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Abstract. We describe a lightweight algorithm performing whole-network
authentication in a distributed way. This protocol is more efficient than
one-to-one node authentication: it results in less communication, less
computation, and overall lower energy consumption.
The proposed algorithm is provably secure, and achieves zero-knowledge
authentication of a network in a time logarithmic in the number of nodes.

1 Introduction

A growing market focuses on lightweight devices, whose low cost and easy
production allow for creative and pervasive uses. The Internet of Things (IoT)
consists in spatially distributed nodes that form a network, able to control or
monitor physical or environmental conditions (such as temperature, pressure,
image and sound), perform computations or store data. IoT nodes are typically
low-cost devices with limited computational resources and limited battery. They
transmit the data they acquire through the network to a gateway, also called the
transceiver, which collects information and sends it to a processing unit. Nodes
are usually deployed in hostile environments, and are therefore susceptible to
physical attacks, harsh weather conditions and communication interferences.

Due to the open and distributed nature of the IoT, security is key to the entire
network’s proper operation [14]. However, the lightweight nature of sensor nodes
heavily restricts the type of cryptographic operations that they can perform, and
the constrained power resources make any communication costly.

This paper describes an authentication protocol that establishes network
integrity, and leverages the distributed nature of computing nodes to alleviate
individual computational effort. This enables the base station to identify which
nodes need replacement or attention.

This is most useful in the context of wireless sensor networks and the IoT,
but applies equally well to mesh network authentication and similar situations.

Related Work: Zero Knowledge (ZK) protocols have been considered for authen-
tication of wireless sensor networks. For instance, Anshul and Roy [1] describe a
modified version of the Guillou-Quisquater identification scheme [8], combined



with the µTesla protocol [11] for authentication broadcast in constrained envi-
ronments. We stress that the purpose of the scheme of [1], and similar ones, is to
authenticate the base station.

Aggregate signature schemes such as [2, 15] may be used to achieve the
goal pursued here – however they are intrinsically non-interactive, and the most
efficient aggregate constructions use elliptic curve pairings, which require powerful
devices.

Closer to our concerns, [13] describes a ZK network authentication protocol,
but it only authenticates two nodes at a time, and the base station acts like
a trusted third party. As such it takes a very large number of interactions to
authenticate the network as a whole.

What we propose instead is a collective perspective on authentication and
not an isolated one.

Structure of this paper: Section 2 recalls the Fiat-Shamir authentication scheme
and present a distributed algorithm for topology-aware networks. We describe the
core idea of our paper, a distributed Fiat-Shamir protocol for IoT authentication,
in Section 3. We analyse the security of the proposed protocol in Section 4.
Section 5 provides several improvements and explores trade-offs between security,
transmission and storage.

2 Preliminaries

2.1 Fiat-Shamir Authentication

The Fiat-Shamir authentication protocol [5] enables a prover P to convince a
verifier V that P possesses a secret key without ever revealing the secret key [4,7].

The algorithm first runs a one-time setup, whereby a trusted authority
publishes an RSA modulus n = pq but keeps the factors p and q private. The
prover P selects a secret s < n such that gcd(n, s) = 1, computes v = s2 mod n
and publishes v as its public key.

When a verifier V wishes to identify P, he uses the protocol of Figure 1. V
may run this protocol several times until V is convinced that P indeed knows
the square root s of v modulo n.

Figure 1 describes the original Fiat-Shamir authentication protocol [5], which
is honest verifier zero-knowledge3, and whose security is proven assuming the
hardness of computing arbitrary square roots modulo a composite n, which is
equivalent to factoring n.

As pointed out by [5], instead of sending x, P can hash it and send the first
bits of H(x) to V, for instance the first 128 bits. With that variant, the last
step of the protocol is replaced by the computation of H(y2∏k

i=1 v
ai
i mod n),

truncated to the first 128 bits, and compared to the value sent by P. Using this
“short commitment” version reduces somewhat the number of communicated bits.

3 This can be fixed by requiring V to commit on the ai before P has sent anything,
but this modification will not be necessary for our purpose.



Prover Verifier
r ∈R [1, n− 1]
x← r2 mod n

x−−−−−→
e1, . . . , ek ∈R {0, 1}

e1,...,ek←−−−−−

y ← r

k∏
i=1

sei
i mod n

y−−−−−→

Check y2 = x

k∏
i=1

vei
i mod n

Fig. 1: Fiat-Shamir authentication protocol.

However, it comes at the expense of a reduced security level. A refined analysis
of this technique in given in [6].

2.2 Topology-Aware Distributed Spanning Trees

Due to the unreliable nature of sensors, their small size and wireless communica-
tion system, the overall network topology is subject to change. Since sensors send
data through the network, a sudden disruption of the usual route may result in
the whole network shutting down.

Topology-Aware Networks A topology-aware network detects changes in the
connectivity of neighbours, so that each node has an accurate description of
its position within the network. This information is used to determine a good
route for sending sensor data to the base station. This could be implemented
in many ways, for instance by sending discovery messages (to detect additions)
and detecting unacknowledged packets (for deletions). Note that the precise
implementation strategy does not impact the algorithm.

Given any graph G = (V,E) with a distinguished vertex B (the base station),
the optimal route for any vertex v is the shortest path from v to B on the
minimum degree spanning tree S = (V,E′) of G. Unfortunately, the problem of
finding such a spanning tree is NP-hard [12], even though there exist optimal
approximation algorithms [9,12]. Any spanning tree would work for the proposed
algorithm, however the performance of the algorithm gets better as the spanning
tree degree gets smaller.

Mooij-Goga-Wesselink’s Algorithm The network’s topology is described
by a spanning tree W constructed in a distributed fashion by the Mooij-Goga-
Wesselink algorithm [10]. We assume that nodes can locally detect whether a
neighbour has appeared or disappeared, i.e. graph edge deletion and additions.



W is constructed by aggregating smaller subtrees together. Each node in W
is attributed a “parent” node, which already belongs to a subtree. The complete
tree structure of W is characterized by the parenthood relationship, which the
Mooij-Goga-Wesselink algorithm computes. Finally, by topological reordering,
the base station T can be put as the root of W .

Each node in W has three local variables {parent, root, dist} that are initially
set to a null value ⊥. Nodes construct distributively a spanning tree by exchanging
“M -messages” containing a root information, distance information and a type.
The algorithm has two parts:

– Basic: maintains a spanning tree as long as no edge is removed (it is a variant
of the union-find algorithm [3]). When a new neighbour w is detected, a
discoveryM -message (root, dist) is sent to it. If no topology change is detected
for w, and an M -message is received from it, it is processed by Algorithm 1.
Note that a node only becomes active upon an event such as the arriving of
an M -message or a topology change.

– Removal: intervenes after the edge deletion so that the basic algorithm can
be run again and give correct results.

Algorithm 1: Mooij-Goga-Wesselink algorithm, basic part.
Input: An M -message (r, d) coming from a neighbour w

1 (parent, root, dist)← (⊥,⊥,⊥)
2 if (r, d + 1) < (root, dist) then
3 parent← w
4 root← r
5 dist← d + 1
6 Send the M -message (root, dist) to all neighbours except w

7 end if

Algorithm 1 has converged once all topology change events have been processed.
At that point we have a spanning tree [10].

For our purposes, we may assume that the network was setup and that
Algorithm 1 is running on it, so that at all times the nodes of the network have
access to their parent node. Note that this incurs very little overhead as long as
topology changes are rare.

3 Distributed Fiat-Shamir Authentication

3.1 The Approach

Given a k-node network N1, ...,Nk, we may consider the nodes Ni as users and
the base station as a trusted center T . In this context, each node will be given only



an4 si. To achieve collective authentication, we propose the following Fiat-Shamir
based algorithm:

– Step 0: Wait until the network topology has converged and a spanning tree
W is constructed with Algorithm 1 presented in Section 2.2. When that
happens, T sends an authentication request message (AR-message) to all
the Ni directly connected to it. The AR-message may contain a commitment
to e (cf. Step 2) to guarantee the protocol’s zero-knowledge property even
against dishonest verifiers.

– Step 1: Upon receiving an AR-message, each Ni generates a private ri and
computes xi ← r2

i mod n. Ni then sends an A-message to all its children, if
any. When they respond, Ni multiplies all the xj sent by its children together,
and with its own xi, and sends the result up to its own parent. This recursive
construction enables the network to compute the product of all the xis and
send the result xc to the top of the tree in d steps (where d = deg W ). This
is illustrated for a simple network including 4 nodes and a base station in
Figure 2.

– Step 2: T sends a random e as an authentication challenge (AC-message) to
the Ni directly connected to it.

– Step 3: Upon receiving an AC-message e, each Ni computes yi ← ris
ei
i . Ni

then sends the AC-message to all its children, if any. When they respond,
Ni multiplies the yj values received from all its children together, and with
its own yi, and sends the result to its own parent. The network therefore
computes collectively the product of all the yi’s and transmits the result yc
to T . This is illustrated in Figure 3.

– Step 4: Upon receiving yc, T checks that y2
c = xc

∏
vei
i , where v1, . . . , vk are

the public keys corresponding to s1, . . . , sk respectively.

Note that the protocol may be interrupted at any step. In the version of the
algorithm that we have just described, this results in a failed authentication.

3.2 Back-up Authentication

Network authentication may fail for many reasons described and analysed in
detail in Section 4.3. As a consequence of the algorithm’s distributed nature that
we have just described, a single defective node suffices for authentication to fail.

This is the intended behaviour; however there are contexts in which such a
brutal answer is not enough, and more information is needed. For instance, one
could wish to know which node is responsible for the authentication failure.

A simple back-up strategy consists in performing usual Fiat-Shamir authenti-
cation with all the nodes that still respond, to try and identify where the problem
lies. Note that, as long as the network is healthy, using our distributed algorithm
instead is more efficient and consumes less bandwidth and less energy.
4 This is for clarity. It is straightforward to give each node several private keys, and
adapt the algorithm accordingly.
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Fig. 2: The construction of xc.
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Fig. 3: The construction of yc.

Fig. 4: The proposed algorithm running on a network. Each parent node aggre-
gates the values computed by its children and adds its own information before
transmitting the result upwards to the base station.

Since all nodes already embark the hardware and software required for Fiat-
Shamir computations, and can use the same keys, there is no real additional
burden in implementing this solution.

4 Security Proofs

In this section we wish to discuss the security properties relevant to our construc-
tion. The first and foremost fact is that algorithm given in Figure 3 is correct: a
legitimate network will always succeed in proving its authenticity, provided that
packets are correctly transmitted to the base station T (possibly hopping from
node to node) and that nodes perform correct computations.

The interesting part, therefore, is to understand what happens when such
hypotheses do not hold.

4.1 Soundness

Lemma 1 (Soundness). If the authentication protocol of Section 3.1 succeeds
then with overwhelming probability the network nodes are genuine.

Proof. Assume that an adversary A simulates the whole network, but does not
know the si, and cannot compute in polynomial time the square roots of the
public keys vi. Then, as for the original Fiat-Shamir protocol [5], the base station
will accept A’s identification with probability bounded by 2k where k is the
number of nodes. ut

4.2 Zero-knowledge

Lemma 2 (Zero-knowledge). The distributed authentication protocol of Sec-
tion 3.1 achieves statistical zero-knowledge.



Proof. Let P be a prover and A be a (possibly cheating) verifier, who can use
any adaptive strategy and bias the choice of the challenges to try and obtain
information about the secret keys.

Consider the following simulator S :

Step 1. Choose e ∈R {0, 1}k and y ∈R [0, n− 1] using any random tape ω′
Step 2. Compute x← y2∏ vei

i and output (x, e, y).

The simulator S runs in polynomial time and outputs triples that are indistin-
guishable from the output of a prover that knows the corresponding private
key.

If we assume the protocol is run N times, and that A has learnt information
which we denote η, then A chooses adaptively a challenge using all information
available to it e(x, η, ω) (where ω is a random tape). The proof still holds if we
modify S in the following way:

Step 1. Choose e ∈R {0, 1}k and y ∈R [0, n− 1] using any random tape ω′
Step 2. Compute x← y2∏ vei

i

Step 3. If e(x, η, ω) = e then go to Step 1 ; else output (x, e, y).

Note that the protocol is also “locally” ZK, in the sense that an adversary
simulating ` out of k nodes of the network still has to face the original Fiat-
Shamir protocol. ut

4.3 Security Analysis

Choice of Parameters Let λ be a security parameter. To ensure this security
level the following constraints should be enforced on parameters:

– The identification protocol should be run t ≥ dλ/ke times (according to
Lemma 1), which is reasonably close to one as soon as the network is large
enough;

– The modulus n should take more than 2λt operations to factor;
– Private and public keys are of size comparable to n.

Complexity The number of operations required to authenticate the network
depends on the exact topology at hand, but can safely be bounded above:

– Number of modular squarings: 2kt
– Number of modular multiplications ≤ 3kt

In average, each Ni performs only a constant (a small) number of operations.
Finally, only O(d) messages are sent, where d is the degree of the minimum
spanning tree of the network. Pathological cases aside, d = O(log k), so that only
a logarithmic number of messages are sent during authentication.

All in all, for λ = 256, k = 1024 nodes and t = 1, we have n ≥ 21024, and up
to 5 modular operations per node.



Root Causes of Authentication Failure Authentication may fail for several
reasons. This may be caused by network disruption, so that no response is received
from the network – at which point not much can be done.

However, more interestingly, T may have received an invalid value of yc. The
possible causes are easy to spot:

1. A topology change occurred during the protocol:
– If all the nodes are still active and responding, the topology will eventually

converge and the algorithm will get back to Step 0.
– If however, the topology change is due to nodes being added or removed,

the network’s integrity has been altered.
2. A message was not transmitted: this is equivalent to a change in topology.
3. A node sent a wrong result. This may stem from low battery failure or when

errors appear within the algorithm the node has to perform (fault injection,
malfunctioning, etc). In that case authentication is expected to fail.

Effect of Network Noise Individual nodes may occasionally receive incor-
rect (ill-formed, or well-formed but containing wrong information) messages, be
it during topology reconstruction (M -messages) or distributed authentication
(A-messages). Upon receiving incorrect A or M messages, nodes may dismiss
them or try and acknowledge them, which may result in a temporary failure
to authenticate. An important parameter which has to be taken into account
in such an authentication context is the number of children of a node. When a
node with many children starts failing, all its children are disconnected from the
network and cannot be contacted or authenticated anymore. While a dysfunction
at the leaf level might be benign, the failure of a fertile node is catastrophic.

Man-in-the-Middle An adversary could install itself between nodes, or between
nodes and the base station, and try to intercept or modify communications.
Lemma 2 proves that a passive adversary cannot learn anything valuable, and
Lemma 1 shows that an active adversary cannot fool authentication.

It is still possible that the adversary relays information, but any attempt to
intercept or send messages over the network would be detected.

5 Variants and Implementation Trade-offs

The protocol may be adapted to better fit operational constraints: in the context
of IoT for instance communication is a very costly operations. We describe
variants that aim at reducing the amount of information sent by individual nodes,
while maintaining security.

5.1 Shorter Challenges Variant

In the protocol of Section 3, the long (say, 128-bit) challenge e is sent throughout
the network to all individual nodes. One way to reduce the length of e without
compromising security is the following:



– A short (say, 80-bit) value e is sent to the nodes;
– Each node i computes ei ← H(e‖i), and uses ei as a challenge;
– The base station also computes ei the same way, and uses this challenge to

check authentication.

This variant does not impact security, assuming an ideal hash function H, and it
can be used in conjunction with the other improvements described below.

5.2 Multiple Secret Variant

Instead of keeping one secret value si, each node could have multiple secret values
si,1, . . . , si,`. Note that these additional secrets need not be stored: they can be
derived from a secret seed.

The multiple secret variant is described here for a single node, for the sake of
clarity. Upon receiving a challenge ei (assuming for instance that ei was generated
by the above procedure), each node computes a response

yi ← ris
ei,1
i,1 s

ei,2
i,2 · · · s

ei,`

i,` mod n.

This can be checked by the verifier by checking whether

y2
i

?= xiv
ei,1
i,1 v

ei,2
i,2 · · · v

ei,`

i,` mod n.

To do swarm authentication, it suffices to perform aggregation as described in
the protocol of Section 3 at intermediate nodes.

Using this approach, one can adjust the memory-communication trade-off,
as the security level is λ = t` (single-node compromission). Therefore, if ` = 80
for instance, it suffices to authenticate once to get the same security as t = 80
authentications with ` = 1 (which is the protocol of Section 3). This drastically
cuts bandwidth usage, a scarce resource for IoT devices.

Furthermore, computational effort can be reduced by using batch exponentia-
tion techniques to compute yi.

5.3 Precomputed Alphabet Variant

A way to further reduce computational cost is the following: each node chooses
an alphabet of m words w0, . . . , wm−1 (a word is a 32-bit value), and computes
once and for all the table of all pairwise products pi,j = mimj . Note that each
pi,j entry is 64 bit long.

The values si are generated by randomly sampling from this alphabet. Put
differently, si is built by concatenating u words (bit patterns) taken from the
alphabet only.

We thus see that the si, which are mu-bit integers, can take mu possible
values. For instance if m = u = 32 then si is a 1024-bit number chosen amongst
3232 = 2160 possible values. Thanks to the lookup table, most multiplications
need not be performed, which provides a substantial speed-up over the naive
approach.



The size of the lookup table is moderate, for the example given, all we need
to store is 32× 31/2 + 32 = 528 values. This can be further reduced by noting
that the first lines in the table can be removed: 32 values are zeros, 31 values are
the results of multiplications by 1, 30 values are left shifts by 1 of the previous
line, 29 values are the sum of the previous 2 and 28 values are left shifts by 2.
Hence all in all the table can be compressed into 528− 32− 31− 29− 28 = 408
entries. Because each entry is a word, this boils down to 1632 bytes only.

5.4 Precomputed Combination Variant

The idea is that computational cost can be cut down if we precompute and store
some products, only to assemble them online during Fiat-Shamir authentication:
the values of si,1,2 ← si,1si,2, si,2,3 ← si,2si,3, ... are stored in a lookup table.

The use of combined values si,a,b in the evaluation of y results in three possible
scenarios for each:

1. sasb appears in y – the probability of this occurring is 1/4 – in which case
one additional multiplication must be performed;

2. sasb does not appear in y – the probability of this occurring is 1/4 – in which
case no action is performed;

3. sa or sb appears, but not both – this happens with probability 1/2 – in which
case one single multiplication is required.

As a result the expected number of multiplications is reduced by 25%, to wit
3
4 × 2m−1, where m is the size of e.

The method can be extended to work in a window of size κ ≥ 2, for instance
with κ = 3 we would precompute:

si,3n,3n+1 ← si,3nsi,3n+1

si,3n+1,3n+2 ← si,3n+1si,3n+2

si,3n,3n+2 ← si,3nsi,3n+2

si,3n,3n+1,3n+2 ← si,3nsi,3n+1si,3n+2

Following the same analysis as above, the expected number of multiplications
during the challenge-response phase is 7

8 ×
2m

3 . The price to pay is that larger
values of κ claim more precomputing and memory.

More precisely, we have the following trade-offs, writing µ = 2m mod κ:

Multiplications (expected) = 2m
(

2κ − 1
2κ

(⌊
2m

κ
− 1
⌋)
− 2µ − 1

2µ

)
Pre-multiplications = `− 1 +

(
(2κ − κ− 1)

⌊
2m

κ

⌋)
+ (2µ − µ− 1)

Stored Values = (2κ − 1)
⌊

2m

κ

⌋
+ (2µ − 1)

where ` is the number of components of si.



6 Conclusion

In this work we describe a distributed Fiat-Shamir authentication protocol that
enables network authentication using very few communication rounds, thereby
alleviating the burden of resource-limited devices such as wireless sensors and
other IoT nodes. Instead of performing one-on-one authentication to check the
network’s integrity, our protocol gives a proof of integrity for the whole network
at once.
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