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Abstract

We introduce a Markov-model-based framework for Moving Target Defense (MTD) analysis.
The framework allows modeling of a broad range of MTD strategies, provides general theorems
about how the probability of a successful adversary defeating an MTD strategy is related to
the amount of time/cost spent by the adversary, and shows how a multi-level composition of
MTD strategies can be analyzed by a straightforward combination of the analysis for each one
of these strategies. Within the proposed framework we define the concept of security capacity
which measures the strength or effectiveness of an MTD strategy: the security capacity depends
on MTD specific parameters and more general system parameters. We apply our framework to
two concrete MTD strategies.

Keywords— Moving Target Defense; Security Capacity; Markov Models; IP Hopping;
Single/Multiple-Target Hiding.

1 Introduction

In spite of the fact that today’s computer systems are designed and implemented with security in
mind and take advantage of secure services, security primitives and mechanisms, and crypto proto-
cols, the history of computer systems has patently revealed that perfect security is unattainable [2],
i.e., all systems have vulnerabilities that can be exploited to launch successful attacks. For a static
system in which configuration parameters and system’s settings remain relatively unchanged over
relatively long periods of time, attackers have enough time to infer system’s configuration, vulnera-
bilities, and corresponding attack vectors which may lead to the attacker’s success in compromising
the system in any number of ways [3]. In order to mitigate such vulnerability, MTD has been intro-
duced as the notion of controlling change across multiple system dimensions to intensify uncertainty
and ostensible complexity for attackers, reducing their window of opportunity and increasing the
costs of their probes and attack efforts [1]. Research in MTD focuses on enabling the continued
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safe operation of a system by dynamically hiding vulnerabilities or attack vectors (which we call
targets in our framework, see section 3).

To date many different MTD schemes have been introduced as proactive defensive solutions by
making the system less stationary and less deterministic. In general terms, these techniques can
be categorized into five different domains based on their placement within the execution stack [22]:
(1) Dynamic Data which mostly involves changing data representation or its format [6, 8, 19],
(2)Dynamic Software which includes changing the application code [26, 27], (3)Dynamic Runtime
Environment which is about altering the execution environment [15, 24, 30], (4)Dynamic Platform
which deals with modifying platform properties [9, 12, 28] and finally (5)Dynamic Network which
is about changing network configurations and properties [5,14]. A thorough study of most of these
methods, including their advantages and weaknesses, can be found in [23].

Even though the use of MTD seems to be a promising defense strategy and many efforts have
been made to introduce different practical MTD schemes, most research only focuses on introducing
a new MTD scheme in one of those five categories and then using a simulation based approach in
order to gauge how effective the scheme can be. However, there has been very little research that
shows the effectiveness of these methods, specially when multiple MTD schemes at different layers
of the software stack are combined.

This paper introduces a theoretical framework for modeling the effectiveness of MTD schemes:

• In section 3 we define MTD as an interaction between a defender and attacker modeled by
probabilistic algorithms and we show that such an interaction corresponds to a defender-
attacker game characterized by a Markov chain. Our framework is general in that it formally
defines (and can be used to analyze) a large class of MTD strategies as games based on
Markov chains.

• Section 5 proves a first theorem analyzing the number of time steps needed for an adversary
to “win” an MTD game. Based on this theorem we introduce security capacity as a measure
of the effectiveness of an MTD strategy; an MTD strategy with security capacity c has the
property that, for all s and t such that c = s+ t, the probability that the adversary wins the
MTD game within 2t time steps is at most 2−s. We show that time steps can be converted
into any cost measure for the adversary.

• Although a single MTD may not be very effective in that it has a small security capacity, it
may be possible to obtain a large security capacity if multiple MTDs are deployed together.
We call this approach a “Layered MTD” or “MTD∗”. In this regard, section 6 is an expan-
sion of our framework by introducing compositions of MTD games for which we extend our
theorem.

In sections 4 and 5 we analyze two concrete examples to demonstrate the applicability of our
framework beyond a mere theoretical exercise.

2 Related Work

A central theme in MTD research is to first present a new feasible technique and then estimate
its effectiveness. In this regard, many MTD techniques have been proposed, e.g., Address Space
Layout Randomization (ASLR) [15], Software Diversity [21,25], Dynamic Data [4, 19], etc.
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Existing methods for estimating the effectiveness are mainly divided in two categories: a)
simulation based [30–32,38] and b) based on a mathematical model [10,11,13,36].

Simulation based: Two good examples of simulation-based methods are [32, 38]. In [32] the
authors introduce a quantitative framework for evaluating the effectiveness of MTD strategies (in
the network layer) using simulation experiments. Because of the limited scope of experimental
conditions, it is difficult to compare the effectiveness of an MTD strategy for different system
settings. Zhuang et al. [38] present a preliminary design schema of MTD in enterprise networks.
The authors investigate an adversary’s chance of success, by means of conducting a simulation-based
study on proactively altering a network’s parameter, based on the introduced design schema. One
of the problems with simulation based MTD evaluation is that these techniques are case-dependent
meaning that they only stand for their specific introduced example.

Based on mathematical models: The work described in [10] considers the effectiveness of
“Diversity defenses” (including Address Space, Instruction Set and Data Randomization) as an
MTD method. The authors present a model for analyzing the effect of MTD, focusing on scenarios
where only the undefined semantics of the underlying programming language is changed. The study
is worthwhile as the authors show that the effectiveness of MTD depends on multiple aspects: the
type of the execution properties that are changed, address randomization entropy, etc. However,
the study does not lead to a generally applicable framework.

Of specific interest to us are game theoretic models that assist in the design and analysis of
MTD mechanisms [20]. They can be used to maximize the defender’s “security” while minimiz-
ing/constraining the “diversity rate”, defined as the time interval between each system adaptation
(in our terminology the rate λ at which the defender moves in his MTD strategy), to a usable
setting (i.e., to a setting giving acceptable performance overhead): Lye and Wing [17] use a two
player general-sum stochastic game to model the interaction between an attacker and a defender
(system administrator) for analyzing the security of computer networks. Manadhata [18] uses a
perfect information and complete game for attack surface shifting based on MTD. Zhu et al. [33]
propose a game theoretical framework for multi-layer attack surface shifting with an adaptive de-
fender who changes defense strategy based on real-time feedback information and risk analysis.
Carter et al. [7] study dynamic platform MTD by using a game theoretical approach modeling an
attacker who can monitor defender’s moves.

Rather than using game theory, we propose a general framework where the moves of the at-
tacker and defender are represented in a Markov model allowing an immediate and straightforward
characterization of the effectiveness of the used MTD strategy by the defender (with respect to the
modeled attacker).

Zhuang [34, 37] made a first attempt using Markov models to analyze MTD strategies; each
state in the proposed Markov model represents the complete configuration of the whole system
which means that the number of states in the Markov model grows exponentially in the number of
machines in the system. This attempt being too complex, Zhuang [34,36] considers an attack graph
as a Markov model where transitions are labeled with a probability density and where nodes keep
track of the machine’s configuration together with necessary overall system parameters of which
the probability densities are a function. Nodes can represent physical machines, software stacks,
or software objects such as VMs. A transition from one node to another node means that the
adversary extends its footprint to the other node. MTD can now be modeled as being part of the
overall system parameters. From this attack graph perspective precise formulas can be derived with
respect to the time needed for an adversary reaching its objective as a function of these probability
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density functions, which in turn are functions of the MTD and system parameters [34, 35]. Such
formulas cannot become concrete as the whole system architecture with MTD and adversarial
behavior needs to be modeled – the proposed Markov model requires too much detail. As a result
only simple relationships can be proven such as a larger diversity rate λ implies a larger expected
time till successful attack, and faster expected transition times imply a smaller expected time till
successful attack.

In this paper we realize that the first approach of a Markov model where each state represents a
complete system configuration is useful if we compress the Markov model to one where states only
represent the projection to necessary system and MTD parameters. This leads to precise formulas
and relations which are easy to interpret by plugging in known parameters.

3 MTD Games

In this section we introduce an abstract game between a defender and an attacker which models a
large class of MTD strategies. Below we first give an algorithmic definition after which we explain
how it naturally translates into an equivalent definition based on a Markov modeling interpretation
of MTD games.

Definition 1 An MTD game is defined by a set of possible defender moves D = {ε, d1, d2, . . .}
and attacker moves A = {ε, a1, a2, . . .} (where ε indicates ”no move”) together with a probabilistic
algorithm M which outputs a stream of triples {(Di, Ai, wi)}i≥1 with Di ⊆ D, Ai ⊆ A, and wi ∈
{0, 1} indicating whether the attacker has beaten the defender’s moving target strategy; we say the
attacker is in a winning state at time step i if wi = 1.

The above definition as an interplay of a defender and adversarial strategy is very general:
Algorithm M is probabilistic and uses coin tosses which, together with the current state of M,
decide at each time step i which collection of defender and adversarial moves are being played and
in what order. The changes result in a change in the state of algorithm M from time step to
time step. M’s state represents the combination of the adversary’s and defender’s state together
with the state of the system which is attacked/defended. This means thatM also models adaptive
strategies.

Algorithm 1 shows how M can be simulated; Simstate keeps track of the system state ϕ, the
view of the defender viewD, the view of the attacker viewA, and whether the attacker is in a winning
position; NextState(., ., .) simulates how the moves by the attacker and defender change the system
state; the defender and attacker are represented by algorithms D and A where D.update(., .) and
A.update(., .) keep track of how their views change because of the new system state; notice that
even if only one party moves, both views may be affected.

In this paper we measure the effectiveness of an MTD strategy by analyzing when the attacker
will be in a winning state for the first time.1 For this purpose we do not need to keep track of the
exact moves being played by the defender and attacker; we only need to keep track of how the state
of M changes from time step to time step and whether the new state corresponds to a winning

1Additional analysis of how long an attacker will be in a winning state once it arrives at a winning state and when
the attacker will again be in a winning state once he exits a winning state is required to understand the effect of an
MTD strategy in more detail. Since an adversary reaching a winning state can start launching a successful attack,
the authors feel that when the attacker will be in a winning state for the first time is the most important question to
analyze first.

4



Algorithm 1 MTD Game Simulator

1: function Simulator(M)
2: ϕ = initial system state;
3: viewA = adversary’s initial state of the system used in his adversarial strategy;
4: viewD = defender’s initial state of the system used in his MTD strategy;
5: Initialize simstate = (ϕ, viewD, viewA, 0);
6: while true do
7: (moveD,moveA,w)←M(simstate);
8: ϕ = NextState(s,moveD,moveA);
9: viewD ← D.update(viewD, ϕ);

10: (viewA, w)← A.update(viewA, ϕ);
11: simstate = (ϕ, viewD, viewA, w);
12: if w = 1 then
13: Return ”Attacker is in a winning position”;

state for the adversary. This defines a Markov chain2 where state transitions are a function of coin
tosses. This leads to the following definition:

Definition 2 An M -MTD game is defined by a (k+1)×(k+1) transition matrix M which describes
a Markov chain of state transitions that reflect both defender and attacker moves. Initially the game
starts in the 0 state. At each next time slot the game transitions from its current state i to a new
state j with probability Mi,j. We say the attacker wins the MTD game within T time slots if (the
winning) state k has been entered during at least one of the first T time slots of the MTD game.

Note that state k represents the winning state from the adversary’s perspective. In other words,
it depicts full control by the adversary; once the adversary reaches state k, it is possible for the
attacker to launch an attack that will be successful against the system which the defender attempts
to protect using his MTD strategy. From the above discussion we obtain the following lemma.

Lemma 1 Each MTD game can be described as a M -MTD game for some transition matrix M .

A subclass of MTD games with a more natural and intuitive correspondence to MTD strategies
is given in the next definition:

Definition 3 A (MD, λ,MA, µ)-MTD Game is defined by

1. parameters λ and µ satisfying 0 ≤ λ+ µ ≤ 1 which represent the rate of play of the defender
and attacker, respectively.

2. (k + 1) × (k + 1) transition matrices MD and MA; for i, j ∈ {0, . . . , k}, MD
i,j, respectively

MA
i,j, represents the probability of transitioning from state i to state j when the defender,

respectively attacker, plays a move in state i.

2We avoid unnecessary state explosion by representing states by system and MTD parameters needed for describing
the MTD game between adversary and defender with sufficient precision.
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Initially the joint defender-attacker state is 0. At each next time slot either with probability λ
the defender makes a move according to MD, or with probability µ the attacker makes a move
according to MA, or with probability 1− λ− µ neither the defender nor attacker makes a move.

We say the attacker wins the MTD game within T time slots if he has entered state k during one
of his moves during the first T time slots of the MTD game. In the above definition we exclude the
possibility of both the defender and attacker playing at the same time: A (three valued) random
coin decides with probability λ that the defender can move, with probability µ that the attacker
can move, and with probability 1− λ− µ that no one moves.

Notice that a (MD, λ,MA, µ)-MTD game is fully described by the transition matrix

M = λMD + µMA + (1− λ− µ)Ik+1, (1)

where Ik+1 is the (k + 1) × (k + 1) identity matrix. At each time slot the joint defender-attacker
state transitions to a new state according to M ; M represents the MTD game as a Markov chain
as in Definition 2.

A couple questions concerning the limitations of this abstract definitional framework immedi-
ately arise: The above definitions relate to a logical discrete time axis where at each fixed time step
or “ logical clock cycle” the system state changes according to transition matrix M . How can this
logical time be translated to real time (which is what we are interested in) or cost of playing (in
some cases we may be able to assign a cost to adversarial moves)? The above definitions are very
general and may lead to very complex huge Markov chains in order to model real systems. How
much detail is needed in order to model a complex MTD game, is it possible to decompose games in
multiple layers simplifying analysis? Finally, how can we measure the security offered by an MTD
strategy? The remainder of this paper answers these questions demonstrating the richness of the
language provided by our definitional framework.

4 MTD games Examples

In order to show how our framework can be used to model different MTD techniques, we consider a
system taking ad- vantage of IP hopping (also known as IP address random- ization) as an example
of an MTD scheme.

IP hopping frequently changes the IP addresses of the hosts on a network. This makes re-
connaissance difficult for an adversary when attempting to locate a host by an IP address: The
adversary is forced to continually rescan the network to locate the host. Implementations of this
technique have been proposed for OpenFlow [14] and DHCP [5].

From the adversary’s perspective a spatial search for the target host in a pool of N IP ad-
dresses is needed, which is performed by sending network probes to specific IP addresses. The
probe may be a simple SYN packet to locate a host with a particular open port or an operating
system/software fingerprint to locate a host running a particular system. If the adversary receives
an acknowledgment the probe found a target, then the adversary moved successfully and is now in
control of the target. The adversary continues his search until the target (or targets) are found.

In the following subsections we consider two different scenarios in which the adversary’s goal
is to locate and control one, respectively k, vulnerable hosts in the network. This is referred to
as single-target hiding and multiple-target hiding. Our analysis of single-target hiding assumes an
optimal adaptive adversary while our analysis of multiple-target hiding assumes an almost optimal
adaptive adversary (being almost optimal is shown in section 5).
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Figure 1: Markov chain of Single-Target Hiding

4.1 Single-Target Hiding

In general, in IP hopping techniques new IP addresses from a pool of unused addresses in the
network subnet will be selected and assigned to the host at some (average) rate λ. For instance,
the defender plays a memoryless MTD strategy such that every time step he randomizes the IP
address with probability λ (and he will do nothing with probability 1−λ). Meanwhile, the adversary
sends a probe at rate µ in an attempt to identify a target. He may play an adaptive strategy: If
the attacker has tried a set of say q IP addresses after the defender’s last IP address randomization,
then his (q+ 1)-st trial should not be one of the q IP addresses he already tried, instead he should
guess a new one. Even though the attacker does not learn when the defender randomizes the IP
address, if he tries each IP address in sequential round robin order, then he knows his next guess
will never be of an IP address he already tried since the defender’s last IP address randomization.
As the defender plays memoryless, it does not matter whether the attacker tries each IP address in
fixed known sequential round robin order. This optimal adaptive adversarial strategy is described
by the Markov chain in Figure 1.

The Markov chain has N + 1 states where N equals the total number of possible IP addresses.
Let state N (in the figure denoted by “Win”) represent the winning state for the adversary and let
states 0, 1, . . . , N −1 correspond to when the defender randomized the IP address for the last time,
i.e., state q means that exactly q time steps ago the IP address was randomized (by the defender).
For 0 ≤ q ≤ N − 1,

• Mq,0 = λ; with probability λ the defender randomizes the IP address, as a result the Markov
chain transitions back to the 0 state,

• Mq,q+1 = µ(N − q − 1)/(N − q); with probability µ the attacker tries the next IP address
which with probability 1− 1/(N − q) is not the correct one,

• Mq,N = µ/(N − q); with probability µ the attacker tries the next IP address which is with
probability 1/(N −q) correct meaning that the Markov chain transitions to the winning state
for the adversary,
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• Mq,q = 1−λ−µ; with probability 1−λ−µ both the defender and attacker do not do anything,

• MN,0 = λ and MN,N = 1 − λ; the adversary does not need to try IP addresses, he will only
be kicked out of the winning state if the defender randomizes the IP address.

The IP hopping strategy above deals with the scenario where the adversary only needs to find
one single target. Multiple-Target Hiding can be seen as an example of the more abstract MTD
game described next.

4.2 Multiple-Target Hiding

Another possible scenario one can think of is the case in which the adversary needs to find/penetrate
more than one host/target in a network taking advantage of IP-hopping. Let N be the total
number of “locations” where K targets (i.e., attack vectors or vulnerabilities) may hide; only if
the combination of a smaller subset of k locations of these K target attack vectors are known by
the attacker, the attacker is capable of launching a successful attack by exploiting the combination
of the k associated vulnerabilities, i.e., the attacker wins the MTD game. The defender moves by
re-allocating a target causing the attacker to renew his search for its location. The attacker moves
by selecting one of the N possible locations and testing whether it corresponds to one of the targets.
For example, a hit-list worm targeting specific hosts on the network or servers part of a redundant
system an adversary is attempting to disrupt. The multiple-target hiding defense limits the success
of an adversary attempting to compromise and persist on a set of servers on a network.

Both the defender and attacker interface with the defender’s “system”, the system implements
the defender’s MTD strategy and can also control the rate at which each party may access the
system. Each time step allows three possibilities for defender-attacker moves (giving an example
of the more abstract (MD, λ,MA, µ)-MTD game):

[Defender moves] If the defender issues a move, it will take priority over any other player’s
request. We assume a system which controls its own MTD: if the system/defender thinks it is time
to move (i.e., re-allocate a target), then it will stall any other requests (in particular, those made by
an adversary who wishes to figure out where targets are hiding by getting in touch with locations
and testing them).

In our analysis we only consider a defender who plays a memoryless strategy: at every time step,
the defender plays (issues a move) with probability λ regardless any learned information about the
attacker’s strategy. Also, when the defender plays, he will choose one of the K targets at random
and re-allocates the selected target to a random location (among one of the other N −K possible
locations).

[Attacker moves] The defender has not issued a move, but the attacker has: We consider adaptive
adversarial strategies, i.e., the adversary can be modeled by a probabilistic algorithm A which uses
previously learned information in order to select a new future time step at which the adversary will
issue his next move.

Previously learned information are, e.g., the times at which the attacker moves and his discovery
about when he gains or loses the location of a target. In our analysis we give the adversary more
detailed information (for free): we assume that as soon as the defender re-allocates a target which
location before re-allocation was known to the attacker, the attacker is told that this location does
not any more correspond to one of the K targets.
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Figure 2: Markov chain of Multiple-Target Hiding

[No moves] No moves are issued by either the defender or adversary. We consider an adaptive
adversarial strategy which, given some number of time steps T , maximizes the probability of winning
the game (by finding a subset of k locations) within T time steps:

Suppose the attacker moves and decides to wait by not issuing a move the very next time
step. Then the attacker runs the extra risk to lose one of his locations during the next time step
as the defender plays a memoryless strategy and will play/move with probability λ. This extra
risk translates in a higher probability of not being able to learn a sufficient number of k locations
within T time steps. To reduce this unnecessary probability of losing a location while waiting, the
attacker should not wait in the first place. This means an optimal adaptive adversarial strategy
is to issue moves at every time step as much as the system allows access. We assume a system
which limits the rate r at which a party is allowed to access the system (in more detail: whenever
a party requests to access the system, the request is put in a FIFO queue and the system will serve
requests according to a memoryless Poisson process corresponding to r). Since defender moves take
priority, this implies that the attacker only plays when the defender does not play. Therefore, if
the defender plays memoryless with probability λ, then either the defender moves with probability
λ, or the attacker moves with probability µ = min{r, 1− λ}, or with probability 1− λ− µ no one
moves.

Figure 2 depicts the Markov chain which describes a close approximation of the above MTD
game (the winning state “k” is denoted by state “Win”); as in the single-target hiding game an
optimal adversary should select new locations according to a round robin strategy – we analyze
a suboptimal adversary who selects random new locations: If the game is in state i and if the
attacker plays, which happens with probability µ, then the attacker will hit one of the K − i
unknown locations with probability (K − i)/(N − i) (since the defender uniformly chooses random
new locations): this explains the transition probability Mi,i+1 from state i to state i + 1. If the
game is in state i+1 and if the defender plays, which happens with probability λ, then the defender
will randomize one of the i+ 1 locations known to the adversary with probability (i+ 1)/K: this
explains the transition probability Mi+1,i from state i + 1 to state i. Hence, transition matrix M
is given by

Mi,i+1 = µ(K − i)/(N − i) for 0 ≤ i ≤ k − 1,

Mi+1,i = λ(i+ 1)/K for 0 ≤ i ≤ k − 1, (2)

Mi,i = 1−Mi,i+1 −Mi,i−1 for 1 ≤ i ≤ k − 1, M0,0 = 1−M0,1, and Mk,k = 1−Mk,k−1.
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5 Security Analysis

We prove the following theorem which provides an upper bound on the probability of an attacker
to win a M -MTD game within T time steps and which interpretation leads to the definition of
“security capacity” of MTD games:

Theorem 1 For an M -MTD game with stationary distribution3 π (i.e., πM = π) and the initial
state 0 representing the worst state to start the game in from the adversary’s perspective,4 the
probability that the attacker wins in the first T time steps is ≤ T · π(k), where k is the winning
state.

In order to apply this or next theorems, an upper bound on π(k) for a stationary distribution π
must be computed/estimated in an efficient way. We note that there exists a promising algorithm
[16] which answers efficiently (with no dependence on the size of the Markov chain) for ∆, α ∈ (0, 1)
whether a chosen state in a Markov chain has stationary probability less than ∆ with probability at
least 1−α (their basic algorithm can be used in a binary search construct to find a tight ∆; α can
be chosen exponentially small as the algorithm’s run time is proportional to Õ(− lnα)). Therefore,
even if the Markov chain of an MTD game remains complex/large (after compressing the chain
to one where states only represent the projection to necessary system and MTD parameters), our
theory can be used for security analysis of the MTD game. The main challenge is to find an
appropriate Markov chain in the first place.

In order to prove Theorem 1, we give the adversary the advantage to initially start in a state
drawn from the stationary distribution π rather than starting in the 0 state which represents the
worst starting state for the adversary. For π we prove the following lemma:

Lemma 2 If the MTD game starts in a state drawn from the stationary distribution π, then E,
the expected number of times the attacker enters state k within the first T time steps, is equal to
E = T · π(k).

Proof. Let Z be the random variable representing the sequence of T states entered in the first T
time steps, i.e., if Z = (z1, . . . , zT ) then in the i-th time slot the game entered state zi. Let Xi be
the indicator random variable with Xi = 1 if zi = k and Xi = 0 if zi 6= k. By the definition of
expectation

E =
∑

(z1,...zT )

Prob[Z = (z1, . . . zT )] · |{i : zi = k}|

=
∑

(z1,...zT )

Prob[Z = (z1, . . . zT )] ·
∑
i

Xi

=
∑
i

∑
(z1,...zT )

Prob[Z = (z1, . . . zT )] ·Xi

=
∑
i

Exp[Xi].

3This implicitly assumes the existence of a stationary distribution; this distribution may not be unique, however,
the theorem applies to any such distribution as long as the other condition of the theorem is met.

4This excludes a scenario where initially the adversary has a leg up – e.g., because the initial state of the system is
a ”default” state where the adversary can assume specific ”default” settings before the defender had the opportunity
to move “targets” around.
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Notice that Exp[Xi] is equal to the probability that the game enters state k during the i-th time
slot. Since π is the stationary distribution and the game is assumed to start from a state drawn from
π, this probability is equal to the k-th entry of πM i = π, i.e., π(k). This proves E =

∑
iExp[Xi] =

T · π(k).

Lemma 3 Let E be the expected number of times the attacker enters state k within the first T time
steps. Then, the probability that the attacker wins in the first T time steps is ≤ E.

Proof. Let p(j) be the probability the attacker enters state k exactly j times in the first t time
steps. By the definition of expectation, E =

∑
j p(j) · j. Now notice that the probability that the

attacker wins in the first T time steps is equal to
∑T

j=1 p(j) ≤
∑T

j=0 p(j) · j = E.

The two lemmas together prove5 Theorem 1 which we can interpret as follows: Suppose π(k) =
2−c. Then, the probability that the attacker wins in the first T = 2t time steps is ≤ 2−(c−t). We
may interpret s = c − t as a security parameter and interpret c as the “security capacity” of the
MTD game. The capacity c = s+ t is split towards “a probability 2−s of successful attack” and “a
considered time frame of 2t logical time steps”.

Definition 4 An M -MTD game has at least security capacity c if the probability that the attacker
wins in the first T = 2t time steps is ≤ 2−s for all t+s = c. Notice that an M -MTD game with with
stationary distribution π satisfying the conditions of Theorem 1 has at least a security capacity6

c = − log π(k).

If we know the cost of the real resources (i.e. money, time, etc.) an adversary needs to spend
in order to move, then the next theorem shows how to compute the adversarial cost needed for a
successful attack.

Theorem 2 For an M -MTD game with expected adversarial cost per logical time slot equal to α,
stationary distribution π, and the initial 0 state representing the worst state to start the game in
from the adversary’s perspective, the probability that the attacker wins the M -MTD game by paying
at most C is ≤ C · π(k)/α, where k is the winning state.

Notice that C/α estimates the number of logical time slots T within which the adversary wins
the M -MTD game. Applying Theorem 1 with T = C/α immediately gives the above result. A
precise proof turns out to be more complex and is given in the appendix.

5We notice that the upper bound is close to the actual probability for T · π(k) � 1 since (1) the assumed
stationary distribution has its probability mass at and around the initial 0 state for well designed MTD strategies
and (2)

∑T
j=1 p(j) ≈

∑T
j=0 p(j) · j as p(j)� p(1) for j > 1.

6See the previous footnote, the security capacity will not be much larger than − log π(k).
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5.1 Single-Target Hiding

We compute the stationary distribution for single-target hiding as follows: Equation πM = π gives
for 1 ≤ q ≤ N − 1

π(0) = (1− µ)π(0) + λπ(N) + λ
N−1∑
q=1

π(q), (3)

π(q) = (1− λ− µ)π(q) + µ
(N − q)π(q − 1)

(N − q + 1)
, (4)

π(N) = (1− λ)π(N) +

N−1∑
q=0

µπ(q)/(N − q). (5)

Equation (4) yields the recurrence relation

π(q) =
µ

µ+ λ

N − q
N − q + 1

π(q − 1)

which is solved by

π(q) =

(
µ

µ+ λ

)q N − q
N

π(0).

Equation (3) combined with
∑N

q=1 π(q) = 1− π(0) is solved by

π(0) =
λ

µ+ λ
.

Now we are able to derive

N−1∑
q=0

π(q)/(N − q) =

{
1−

(
µ

λ+ µ

)N
}
/N.

Substituting this in (5) gives the equilibrium probability of the winning state for the adversary:

π(N) =

{
1−

(
µ

λ+ µ

)N
}
· µ
λN

. (6)

In practice, the security capacity − log π(N) ≈ log(λN/µ) is rather small as N is restricted to the
number of unused addresses in the network subnet.

5.2 Multiple-Target Hiding

In order to find the stationary distribution π ofM in (2), we observe that
∑i

j=0 π(j) and
∑k

j=i+1 π(j)
do not change after multiplying with M . This means that the probability which leaves state i+ 1
to i must equal the probability which leaves state i to i+ 1 as a result of one multiplication by M :
For 0 ≤ i ≤ k − 1,

π(i) ·Mi,i+1 = π(i+ 1) ·Mi+1,i.

12



Rewriting the recurrence relation yields

π(k) = π(0)
k−1∏
i=0

π(i+ 1)

π(i)
= π(0)

k−1∏
i=0

Mi,i+1

Mi+1,i

= π(0)
k−1∏
i=0

µ(K − i)/(N − i)
λ(i+ 1)/K

= π(0)

(
µK

λ

)k k−1∏
i=0

(K − k + i+ 1)

(i+ 1)(N − i)

≤
(
µK(K − k + 1)

λ(N − k + 1)

)k

.

Notice that K = k = 1, which describes single-target hiding, has the upper bound µ/(λN)
which is close to (6) implying (by extrapolation) that the suboptimal adversary considered in the
multiple-target hiding game is close to optimal.

The security capacity − log π(k) ≥ k(log(λ(N − k + 1)) − log(µK(K − k + 1))) scales linearly
with k showing that multiple-target hiding is a good MTD design principle.

6 Composition of MTD games

In order to design and maintain secure systems, the system architect or operator must be aware of
the systems’ attack vectors and vulnerabilities. This can be achieved only if a higher-level view of
the system and these attack vectors is presented. A Cyber Attack Life Cycle (CALC) also known
as “Cyber Kill Chain”, provides this higher-level view of an attack in multiple stages where each
stage accomplishes an intermediate goal. A more holistic approach for analytics and sensing can be
taken into consideration by using the knowledge of the entire CALC [39]. The research summarized
in [23] considers a large class of MTD schemes and establishes various CALC stages for which each
of these schemes can be effective. Rather than using CALC, a more detailed representation of
threats is through attack graphs [29], where each node represents a system state with attacker
capabilities and a (labeled) directed edge represents an adversarial behavior causing a change in
system state. An attack graph teaches how individual (local) attacks can be combined in order to
produce larger attack paths (reaching a global goal).

Composition of MTD games seems to be a natural defense mechanism meaning that although
a single MTD may not have sufficient security capacity, a composition of multiple MTDs deployed
together may have sufficient security capacity. Therefore, the system’s defender, by having a higher-
level view of the system through CALC or attack graphs, might be able to get higher security by
composing multiple MTDs (along attack paths).

In this section we analyze the composition of several levels/layers of MTD where the attacker
can only play at a higher level if it is in the winning state of the previous level. Equivalently, the
game at the higher level does not allow the attacker to move if it is not in the winning state of the
previous level. The main idea is that the attacker must slowly penetrate the defense mechanism as
in an Advanced Persistent Threat (APT). We call this approach a Layered MTD or MTD∗:
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Definition 5 A Layered MTD game (or MTD∗) is a composition of a sequence of MTD games
Mj, 0 ≤ j ≤ f , defined by the following rules: The defender plays all the games at each timeslot;
the adversary plays MTD game M0 each timeslot; for 0 ≤ j ≤ f − 1, the adversary only plays
MTD game Mj+1 in a timeslot if the adversary is in the winning position of MTD game Mj at the
beginning of that timeslot.7 Game MTD∗ is won by the adversary if the winning state in Mf has
been reached.

The above definition assumes that each timeslot transitions each Markov chain Mj exactly once,
i.e., for all Mj transitions occur at the same frequency (we analyse different frequencies in section
6.1). The next theorem analyses the security capacity of a layered MTD game:

Theorem 3 Let Mj with winning state kj, stationary distribution πj and at least a security capacity
cj = − log πj(kj), 0 ≤ j ≤ f , represent a sequence of MTD games. Assume that for each Mj-
MTD game the initial 0 state represents the worst state to start the game in from the adversary’s
perspective. Furthermore, assume that in each Mj-MTD game the defender implements moves
which can transition from state kj (the losing state from the defender’s perspective) to a state 6= kj,
hence, λj = 1− (Mj)kj ,kj > 0.

Then, the probability that the attacker wins the layered MTD game based on M0, . . . ,Mf in the
first T time steps is

≤ T · π0(k0)
f∏

j=1

πj(kj)/λj .

I.e., the layered MTD game has at least a security capacity

c =

f∑
j=0

cj + log

f∏
j=1

λj . (7)

Proof. To analyze this composition game, we slightly modify the composition game by giving the
adversary two extra advantages. First, the attacker is also able to play in Mj if it is currently
already in a winning state in Mj (as we will explain this is not really an advantage that helps the
adversary). Second, the defender can only play game Mj if the attacker is also allowed to play.
This restriction of the defender implies that in the modified composition game only if the attacker
is in a winning state in Mj or in Mj+1, then the defender and attacker are able to play in Mj+1;
if the attacker is not in a winning state in Mj or Mj+1, then Mj+1 is put “on hold” as both the
defender and attacker do not issue moves in Mj+1. The modified composition game is formally
defined as follows:

Definition 6 Let Mj with winning (for the adversary) states kj, 0 ≤ j ≤ f , represent a sequence of
MTD games. We define the (M0, . . . ,Mf )-MTD game as the following composition of the individual
Mj-MTD games:

1. The M0-MTD game is played in every time slot.

2. For 0 ≤ j < f , the Mj+1-MTD game is only played in a time slot if

7If the adversary is not in the winning position of MTD game Mj , then these rules effectively change Mj+1

temporarily into an MTD game M ′j+1 where only the defender plays.
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Figure 3: An example of a composed game made of 3 similar levels

• the Mj-MTD game is in its winning state kj at the start of the time slot or

• the Mj+1-MTD game is in its winning state kj+1 at the start of the time slot.

3. The composed game is won by the adversary as soon as he enters the winning state kf of the
Mf -MTD game.

We say that the Mj-MTD game is played at level j in the composition of the Mj-MTD games.

In order to get a feeling for how a (M0, . . . ,Mf )-MTD game behaves we consider the toy example
of Figure 3 which depicts the Markov chains of a sequence of (in our example equivalent) games
M0, M1, and M2 (with similar time scales) at levels 0, 1, and 2. A sample run of a simulation of
the (M0,M1,M2)-MTD game is illustrated in Figure 5 in which after 439 time steps the attacker
wins. Notice that the defender and attacker can play moves in games at different levels at the same
time. E.g., if at the start of a time slot the attacker is not in the winning position in the game at
level 0 but is in the winning position in the game at level 1, then during the time slot he can play
moves in both M0 and M2, but not in M1.

From the attacker’s point of view (in Definition 6), if it is in the winning state of the game at
level j+ 1, then playing the game at level j+ 1 means not doing anything at all as it does not want
to lose its winning position. So, equivalently, the adversary only plays the game at level j+1 if it is
in the winning state of the game at level j. On the other hand, from the defender’s point of view,
the definition unnecessarily restricts it: The defender stops playing the game at level j + 1 if the
game at level j is not in state kj and at the same time the game at level j + 1 is not in state kj+1.
This is an advantage for the adversary which does not happen in practice. In practice the defender
does not know the states of the various games and it will continue playing its MTD strategy as
always.

The (M0, . . . ,Mf )-MTD game is only introduced for proving Theorem 3: We now show that
the theorem holds for (M0, . . . ,Mf )-MTD games which implies the theorem must hold for layered
MTD games as these represent adversaries without additional advantages.

Let Ej be the expected number of times the attacker enters state kj in the game at level j
within the first T time steps. Let pj(t) be the probability that the attacker enters state kj exactly
t times in the game at level j in the first T time steps. Let qj(w) be the probability that the game
at level j is played during exactly w time slots in the first T time steps. We define pj(t|w) as the
probability that the attacker enters state kj exactly t times in the game at level j in the first T
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Figure 4: Simulation of a sample run of the layered MTD game example, in which the adversary
wins the game after 28349 time steps
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Figure 5: Simulation of a sample run of the modified composed game example in which after 439
time steps the attacker wins the game
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time steps conditioned on the assumption that the game at level j is played during exactly w time
slots in the first T time steps. Notice that pj(t) =

∑T
w=t qj(w)pj(t|w).

We derive

Ej+1 =

T∑
t=0

pj+1(t) · t

=

T∑
w=0

qj+1(w)

w∑
t=0

pj+1(t|w) · t.

Notice that Lemma 2 applies directly to the expectation
∑w

t=0 pj+1(t|w) · t: By Lemma 2,

w∑
t=0

pj+1(t|w) · t = w · πj+1(kj+1).

Hence,

Ej+1 =

T∑
w=0

qj+1(w) · w · πj+1(kj+1).

By the definition of composition, the game at level j + 1 is only played at time slot t when the
game at level j is in kj at the start of time slot t or when the game at level j + 1 is in kj+1 at the
start of time slot t. Let t0 be a time slot during which the game at level j+ 1 transitions from kj+1

to a state 6= kj+1. Let t1 be the most recent time slot before t0 during which the game at level
j + 1 transitioned from a state 6= kj+1 to state kj+1. This means that (a) the game at level j + 1
enters (or remains in) state kj+1 at time slots t1, t1 + 1, . . . , t0 − 1, and (b) the game at level j + 1
was played in time slot t1 when at the start of time slot t1 the game at level j + 1 was not in kj+1.

By the definition of composition and choice of t0, (a) implies that the game at level j + 1 is
played during time slots t1 +1, . . . , t0; at the start of each of these time slots the game at level j+1
is in kj+1; during time slot t0 the game at level j + 1 exits state kj+1. This process is described by
a Poisson process with parameter λj+1, i.e., the probability that the game at level j + 1 behaves
this way is equal to (1− λj+1)

t0−1−t1λj+1. Therefore the expectation of t0 − t1 is equal to 1/λj+1.
By the definition of composition, (b) implies that the game at level j must have been in kj at

the start of time slot t1. It may happen that during the Poisson process as described above the
game at level j enters state kj once more in which case the current Poisson process proceeds and a
new Poisson process is not spun off. In the worst case analysis for the defender, however, each time
the game at level j is in kj at the start of a time slot a Poisson process (as described above) is spun
off (which adds more time slots during which the game at level j+ 1 is being played). We conclude
that the expected number of times the game at level j+1 is played is at most the expected number
of times the game at level j is played times 1/λj+1. That is,

T∑
w=0

qj+1(w) · w ≤ Ej/λj+1.

This leads to the recurrence

Ej+1 = Ej · πj+1(kj+1)/λj+1

17



with E0 = T · π0(k0) by Lemma 2. Its solution is

Ef = T · π0(k0) ·
f∏

j=1

πj(kj)/λj+1.

Application of Lemma 3 proves the theorem.
Since an (M0, . . . ,Mf )-MTD game assumes a much weaker defender than the corresponding

layered MTD game, the layered MTD game may have a security capacity which is significantly
larger than (7). In the example of Figure 5 the average (simulated) time to win the (M0,M1,M2)-
MTD game is 471.8 time steps while the average time to win the corresponding layered MTD game
is 14257 timesteps.8 Theorem 3 is a first analysis of layered MTD games and future research is
needed to understand the exact effect of such composition.

Is it possible to derive a much stronger bound on the security capacity for (M0, . . . ,Mf )-MTD
games if the defender has stronger capabilities? E.g., if the defender is able to detect whether the
adversary enters a state kj , then we may give the defender the ability to immediately kick the
adversary out of state kj after one time slot. In the proof of Theorem 3 this means that we do not
need to consider the arguments related to the Poisson process; the upper bound can be improved
by discarding the factors λj . However, this does not change the asymptotic behavior of the upper
bound and therefore extra investment in such advanced detection will likely not pay off (we expect
this intuition to also hold for layered MTD games).

6.1 Time Conversion

How do we define a composition game made of levels with different time scales? Let us measure
the time tj per logical transition at level j in a universal time unit (e.g. seconds) such that tj ≥ 1
for all j. In reality defender and adversarial moves complete in very little time and corresponding
transitions are close to immediate; the rate of play, however, measured in universal time units scales
with 1/tj . The corresponding new transition matrix for level j is equal to

Mnew
j =

1

tj
Mj + (1− 1

tj
)I.

Since the time per transition in Mnew
j is now 1 universal time unit regardless the level, we can

apply the composition theorem to these new transition matrices. Clearly the transformation to the
new transition matrices does not have any effect on the stationary distribution πj since for the new
transition matrix we also have πj = πjM

new
j . This proves that πj(kj) stays the same for Mnew

j .
However we notice that

λnewj = 1− (Mnew
j )kj ,kj = 1− [

1

tj
(Mj)kj ,kj + (1− 1

tj
)]

=
1

tj
(1− (Mj)kj ,kj ) =

λj
tj

8The security capacity of an individual game Mi is at least − log πi(2) = − log 0.1 = 3.32 and (7) gives at least
a security capacity of 3 · 3.32 + log 0.25 = 7.97 for the (M0,M1,M2)-MTD game. The simulation results fit up
to a constant factor the theoretical prediction as the average time to win an individual game Mi is 24.3 and is
approximately twice 23.32 and the average time to win the (M0,M1,M2)-MTD game is 471.8 and is approximately
twice 27.97.
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Moreover, Tnew = T · t0 since it is measured in time steps for the lowest level game. This yields
the following corollary.

Corollary 1 Assume that for each Mj-MTD game the transitions take on average tj ≥ 1 time
units. Then, the probability that the attacker wins the layered MTD game based on M0, . . . ,Mf in
the first T time units is

≤ T · t0π0(k0)
f∏

j=1

tjπj(kj)/λj .

Hence, the security capacity of the layered MTD game measured in time units is at least (7) minus

a time conversion factor log
∏f

j=0 tj.

7 Concluding Remarks and Future Directions

We have introduced a Markov model based framework for MTD analysis. The framework allows
modeling of concrete MTD strategies, provides general theorems about how the probability of a
successful adversary defeating an MTD strategy is related to the amount of time/cost spend by
the adversary, and shows how a multi-level composition of MTD strategies can be analyzed by a
straightforward combination of each individual MTD strategy’s own analysis.

Central in the proposed framework is the concept of security capacity which measures the
strength of an MTD strategy: the security capacity depends on MTD specific parameters and
more general system parameters. As a first direction for future research the security capacity
versus system performance can be analyzed as a function of system and MTD parameters. This
allows the defender to understand the price in performance paid for his MTD strategy and how
MTD and system parameters (given system constraints) should be set. Also several different MTD
strategies can be compared and the most effective one with respect to the defender’s cost in terms
of performance can be selected.

MTD strategies hide targets which is a combinatorial game leading to information theoretic
guarantees expressed by the security capacity. As demonstrated in the analysis of the multiple-
target hiding MTD game, the security capacity is the largest if an adversary needs to find multiple
targets (and not just one single target) which are each being hidden by the MTD strategy. The
analysis shows that the probability of finding each target scales with the product of the probabilities
of finding each specific target. This exponential dependency on the number of hidden targets is also
demonstrated by the analysis of Layered MTD strategies (in our example, the number of hidden
targets is equal to the number of levels). A second direction for future research is to analyse the
Layered MTD composition in more detail and improve the lower bound on the security capacity
given in this paper (as demonstrated for a toy example, even though the current proven bound
shows an exponential dependency on the number of layers, it is much weaker when compared to
simulation results). Additional future research in composition is to investigate into what extend
MTD strategies can be composed according to a more effective (new) mechanism where the state
in each MTD game gives feedback to each other MTD game in their composition. Feedback from
one MTD game can be used to adapt the MTD parameters of another MTD game and this could
lead to an overall larger security capacity of the composition.
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Appendix: Cost Analysis

We prove Theorem 2: Let Ai,j represent the probability the adversary moves in state i and reaches
state j as a consequence of the move. Let the real number ci,j ≥ 0 indicate the adversarial cost
associated to Ai,j . Then

α =
∑
i,j

πiAi,jci,j (8)

is a convex combination of costs ci,j (since
∑

i,j πiAi,j ≤
∑

i,j πiMi,j =
∑

j πj = 1). We need to
prove that the probability the attacker wins the M -MTD game by paying at most C is

≤ C · πk∑
i,j πiAi,jci,j

.
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We first introduce a mapping of matrix M to a new matrix M∗ which we can analyze using our
theorem but has all the necessary cost information embedded:

First, we split each transition from state i to state j with probability Mi,j into two transitions.
One from i to j with probability Ai,j and the other from i to j with probability Di,j = Mi,j −
Ai,j : Ai,j represents the probability that the adversary moves in state i and reaches state j as a
consequence of that move, while Di,j represents the probability of a defender’s move or no move (if
i = j) from state i to state j.

Second, let ci,j ≥ 0 be a real number representing the cost for the adversary if he moves from i
to j with probability Ai,j . Let ε ≥ 0 (later in the proof we will take the limit ε→ 0) and define

Ci,j = dci,j
ε
e ∈ N

We transform each edge from i→ j with probability Ai,j into a path i→ (i, j; 1)→ (i, j; 2)→
. . . → (i, j;Ci,j) → j with probabilities as depicted in Figure 6. The transition i → (i, j; 1) has
probability Ai,j . If Ci,j = 0, then i is directly connected to j without intermediary nodes and i→ j
is transitioned with probability Ai,j by the adversary. We denote the transformed matrix by M∗.

(i,j;1) (i,j;2)i j(i,j;𝐶𝑖,𝑗)…𝐴𝑖,𝑗 1 1 1

𝐷𝑖,𝑗

1

Figure 6: Each transition Mi,j from i→ j will be replaced with above transition from state i to j

Lemma 4 If M has an stationary probability distribution π, then M∗ has an stationary distribution
π∗ defined by:

π∗i =
πi

1 + α
and

π∗i,j;h =
πi ·Ai,j

1 + α
for 1 ≤ h ≤ Ci,j .

Proof. From π∗ = π∗M∗ and the definition of M∗ we infer the following equations:

π∗i,j;1 = π∗i ·Ai,j , if Ci,j ≥ 1,

π∗i,j;h+1 = π∗i,j;h, for 1 ≤ h ≤ Ci,j ,

π∗j =
∑
i

π∗iDi,j +
∑
i

Ci,j 6=0

π∗i,j;Ci,j
+
∑
i

Ci,j=0

π∗i ·Ai,j .

By combining the above equations we have,

π∗j =
∑
i

π∗iDi,j +
∑
i

Ci,j 6=0

π∗i,j;1 +
∑
i

Ci,j=0

π∗i ·Ai,j

=
∑
i

π∗iDi,j +
∑
i

π∗i ·Ai,j =
∑
i

π∗iMi,j
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We conclude that the vector (π∗1, π
∗
2, ...) is proportional to vector π and this proves π∗i = πi/ρ for

some ρ. As a result

π∗i,j;h = π∗i,j;1 = π∗i ·Ai,j =
πi ·Ai,j

ρ
for 1 ≤ h ≤ Ci,j .

The proportionality factor ρ satisfies

1 =
∑
i

π∗i +
∑
i,j,h

Ci,j 6=0
1≤h≤Ci,j

π∗i,j;h

=
∑
i

πi
ρ

+
∑
i,j,h

Ci,j 6=0
1≤h≤Ci,j

πi ·Ai,j

ρ

=
∑
i

πi
ρ

+
∑
i,j

πi ·Ai,j · Ci,j

ρ

Together with
∑

i πi = 1 and (8), this proves ρ = 1 + α and the lemma follows.
In order to prove the theorem we introduce new random variables: Let TM be the random

variable indicating the number of transitions i
Di,j−−→ j, i

Ai,j−−→ (i, j; 1) (if Ci,j ≥ 1) and i
Ai,j−−→ j (if

Ci;j = 0), made before the adversary wins the MTD-game corresponding to M∗.
Let TC =

∑
i,j Ni,j · Ci,j be the random variable indicating the number of all other transi-

tions where Ni,j represents the random variable counting the number of times the path(i, j; 1)
1−→

(i, j; 2)
1−→ . . .

1−→ (i, j;Ci,j) is traversed. Notice that T = TM +
∑

i,j Ni,j is the random variable
representing the number of transitions in the M -MTD game before the attacker wins the game.

Let the random variable CR represent the real cost of the adversary before he wins the MTD-
game corresponding to M . Notice that, for random variables Ni,j in the MTD-game corresponding
to M∗,

CR =
∑
i,j

Ni,j · ci,j .

This shows how the MTD games based on M and M∗ are related.
We derive

TC =
∑
i,j

Ni,j · Ci,j =
∑
i,j

Ni,j · d
ci,j
ε
e

=
1

ε

∑
i,j

Ni,j · (d
ci,j
ε
e · ε)

=
1

ε

∑
i,j

Ni,j · ci,j +
1

ε

∑
i,j

Ni,j · (d
ci,j
ε
e · ε− ci,j)

=
CR

ε
+ E where 0 ≤ E ≤

∑
i,j

Ni,j (9)
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Since T = TM +
∑

i,j Ni,j represents the number of transitions in the M -MTD game before the
attacker wins the game, we can use Theorem 1 in combination with (9) and derive for all t:

C · π∗k
ε

(10)

≥ Prob(TM + TC ≤
C

ε
) = Prob(TM +

CR

ε
+ E ≤ C

ε
)

= Prob(CR ≤ C − ε(TM + E))

≥ Prob(CR ≤ C − εt|TM + E ≤ t)Prob(TM + E ≤ t)
= Prob(CR ≤ C − εt)−

Prob(CR ≤ C − εt|TM + E ≥ t)Prob(TM + E ≥ t)
≥ Prob(CR ≤ C − εt)− Prob(TM + E ≥ t)
≥ Prob(CR ≤ C − εt)− Prob(TM +

∑
i,j

Ni,j ≥ t)

= Prob(CR ≤ C − εt)− Prob(T ≥ t). (11)

If we choose ε = 1
t2

and let t→∞ then (11) tends to Prob(CR ≤ C).
We now analyze upper bound (10) by using Lemma 4:

C · π∗k
ε

=
C · πk
ε(1 + α)

, where

ε(1 + α) = ε+
∑
i,j

πiAi,jCi,j · ε = ε+
∑
i,j

πiAi,jd
ci,j
ε
eε

= ε+
∑
i,j

πiAi,jci,j +
∑
i,j

πiAi,j(d
ci,j
ε
eε− ci,j)

Hence,

ε(1 + α)−
∑
i,j

πiAi,jci,j ≤ ε+
∑
i,j

πiAi,j(d
ci,j
ε
eε− ci,j)

≤ ε+
∑
i,j

πiMi,jε = ε+
∑
j

πjε = 2ε.

This proves that, for ε = 1
t2

and t→∞, ε(1 + α)→
∑

i,j πiAi,jci,j = α and the theorem follows:

Prob(CR ≤ C) ≤ C · πk/α.

25


	Introduction
	Related Work
	MTD Games
	MTD games Examples
	Single-Target Hiding
	Multiple-Target Hiding

	Security Analysis
	Single-Target Hiding
	Multiple-Target Hiding

	Composition of MTD games
	Time Conversion

	Concluding Remarks and Future Directions

