究结果为临床手术及影像学检查提供形态 学依据。

【关键词】 腰椎; 体层摄影术,X线计算机; 椎基静脉孔; 成像,三维; 形态特征

CT imaging observations of the lumbar vertebrate basivertebral foramen Kang Xiaoyan^{*}, Xue Yongchun, Wang Xing, Liu Lu, Zhang Shaojie, Li Zhijun. ^{*}Master of Grade 2013, Inner Mongolia Medical University, Hohhot 010059, China

Corresponding auther: Li Zhijun, Deparment of Anatomy, Inner Mongolia Medical University, Hohhot, 010059, China, Email: lizhijunmail@sina.com

(Abstract) Objective To discuss the basivertebral foramen (BF) of lumbar spine $(L_1 - L_5)$, including the form and the differences between different vertebral bodies, through the observation of the lumbar vertebrate basivertebral foramen. Methods CT scan data of 30 healthy adults (18 to 55 years old) from September 2011 to September 2012 in the Affiliated Hospital of Inner Mongolia Medical University and the Second Affiliated Hospital were measured using Mimics 16. 0 software. The following index were observed: BF wide (BFW), deep (BFD), high (BFH) in the absolute value, to do a prospective study of the morphology of lumbar BF. Results In BF, there were 84.6% (127/150) for trapezoidal or triangular, 10.0% (15/150) for rectangular, irregular accounting for 5.4% (8/150), however 8.0% (12/150) for bone interval. BFW: L_1 and $L_3 - L_5$ was statistically significant (all P values < 0.05), the rest was not statistically significant, the overall growth was flat with vertebral increasing trend, minimum located L₁, maximum located L_4 . BFD: L_1 and $L_2 - L_5$ statistically significant (all P values < 0.05), L_2 and L_3 was statistically significant (all P values < 0.05), the rest were not statistically significant, the overall trend showed an increasing trend, the minimum located L_1 , maximum at L_4 . BFH: $L_1 - L_4$ and L_5 was statistically significant (all P values < 0.05), the overall trend was "wavy" tendency, a minimum located L₅, maximum located L₄. Conclusions There are basivertebral foramen in the lumbar vertebra of the human body: triangular, rectangular and irregular shape. The overall growth of BFW was flat with an increasing trend, the overall trend of BFD showed an increasing trend and the overall trend of BFH was "wavy" trend. Results of this research provide morphological evidence for clinical surgery and imaging studies.

[Key words] Lumbar vertebrae; Tomography, X-ray computed; Basivertebral foramen; Imaging, three-dimensional; Morphological characteristics

基金项目:国家自然科学基金(81260269);内蒙古自治区自然科学基金(2012MS1149)

通信作者: 李志军, Email:lizhijunmail@ sina. com

DOI:10.3760/cma. j. issn. 2095-7041.2015.04.005

作者单位:010059 呼和浩特,内蒙古医科大学2013 级硕士研究生(康小燕、刘路);呼和浩特市察素齐镇医院 外科(薛咏春);内蒙古医科大学人体解剖学教研室(王星、张少杰、李志军);内蒙古医科大学数字医学中心(王星、 李志军)

椎基静脉孔 (basiverte bralforamen, BF)是椎基 静脉(basivertebral vein, BV)进出椎体的孔道,是位 于椎体后壁和两个椎弓根之间的皮质缺省区,也称 滋养孔。BF及 BV 在临床中具有重要意义,因椎静 脉丛内(vertebral venous plexus, VVP)的静脉无瓣 膜,对感染的扩散、肿瘤的转移、侧支循环的形成或 气体栓塞等方面都具有重要意义。此外,椎体成形 术的严重并发症之一——骨水泥渗漏同样与大口径 BF 这个天然管道有着密切的关系^[1-3]。骨水泥渗 漏时既可经 BF 内的椎基静脉进入椎静脉系统 (vertebral venous system, VVS),也可经 BF 进入椎 管形成脊髓或神经压迫。从力学角度分析,BF 这个 天然管道造成椎体后壁局部应力承载缺失,成为腰 椎椎体后缘骨折的潜在风险^[4]。目前,国内外对 BF 形态结构观测的相关报道较少[5-7]。为进一步了解 腰椎 BF 的形态特征及解剖位置,本文对成人腰椎 的 BF 进行了 CT 影像学测量。

1 材料与方法

1.1 研究资料

选择 2011 年 9 月—2012 年 9 月内蒙古医科大 学附属医院和第二附属医院行腰椎 MSCT 体检的 18~55 岁成人。为排除脊柱疾病(包括畸形、肿瘤、 炎症、结核、骨折、严重骨质疏松等)的健康体检者 共 118 例,按检查日期顺序编号,随机抽取其中 30 名(男 17 名,女 13 名)纳入本研究,对其腰椎 BF 的 形态进行 CT 影像学测量。

1.2 实验方法

1.2.1 实验设备及软件 美国 GE 16 层螺旋 CT。
 3D 重建软件 Mimics 16.0。

1.2.2 扫描方法 受试者取中立仰卧位,头先进, 身体长轴与机床平行,双臂自然放于身体两侧,腰椎 尽量取水平位,由 CT 室具有执业资格的医师进行 操作。

1.2.3 扫描范围及层厚 扫描范围 T₁₂~S₁,扫描 线与身体中轴线垂直。扫描参数:层厚 1.25 mm,间 距 1.25 mm,重建层厚 0.625 mm,重建间距 0.625 mm,Fov 30 cm×30 cm,矩阵 512×512,管电 压 150 kV,管电流 260 mA。

1.2.4 测量方法 将 CT 原始数据以 DICOM 格式 导入 PC 计算机,利用 3D 重建软件进行多平面重组 与参数测量。

1.3 参数测量指标和方法

(1) 椎基静脉孔宽(basivertebral foramen width, BFW):水平位 BF 与椎体后壁交点间连线的距离;
(2) 椎基静脉孔高(basivertebral foramen height, BFH): 矢状位 BF 与椎体后壁交点间连线的距离; (3) 椎基静脉孔深(basivertebral foramen depth, BFD): 水平位 BF 顶点距 BF 与椎体后壁交点间连 线的垂直距离。见图1,2。

实验测量30 例成人完整 L₁ ~ L₅ 椎骨共150 个, 每个椎骨获取3 个参数,共450 个参数。为尽量减 少误差,在 CT 水平位或矢状位的窗口,选定一块椎 骨滑动鼠标,在其能尽可能显示这块椎骨水平位或 矢状位的全部结构时进行测量,记住该窗口右下角 的页数,每次测量该椎骨时均选取该页进行。实验 测量由经培训的3 位研究人员各测量1 遍,取其平 均值。

1.4 统计学方法

使用 SPSS 13.0 软件进行数据整理和统计学分析。各测量数据服从正态分布,采用 x̄±s 表示,同一指标不同节段间比较采用单因素方差分析和 SNK-q 检验。以 P < 0.05 为差异有统计学意义。

2 结果

2.1 BF的形态

在 30 例 150 个椎体 CT 水平位和矢状位重建图 像上,BF 主要表现为 3 种形态:近似梯形或三角形 (图 3)占 84.6%(127/150),矩形(图 4)占10.0% (15/150),不规则形(图 5)占 5.4%(8/150);另外, BF 内部出现骨性间隔(图 6)占8.0%(12/150)。详 见表 1。

表1 CT 图像 BF 3 种形态分类统计[例(%)]

椎序	例数	三角形或近似梯形	矩形	不规则形
L_1	30	28(93.4)	1(3.3)	1(3.3)
L_2	30	26(86.7)	1(3.3)	3(10.0)
L ₃	30	26(86.7)	3(10.0)	1(3.3)
L_4	30	25(83.3)	4(13.4)	1(3.3)
L_5	30	22(73.3)	6(20.0)	2(6.7)
合计	150	127(84.6)	15(10.0)	8(5.4)

注:BF:椎基静脉孔

2.2 BFW、BFD 和 BFH 测量结果

BFW 值总体随椎序增长呈平缓递增趋势,最小 值位于 L₁,最大值位于 L₄, L₅ 略有下降。除 L₁ 与 L₃~L₅间差异均有统计学意义(*P*值均 < 0.01)外, 其余椎体间两两比较差异均无统计学意义(*P*值均 >0.05)。见表2、图7。

BFD 的总体走势与 BFW 相似,也呈递增趋势, 最小值位于 L_1 ,最大值在 L_4 , L_5 略有下降。 L_1 与 $L_2 \sim L_5$ 间差异均有统计学意义(P 值均 < 0.05), L_2 与 $L_3 \sim L_5$ 间比较差异也有统计学意义(P < 0.05), 其余椎体间两两比较差异均无统计学意义(P 值均 >0.05)。见表2、图7。

BFH 则呈"波浪型"趋势,最小位于 L_5 ,最大值 位于 L_4 ; $L_1 ~ L_4$ 与 L_5 间比较差异均有统计学意义 (P值均 < 0.01),其余椎体间两两比较差异均无统 计学意义(P值均 > 0.05)。见表 2、图 7。

3 讨论

3.1 BF 与椎体容积之间的关系

VVP的概念由 Breschet(1988)首次提出, 描述 其为庞大的静脉丛状无瓣膜网络, 跨越整个脊柱并 连通硬脑膜窦、腔静脉系统与 VVS。BV 是 VVS 的 一部分, Antonacci 等(1998)研究发现, 向椎体中心 注入墨水, 可观察到墨水通过 BV 经由 BF 汇入椎静 脉系统。因 VVP 内的静脉无瓣膜, 血液在其中可双

图 1 腰椎 CT 水平面重建图上 BFW、BFD 测量方法 BFW:椎基静脉孔宽;BFD:椎基静脉孔深 图 2 腰椎 CT 矢状面重建图上 BFH 测量方法 BFH:椎基静脉孔高 图 3 CT 图像显示三角形椎基静脉孔(箭) 3A 水平面 3B 矢状面 图 4 CT 图像显示矩形椎基静脉孔(箭) 4A 水平面 4B 矢状面 图 5 水平位重建图像显示 不规则椎基静脉孔(箭) 图 6 水平位重建图像显示椎基静脉孔内部骨性间隔(箭)

向流动。当椎体承受轴向载荷时,椎体骨性终板和 椎体容积也随之改变。BF 能把椎体内静脉血量恰 当地调节出椎体,从而调节椎体容积。当椎体轴向 载荷去除时,椎体终板复原后,BF 能恰当地把椎体 外静脉血量调节进入椎体。随着椎体内外压力的改 变,在 BF 处存在较明显的血液流动^[8],当周围静脉 压高于椎体内压时会形成间隙性的血液逆流,这可 能是肿瘤栓子传播的潜在途径,成为椎体肿瘤转移 好发部位的原因之一。可见 BF 在肿瘤细胞转移中 起着重要作用,是肿瘤细胞进出椎体的门户^[9]。

3.2 BF 与经皮椎体成形术并发症的关系

近年来,随着临床经皮椎体成形术 (percutaneous vertebroplasty, PVP)应用逐渐普及, 其并发症也随之增多。其中最严重的并发症为骨水

> 泥渗漏导致的肺栓塞及脊髓神经根 压迫。BF 口径大于身体任何部位的 滋养孔,骨水泥渗漏与大口径 BF 这 个天然管道有着密切关系^[1]。临床 已开始在 PVP 中先行椎体静脉造 影,根据造影情况来调整骨水泥注 射时机、速率和压力,能减少外漏的 发生;同时观察造影剂回流途经处有 无骨水泥流动影像,也能及时监测到 骨水泥的外漏趋势,避免可能的严重 后果发生,从而提高安全性和疗 效^[2-3]。

3.3 BF 与椎体骨折的关系

本研究结果显示,在 CT 重建图 像上可见绝大多数(84.6%,127/ 150)BF 表现为三角形和梯形,尖端 指向椎体内;且一部分(8%,12/ 150)BF 内有骨性间隔,将 BF 内部 空间一分为二。从力学角度分析, BF 这个天然大口径管道势必造成椎 体后壁局部应力承载缺失导致 BF 周围应力过度集中,成为上腰椎椎体 后上缘骨折的潜在风险^[4]。谢宝钢

表2 L₁~L₅ 椎体 BFW、BFD、BFH 测量值比较[mm, x ±s(min~max)]

椎体	例数	BFW	BFD	BFH
L ₁	30	5.87 ±1.76(3.15 ~10.02)	5.81 ±1.48(3.29 ~ 9.92)	$5.48 \pm 1.35(2.83 \sim 8.19)^{\circ}$
L_2	30	$7.40 \pm 1.89(4.45 \sim 12.76)^{a}$	7.38 ± 1.58(4.67 ~ 10.72) a	$5.93 \pm 1.26(3.38 \sim 9.24)^{\circ}$
L_3	30	$7.83 \pm 1.39(5.42 \sim 10.49)^{a}$	$8.30 \pm 1.21(6.31 \sim 10.77)^{ab}$	$5.79 \pm 1.28(3.12 \sim 8.22)^{\circ}$
L_4	30	8.09 ± 1.60(6.14 ~ 13.78) ^a	$8.74 \pm 1.59(4.59 \sim 12.54)^{ab}$	$5.95 \pm 1.39(3.16 \sim 8.22)^{\circ}$
L_5	30	$7.85 \pm 1.83(4.95 \sim 10.56)^{a}$	$8.59 \pm 2.06(5.01 \sim 11.67)^{ab}$	$4.23 \pm 1.42(1.06 \sim 6.69)$
<i>F</i> 值	-	8.280	17.086	8.678
<i>P</i> 值	-	< 0.01	< 0.01	< 0.01

注:BFW:椎基静脉孔宽;BFD:椎基静脉孔深;BFH:椎基静脉孔高;SNK-q 检验:与 L₁ 椎体比较^aP < 0.01,与 L₂ 椎体比较^bP < 0.05,与 L₅ 椎体比较^cP < 0.01

图7 L₁~L₅ 椎体 BFW、BFD、BFH 的变化 BFW: 椎基 静脉孔宽; BFD: 椎基静脉孔深; BFH: 椎基静脉孔高

等(1993)研究发现,脊柱爆裂性骨折的发生与终板 软骨形态、椎体骨小梁密度及 BF 的解剖结构有关: 构成 BF 孔壁的是一些板状结构的梁小骨,作为应 力承载区,此区被视为一薄弱区;从撞击结果中观测 发现,椎管内的骨折块主要来源于 BF 上缘,在 BF 可看到有骨折线通过。当椎体受到外力作用时,BF 局部应力承载缺失。一旦应力达到极限时便会导致 BF 周围骨小梁断裂,骨折块向后突入椎管内,形成 椎管狭窄。Zhao 等^[10] 通过测量不同区域终板强度 发现,尾侧终板无论在正中矢状位还是经椎弓根平 面,其厚度均高于头侧终板,因此暴力作用下,头侧 终板更易破裂移位。Grant 等[11] 认为,后上方椎体 强度被后柱结构所强化,因此其骨小梁较少;而后下 方由于缺乏后柱结构支撑,需要依赖增加骨小梁来 维持强度,其终板强度明显强于后上方。与下终板 比较,上终板更薄,缺乏足够骨小梁支撑,在相同应 力作用下更易损伤^[12]。将本研究发现与以上研究 结果综合分析,能更好地解释上述临床现象。

本研究选择测量平面的方法是在同一 CT 窗口,选定一块椎骨滑动鼠标,在其能尽可能显示这块 椎骨全部结构的平面作为测量平面,每次测量该椎 骨时均选取该平面进行。但是该测量平面的确定与 CT 扫描的位置、方法及测量人员的水平均有关系, 存在的误差是不可消除的,在更大样本量的情况下 可以减小这种误差。CT 测量的优点是可获取更大、 更多符合要求的活体影像样本量,可更精确地观察 BF 结构,在 BF 内部更精确地测量各观察指标的最 大和最小值。 本研究通过对 30 名健康成人 150 个腰椎骨的 观测,为 BF 的形态参数和特点提供了影像学资料。 但要对 BF 解剖结构的精确描述,需要对更多样本 量进行深入探索。

参考文献

- [1] 王永江,王清,姚琦. PKP 治疗骨质疏松性爆裂骨折疗效及骨水泥渗漏途径的探讨[J].重庆医学,2015,44(11):1457-1459,1462.
- [2] 陈富,邓忠良,柯珍勇. 椎体静脉造影有利于减少经皮椎体成 形术中骨水泥外漏[J]. 重庆医学, 2005, 34(4): 565-566.
- [3] Wang C, Fan S, Liu J, et al. Basivertebral foramen could be connected with intravertebral cleft: a potential risk factor of cement leakage in percutaneous kyphoplasty[J]. Spine J, 2014,14(8): 1551-1558.
- [4] Rajasekaran S. Thoracolumbar burst fractures without neurological deficit: the role for conservative treatment [J]. Eur Spine J, 2010, 19(Suppl 1): S40-S47.
- [5] 赵兴,赵凤东,方向前,等. 胸腰段椎体椎基静脉孔的 CT 影像 学特征及其意义[J]. 中华骨科杂志, 2012, 32(1): 58-64.
- [6] Murphy MA. Bilateral posterior ischemic optic neuropathy after lumbar spine surgery[J]. Ophthalmology, 2003, 110(7): 1454-1457.
- [7] 马春明,鞠晓华,王孝文,等. 腰椎椎基静脉孔的解剖学观测及 其临床意义[J]. 中国临床解剖学杂志, 2014, 32(4): 405-408.
- [8] Oeppen RS, Tung K. Retrograde venous invasion causing vertebral metastases in renal cell carcinoma [J]. Br J Radiol, 2001, 74 (884): 759-761.
- [9] Shah AN, Pietrobon R, Richardson WJ, et al. Patterns of tumor spread and risk of fracture and epidural impingement in metastatic vertebrae[J]. J Spinal Disord Tech, 2003, 16(1): 83-89.
- [10] Zhao FD, Pollintine P, Hole BD, et al. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone [J]. Bone, 2009, 44 (2): 372-379.
- [11] Grant JP, Oxland TR, Dvorak MF. Mapping the structural properties of the lumbosacral vertebral endplates [J]. Spine (Phila Pa 1976), 2001, 26(8): 889-896.
- Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength
 [J]. Bone, 2007, 41(6): 946-957.

(收稿日期:2015-01-23) (本文编辑:张萍)