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Abstract. A Ciphertext-Policy Attribute-Based Encryption (CP-ABE) allows users to specify the access
policies without having to know the identities of users. In this paper, we contribute by proposing an ABE
scheme which enables revoking corrupted users. Given a key-like blackbox, our system can identify at least
one of the users whose key must have been used to construct the blackbox and can revoke the key from
the system. This paper extends the work of Liu and Wong to achieve traitor revocability. We construct
an Augmented Revocable CP-ABE (AugR-CP-ABE) scheme, and describe its security by message-hiding
and index-hiding games. Then we prove that an AugR-CP-ABE scheme with message-hiding and index-
hiding properties can be transferred to a secure Revocable CP-ABE with fully collusion-resistant blackbox
traceability. In the proof for index-hiding, we divide the adversary’s behaviors in two ways and build direct
reductions that use adversary to solve the D3DH problem. Our scheme achieves the sub-linear overhead
of O(v/N), where N is the number of users in the system. This scheme is highly expressive and can take
any monotonic access structures as ciphertext policies.

Compared with the scheme in [16], our scheme achieves the same efficiency level, obtaining the sub-linear
overhead of O(v/N), where N is the number of users in the system. This scheme is highly expressive and
can take any monotonic access structures as ciphertext policies.

Keywords: Traitor Tracing, Revocation, Ciphertext-policy Attribute Based Encryption, Prime Order
Groups

1 Introduction

Attribute-Based Encryption (ABE) system is first introduced by Sahai and Waters [22], which is based
on users’ roles and does not have to know their identities in the system. In an Attribute-Based En-
cryption (CP-ABE) system, each user possesses a set of attributes and a private key generated based
on his/her attributes. The encrypting party will define an access policy over role-based/descriptive
attributes to encrypt a message without having to know the identities of the targeted receivers. As
a result, only the user who owns the appropriate attributes which satisfy the access policy are able
to decrypt the ciphertext. Intuitively, Alice, for example, is to encrypt a message under “(Develop-
ment Department AND (Manager OR Engineer))”, which is an access policy defined over descriptive
attributes, so that only those receivers who have their decryption keys associated with the attributes
which satisfy this policy can decrypt it correctly.

Among the CP-ABE schemes recently proposed, [3/4[723/TOT98ITTI20], progress has been made
with regard to the schemes’ security, access policy expressivity, and efficiency. While the schemes with
practical security and expressivity (i.e. full security against adaptive adversaries in the standard model
and high expressivity of supporting any monotone access structures) have been proposed in [TOT9TT],
the traceability of traitors which intentionally expose their decryption keys has been becoming an
important concern related to the applicability of CP-ABE. Assume in a communication system, the
sender wants to assure that only those users who have paid for the service can access the content.
This concern can be solved by encrypting the content and only receivers who own the legitimate keys
can decrypt the content correctly. If we build such a system with ABE, however, due to the nature of
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CP-ABE, the attributes (and the corresponding decryption privilege) are generally shared by multiple
users. As a result, a malicious user, with his attributes shared with multiple other users, might have
an intention to leak the corresponding decryption key or some decryption privilege in the form of a
decryption blackbox/device in which the decryption key is embedded, for example, for financial gain
or for some other incentives, as he only has little risk of getting caught.

Recently a handful of traceable CP-ABE schemes have been proposed in [I4/13/5]. In the whitebox
traceable CP-ABE schemes, given a well-formed decryption key as input, a tracing algorithm can
find out the malicious user who leaked or sold well-formed decryption keys. Liu et al. [14] proposed
such a whitebox traceable CP-ABE scheme that can deter users from these malicious behaviors. As
malicious users invent a decryption blackbox/device which keeps the embedded decrypt keys and
algorithms hidden, Liu et al.[13] proved that the blackbox traceable CP-ABE scheme supports fully
collusion-resistant blackbox traceable in the standard model, where fully collusion-resistant blackbox
traceability means that the number of colluding users in constructing a decryption blackbox/device
is not limited and can be arbitrary. This scheme is fully secure in the standard model and highly
expressive (i.e. supporting any monotonic access structures).

It should be observed that a tracing system is not designed to protect the encrypted content. It
is used to distinct the compromised users from other legitimate users, which means the corrupted
user /key is still remained in the system and an effective blackbox is likely to be produced with these
corrupted keys in the wild market. The exposed compromised users need leave or be removed from the
system to avoid incurring more losses. When any of these happens, the corresponding user keys should
be revoked. We added the revocability in the scheme so that we can remove the compromised keys as
needed. We focus on achieving direct revocation in traceable CP-ABE system. In a direct revocation
mechanism, it does not need any periodic key updates and it does not affect any non-revoked users
either. A system-wide revocation list could be made public and revocation could be taken into effect
promptly as the revocation list could be updated immediately once a key is revoked. Specifically, we
generate @}, which is a part of ciphertext, with a non-revoked index list R. When decrypting, we first
recover K; ; which has a common item ] jeR; My with Q) if they share a consistent revocation list
R. Then K i,; is used in the following decryption process. To avoid a further loss, the revocation list
should be updated timely once corrupted users are found. For the security proof for message-hiding,
we re-construct the Semi-functional Keys by replacing h with hh;, which can realize revocability,
and adding the random item K i.j,;» accordingly. As a contrast, the random items for Semi-functional
Ciphertexts remain the same, which is irrelevant to the revocability. For the security proof for index-
hiding, we have two ways for adversary to take and add more sub-cases in Case II which make the
security proof a non-trivial work. In this paper, We continue our work on prime order groups as an
extension for [16].

1.1 Our results

It has been shown (e.g. in [6/9]) that the constructions on composite order groups will result in
significant loss of efficiency and the security will rely on some non-standard assumptions (e.g. the
Subgroup Decision Assumptions) and an additional assumption that the group order is hard to factor.
The previous work in [I6] achieves better security than the scheme in [I3], which is constructed on
composite order groups. In this paper, we add the revocability in [16] and prove it highly expressive
and full secure in the standard model. On the efficiency aspect, this new scheme achieves the same
efficient level as in [16], i.e. the overhead for the fully collusion-resistant blackbox traceability is in
O(V/'N), N is the number of users in a system.

Table 1| compares this new scheme with the previous work on blackbox traceable CP-ABE [13] and
the traceable CP-ABE on prime order group but without revocability [16]. We only change the size of
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Ciphertext Private Key Public Key Pairing Computation|On Prime Order|Revocation|Order of the
Size Size Size in Decryption Groups Groups
3] 20 + 17V N S| + 4 U] + 3+ 4V N 2|1 + 10 X x P1p2D3
[16] |60 +3+46VN| 6|S|+12 [24)U| + 22 + 14V N 6|I] + 30 v x P
this paper|6l + 3 + 467/ N|[6]S| + 9 + 3v/N|[24|U| + 22 + 23V N 6|7] 4 30 v v P

! Let I be the size of an access policy, |S| the size of the attribute set of a private key, |[U| the size of the attribute universe,
and |I| the number of attributes in a decryption key that satisfies a ciphertext’s access policy.

Table 1. Features and Efficiency Comparison

keypair as we need add revocation items in the key. Both the ciphertext and the pairing computation
in decryption are kept unchanged. This implies both this new scheme and [16] have better security
than the scheme in [13], although all of them are fully secure in the standard model and have overhead

in O(vV'N).

Related Work. In the literature, several revocation mechanisms have been proposed in the context of
CP-ABE. In [21], Sahai et al. proposed an indirect revocation mechanism, which requires an authority
to periodically broadcast a key update information so that only the non-revoked users can update
their keys and continue to decrypt messages. In [I], Attrapadung and Imai proposed a direct revo-
cation mechanism, which allows a revocation list to be specified directly during encryption so that
the resulting ciphertext cannot be decrypted by any decryption key which is in the revocation list
even though the associated attribute set of the key satisfies the ciphertext policy. For ABE scheme,
in [13] Liu et al. defined a ‘functional’ CP-ABE that has the same functionality as the conventional
CP-ABE (i.e. having all the appealing properties of the conventional CP-ABE), except that each user
is assigned and identified by a unique index, which will enable the traceability of traitors. Liu et al.
also defined the security and the fully collusion-resistant blackbox traceability for such a ‘functional’
CP-ABE. Furthermore, Liu et al. defined a new primitive called Augmented CP-ABE (AugCP-ABE)
and formalized its security using message-hiding and index-hiding games. Then Liu et al. proved that
an AugCP-ABE scheme with message-hiding and index-hiding properties can be directly transferred to
a secure CP-ABE with fully collusion-resistant blackbox traceability. With such a framework, Liu et al.
obtained a fully secure and fully collusion-resistant blackbox traceable CP-ABE scheme by construct-
ing an AugCP-ABE scheme with message-hiding and index-hiding properties. In [16], Liu et al. obtain
a prime order construction and it will be tempting to bring the revocation into [16] as a practical
enhancement and implementation. In this paper, we leverage the revocation idea from [I5].

Outline. In this paper, we follow the same framework in [16]. In particular, in Section |2, we propose a
definition for CP-ABE supporting key-like blackbox traceability and direct revocation. the definition
is ‘functional’, namely each decryption key is uniquely indexed by k € {1,...,N} and given a key-
like decryption blackbox, the tracing algorithm Trace can return the index k of a decryption key
which has been used for building the decryption blackbox. In our direct revocation definition, the
Encrypt algorithm takes a revocation list R C {1,..., N} as an additional input so that a message
encrypted under the (revocation list, access policy) pair (R, A) would only allow users whose (index,
attribute set) pair (k,S) satisfies (k € [N]\ R) AND (S satisfies A) to decrypt. In Section [3| we
revisit the definitions and security models of Augmented Revocable CP-ABE (AugR-CP-ABE for
short) from [I5]. We refers to the ‘functional’ CP-ABE in Section [2[ as Revocable CP-ABE (R-CP-
ABE for short), then extend the R-CP-ABE to AugR-CP-ABE, which will lastly be transformed to a
key-like blackbox traceable R-CP-ABE. More specifically, we define the encryption algorithm of AugR-
CP-ABE as Encrypta (PP, M, R, A, k) which takes one more parameter k € {1,..., N + 1} than the
original one in R-CP-ABE. This also changes the decryption criteria in AugR-CP-ABE in such a way
that an encrypted message can be recovered using a decryption key SKj, g, which is identified by index
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k €{1,...,N} and associated with an attribute set S, only if (k € [N]\ R) A (S satisfies A) A (k > k).
In Section {4| we propose our AugR-CP-ABE construction on prime order groups and prove that our
AugR-CP-ABE construction is message-hiding and index-hiding in the standard model. As a result,
we obtain a fully secure and fully collusion-resistant blackbox traceable R-CP-ABE scheme on prime
order groups.

To construct the AugR-CP-ABE, we continue our work in [I6] and leverage the revocation idea
from [I5]. In particular, besides achieving the important features for practicality, such as revocation,
high expressivity and efficiency, the construction is proved secure and traceable in the standard model.

2 Revocable CP-ABE and Blackbox Traceability

We follow the definition in [I5]. Given a positive integer n, our Revocable Ciphertext-Policy Attribute-
Based Encryption (R-CP-ABE) system consists of four algorithms:

Setup(A,U, N) — (PP,MSK). The algorithm takes as input a security parameter A, the attribute
universe U, and the number of users N in the system, then runs in polynomial time in A, and

outputs the public parameter PP and a master secret key MSK.
KeyGen(PP,MSK, S) — SKj, s. The algorithm takes as input the public parameter PP, the master

secret key MSK, and an attribute set S, and outputs a private decryption key SKj g, which is

assigned and identified by a unique index k € [N].
Encrypt(PP, M, R,A) — CTg a. The algorithm takes as input the public parameter PP, a message

M, arevocation list R C [N], and an access policy A over U, and outputs a ciphertext CTg  such
that only users whose indices are not revoked by R and attributes satisfy A can recover M. R and
A are implicitly included in CTg 4.

Decrypt(PP,CTgr p,SKg,s) — M or L. The algorithm takes as input the public parameter PP, a
ciphertext CTr o, and a private key SKy g. If (k € [N]\ R) AND (S satisfies A), the algorithm
outputs a message M, otherwise it outputs L indicating the failure of decryption.

Correctness. For any attribute set S C U, index k € [N], revocation list R C [N], access policy
A over U, and message M, suppose (PP,MSK) < Setup(\,U,N), SKj 5 < KeyGen(PP,MSK,5),
CTgra < Encrypt(PP, M, R, A). If (k € [N]\ R) A (S satisfies A), then Decrypt(PP,CTg 4,SKi.s) = M.

Security. Now we define the security of a R-CP-ABE system using a message-hiding game.

Gamepy. The Message-hiding game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(\, U, N) and gives the public parameter PP to A.
Phase 1. For i = 1 to @1, A adaptively submits (index, attribute set) pair (k;, Sk, ), and the challenger

responds with SKj, g, .
Challenge. A submits two equal-length messages My, M7 and a (revocation list, access policy) pair
(R*, A*). The challenger flips a random coin b € {0, 1}, and sends CTr+ s+ < Encrypt(PP, M}, R*, A¥)

to A.
Phase 2. For i = Q;+1 to @, A adaptively submits (k;, Sk,), and the challenger responds with

SKp,, . -
Guess. A outputs a guess b’ € {0,1} for b.

A wins the game if & = b under the restriction that none of the queried {(k, Skt)}?:1 can satisfy
(kt € [N]\ R*) AND (S, satisfies A*). The advantage of A is defined as MHAAdv 4 = | Pr[b/ = b] — 1|.

Definition 1. An N-user R-CP-ABE system is secure if for all polynomial-time adversaries A the
advantage MHAdv 4 is negligible in .
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The message-hiding game is a typical semantic security game and is based on that for conventional
CP-ABE [10/11], where the revocation list R is always empty. It is clear that such a CP-ABE system
[TO/T1] has the following properties: fully collusion-resistant security, meaning that several users should
not be able to decrypt a message that none of them are individually granted to access, fine-grained
access control on encrypted data, and efficient one-to-many encryption.

It is worth noticing that, as pointed in [13], in the definition of the game: (1) the adversary is
allowed to specify the index of the private key when it makes key queries for the attribute sets of its
choice, i.e., for t = 1 to @, the adversary submits (index, attribute set) pair (k¢, Sg,) to query a private
key for attribute set Sy,, where Q@ < N, k; € [N], and k; # ky V1 <t # t' < @ (this is to guarantee
that each user/key can be uniquely identified by an index); and (2) for k; # ky we do not require
Sk, # Sk, , 1.e., different users/keys may have the same attribute set. We remark that these two points
apply to the rest of the paper.

2.1 Blackbox Traceability

Now we define the traceability against key-like decryption blackbox. A key-like decryption blackbox D
can be viewed as a probabilistic circuit that takes as input a ciphertext CTg 4 and outputs a message
M or 1, and such a decryption blackbox does not need to be perfect, namely, we only require it to be
able to decrypt with non-negligible success probability. In particular, a key-like decryption blackbox D
is described by a (revocation list, attribute set) pair (Rp, Sp) and a non-negligible probability value €
(i.e. 0 < € < 1is polynomially related to ), and advertised that for any ciphertext generated under the
(revocation list, access policy) pair (R, A), if ((Sp satisfies A) AND ([N]\R)N([N]\ Rp) # () can be
satisfied by Sp and Rp, this blackbox D can decrypt the corresponding ciphertext with probability at
least €. Specifically, once a blackbox is found being able to decrypt ciphertext, we can regard it as a key-
like decryption blackbox with the corresponding (revocation list, attribute set) pair (Rp, Sp), and the
ciphertext is related to the pair (R, A) which satisfies ((Sp satisfies A) AND ([NJ\R)N([N]\Rp) # 0).
If we set the revocation list R and Rp as empty, we can get the same definition for key-like decryption
blackbox as shown in [13].

Trace? (PP, Rp, Sp,€) — K C [N]. This is an oracle algorithm that interacts with a key-like de-
cryption blackbox D. By given the public parameter PP, a revocation list Rp, a non-empty attribute
set Sp, and a probability value (lower-bound) €, the algorithm runs in time polynomial in X and 1/e,
and outputs an index set Ky C [N] which identifies the set of malicious users. Note that € has to be
polynomially related to .

The following Tracing Game captures the notion of fully collusion-resistant traceability. In the
game, the adversary targets to build a decryption blackbox D that functions as a private decryption
key with the pair (Rp, Sp) (as the name of key-like decryption blackbox implies) which can decrypt
ciphertexts under some (revocation list, access policy) pairs (R, A). The tracing algorithm, on the
other side, is designed to extract the index of at least one of the malicious users whose decryption
keys have been used for constructing D.

GameTgr. The Tracing Game is defined between a challenger and an adversary A as follows:

Setup. The challenger runs Setup(\, U, N) and gives the public parameter PP to A.

Key Query. For i = 1 to @, A adaptively submits (k;, Sk,), and the challenger responds with
SKk,. sy, -

(Key-like) Decryption Blackbox Generation. A outputs a decryption blackbox D associated
with a (revocation list, attribute set) pair (Rp,Sp), Sp C U,Rp C [N] and a non-negligible
probability (lower-bound) value e.
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Tracing. The challenger runs Trace? (PP, Rp, Sp, €) to obtain an index set Ky C [N].

Let Kp = {ki|]1 < i < @Q} be the index set of keys corrupted by the adversary. We say that the
adversary A wins the game if the following conditions hold:

1. For any (revocation list, access policy) pair (R, A) which satisfied ((Sp satisfies A) AND ([N]\
R)N([N]\ Rp) # 0), we have

Pr[D(Encrypt(PP, M, R, A)) = M] > e,

where the probability is taken over the random choices of message M and the random coins of D.
A decryption blackbox satisfying this condition is said to be a useful key-like decryption blackboz.

2. Kp =0, or Ky Z Kp, or ((ks € Rp) OR (Sp € Sk,) Vk: € Kr).
We denote by TRAdv 4 the probability that adversary A wins this game.

Definition 2. An N-user Blackbox Traceable CP-ABE system is traceable if for all polynomial-time
adversaries A the advantage TRAdv 4 is negligible in A.

3 Augmented R-CP-ABE Definitions

3.1 Definitions and Security Models
An Augmented R-CP-ABE (AugR-CP-ABE) system consists of the following four algorithms:

Setupp (A, U, N) — (PP,MSK). The algorithm takes as input a security parameter A, the attribute
universe U, and the number of users N in the system, then runs in polynomial time in A, and
outputs the public parameter PP and a master secret key MSK.

KeyGenp (PP, MSK, S) — SKj, 5. The algorithm takes as input PP, MSK, and an attribute set S, and
outputs a private key SKj, g, which is assigned and identified by a unique index k € [N].

Encrypta (PP, M, R, A, k) — CTgr a. The algorithm takes as input PP, a message M, a revocation list
R C [N], an access policy A over U, and an index k € [N + 1], and outputs a ciphertext CTg 4. A
is included in CTg 4, but the value of k is not.

Decryptp(PP,CTg a,SKy 5) = M or L. The algorithm takes as input PP, a ciphertext CTg 4, and
a private key SKy g. If (k € [N]\ R) AND (S satisfies A), the algorithm outputs a message M,
otherwise it outputs L indicating the failure of decryption.

Correctness. For any attribute set S C U, index k € [N], revocation list R C [N], access policy
A over U, encryption index k € [N + 1], and message M, suppose (PP,MSK) < Setupa(\, U, N),
SKi,s < KeyGenp(PP,MSK,S), CTga < Encrypta(PP, M, R,A k). If (k € [N]\ R) A (S satisfies
A) A (k > k) then Decrypta(PP,CTg a,SKis) = M.

Security. The security of AugR-CP-ABE is defined by the following three games, where the first two
are for message-hiding, and the third one is for the index-hiding property.

In the first two message-hiding games between a challenger and an adversary A, k = 1 (the
first game, Gameﬁ‘AHl) or k=N +1 (the second game, Game,\AAHNH).

Setup. The challenger runs Setupa (A, U, N) and gives the public parameter PP to A.

Phase 1. For t = 1 to Q1, A adaptively submits (index, attribute set) pair (k, Sk, ), and the challenger
responds with SKkt,Skt7 which corresponds to attribute set Sg, and is assigned index k;.

Challenge. A submits two equal-length messages My, M and a (revocation list, access policy) pair
(R*, A*). The challenger flips a random coin b € {0, 1}, and sends CTg+ o+ < Encrypta (PP, M,, R*, A*, k)
to A.
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Phase 2. For t = Q1 + 1 to @, A adaptively submits (index, attribute set) pair (k, Sk,), and the
challenger responds with SKkt,Skt7 which corresponds to attribute set Si, and is assigned index k.
Guess. A outputs a guess b’ € {0,1} for b.

GameﬁAHl. In the Challenge phase the challenger sends CTg« 4+ < Encryptp (PP, M, R*,A*,1) to A.

A wins the game if ¥ = b under the restriction that none of the queried {(k, Skt)}Z-Q:l can satisfy
(k € [N]\ R*) AND (S, satisfies A*). The advantage of A is defined as MHAdv 4 = | Pr[t' = b] — 3|.

GameﬁAHNH. In the Challenge phase the challenger sends CTg= g+ <— Encrypta (PP, My, R*, A*, N + 1)
to A. A wins the game if b = b. The advantage of A is defined as MHy_;Adv4 = | Pr[b/ = b] — 3.

Definition 3. A N-user Augmented R-CP-ABE system is message-hiding if for all probabilistic poly-
nomial time (PPT) adversaries A the advantages MH?AdvA and MHQHAdvA are negligible in \.

Gameﬁ‘_'. In the third game, index-hiding game, for any non-empty attribute set S* C U, we define
the strictest access policy as Ag« = A .g. 7, and require that an adversary cannot distinguish
between an encryption using (Ags, R*, k) and (Ags, R*, k+1) without a private decryption key SK Si
such that (k € [N]\ R*) A (S; 2 S*). The game takes as input a parameter k € [N] which is given to
both the challenger and the adversary A. The game proceeds as follows:

Setup. The challenger runs Setupa (A, U, N) and gives the public parameter PP to .A.

Key Query. For t = 1 to @, A adaptively submits (index, attribute set) pair (k, Sk,), and the
challenger responds with SK, Sk, > which corresponds to attribute set Si, and is assigned index k;.

Challenge. A submits a message M and a (revocation list, access policy) pair (R*, A*). The chal-
lenger flips a random coin b € {0,1}, and sends CTgs a+ < Encrypta(PP, M, R*,A* k +b) to
A.

Guess. A outputs a guess b’ € {0, 1} for b.

A wins the game if b’ = b under the restriction that none of the queried pairs {(kt,Skt)}inl can
satisfy (ki = k) A (ki € [N]\ R*) A (S, satisfies Ag+), i.e. (ke = k) A (ke € [N]\ R*) A (Sg, 2 57). The
advantage of A is defined as IH*Adv4[k] = | Pr[t = b] — 3|.
Definition 4. A N-user Augmented R-CP-ABE system is index-hiding if for all PPT adversaries A
the advantages IHAAdv 4[k] for k =1,..., N are negligible in .

3.2 The Reduction of Traceable R-CP-ABE to Augmented R-CP-ABE

We now show that an AugR-CP-ABE with message-hiding and index-hiding implies a secure and trace-
able R-CP-ABE. Let Yo = (Setupp, KeyGenp, Encrypta, Decrypty ) be an AugR-CP-ABE with message-
hiding and index-hiding, define Encrypt(PP, M, A) = Encrypta (PP, M, A, 1), then X = (Setupp, KeyGeny,
Encrypt, Decrypt,) is a R-CP-ABE derived from Xa. In the following, we show that if X's is message-
hiding and index-hiding, then X’ is secure. Furthermore, we propose a tracing algorithm Trace for X
and show that if Xa is message-hiding and index-hiding, then X' (equipped with Trace) is traceable.

3.2.1 R-CP-ABE Security

Theorem 1. If Xa is an AugR-CP-ABE with message-hiding and index-hiding properties, then X is
a secure and traceable R-CP-ABE.

Proof. Note that X is a special case of Yo where the encryption algorithm always sets k = 1. Hence,
Gamepypy for X' is identical to Gameff‘,,,_,1 for X, which implies that MHAdv 4 for X in Gamepmy is equal

to MH{'Adv 4 for 4 in GameﬁAHl, i.e., if X5 is message-hiding (in GameﬁAHl), then X' is secure.
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3.2.2 R-CP-ABE Traceability

Now we show that if Xa is message-hiding (in GameﬁAHN+1) and index-hiding, X is traceable. As
shown in [I3], with the following Trace algorithm [I3], X' achieves fully collusion-resistant blackbox
traceability against key-like decryption blackbox.

Trace? (PP, Rp, Sp,€) — Ky C [N]: Given a key-like decryption blackbox D associated with a non-
empty attribute set Sp and probability € > 0, the tracing algorithm works as follows:

1. For k=1to N + 1, do the following:
(a) The algorithm repeats the following 8A\(NN/e€)? times:
i. Sample M from the message space at random.
ii. Let CTR,ASD < Encrypta(PP, M, R, Ag,, k), where Ag, is the strictest access policy of Sp.
iii. Query oracle D on input CTRg, Asp> and compare the output of D with M.
(b) Let pj be the fraction of times that D decrypted the ciphertexts correctly.
2. Let K be the set of all k € [N] for which p; — pr.q > €/(4N). Then output Kz as the index set
of the private keys of malicious users.

Theorem 2. If Xa is message-hiding and index-hiding, then X is traceable using the Trace algorithm
against key-like decryption blackboz.

Proof. In the proof sketch below, we show that if the key-like decryption blackbox output by the
adversary is a useful one then the traced Ky will satisfy (Kp # 0) A (Kpr € Kp) A (Elkt € Ky s.t.( kg, €
[N]\ Rp) A (Sp C Sk,)) with overwhelming probability, which implies that the adversary can win the
game GameTg only with negligible probability, i.e., TRAdv 4 is negligible.

Let D be the key-like decryption blackbox output by the adversary, and (Rp, Sp) be the (revocation
list, attribute set) pair which can be used to describe D. Define

p;, = Pr[D(Encrypta (PP, M, R, Ag,, k)) = M],

where the probability is taken over the random choice of message M and the random coins of D.
We have that p; > e and py41 is negligible. The former follows the fact that D is a useful key-like
decryption blackbox, and the later follows that Xa is message-hiding (in Gameﬁ,lH N+1). Then there
must exist some k € [N] such that p; — pj,; > €/(2N). By the Chernoff bound it follows that with
overwhelming probability, pz — pp; > €/(4N). Hence, we have Ky # (.

For any k; € Kr (i.e., pr, —Pr,+1 > 1% ), we know, by Chernoff, that with overwhelming probability
Dy — Pk +1 > €/(8N). Clearly (k: € Kp)A(kt € [N]\Rp)A(Sp C Sy, ) since otherwise, D can be directly
used to win the index-hiding game for X 4. Hence, we have (Ky € Kp) A ((k: € [N]\ Rp) A (Sp C
Skt) Vks € KT)

4 An Augmented R-CP-ABE Construction on Prime Order Groups

Now we construct an AugR-CP-ABE scheme on prime order groups, and prove that this AugR-CP-
ABE scheme is message-hiding and index-hiding in the standard model. Combined with the results in
Section we obtain a R-CP-ABE scheme that is fully collusion-resistant blackbox traceable in the
standard model, fully secure in the standard model, and on prime order groups.

4.1 Preliminaries

Before proposing our AugR-CP-ABE construction , we first review some preliminaries.
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Bilinear Groups. Let G be a group generator, which takes a security parameter A and outputs
(p, G,Gr,e) where p is a prime, G and Gr are cyclic groups of order p, and e : G x G — Gr is a
map such that: (1) (Bilinear) Vg, h € G,a,b € Zy, (g% h®) = e(g,h)?, (2) (Non-Degenerate) 3g € G
such that e(g, g) has order p in Gy. We refer to G as the source group and Gr as the target group. We
assume that group operations in G and G7 as well as the bilinear map e are efficiently computable,
and the description of G and Gt includes a generator of G and Gr respectively.

Complexity Assumptions. We will base the message-hiding property of our AugR-CP-ABE scheme
on the Decisional Linear Assumption (DLIN), the Decisional 3-Party Diffie-Hellman Assumption
(D3DH) and the Source Group g-Parallel BDHE Assumption, and will base the index-hiding property
of our AugR-CP-ABE scheme on the DLIN assumption and the D3DH assumption. Note that the
DLIN assumption and the D3DH assumption are standard and generally accepted assumptions, and
the Source Group ¢-Parallel BDHE Assumption is introduced and proved by Lewko and Waters in
[12]. Please refer to Appendix [Al for the details of the three assumptions.

Dual Pairing Vector Spaces. Our construction will use dual pairing vector spaces, a tool introduced
by Okamoto and Takashima [I7JI8/19] and developed by Lewko [9] and Lewko and Waters [12]. Let
v = (v1,...,v,) be a vector over Z,, the notation ¢g¥ denotes a tuple of group elements as g

V1

(g*,...,9"). Furthermore, for any a € Z, and v = (v1,...,v,),w = (w1, ..., wy) € Zy, define

(g)" =g = (g"",....g""), g"g" =g"" = (g" ", g7 ),

and define a bilinear map e,, on n-tuples of G as e, (g”, g%) := H e(g, g"") = e(g, g)(”'“’), where the

dot/inner product v - w is computed modulo p.
For a fixed (constant) dimension n, we say two bases B := (by,...,b,) and B* := (b},...,b}) of
Zy, are “dual orthonormal” when

b;-b; = 0(modp) V1 <i+# j<mn, b; b =1(modp)V1l<i<n,

where 1) is a non-zero element of Z,. (This is a slight abuse of the terminology “orthonormal”, since
v is not constrained to be 1.) For a generator g € G, we note that e, (g%, gba*') = 1 whenever ¢ # j,
where 1 here denotes the identity element in Gp. Let Dual(Zj,1) denote the set of pairs of dual

orthonormal bases of dimension n with dot products b; - by =1, and (B, B*) s Dual(Zy,, 1) denote
choosing a random pair of bases from this set. As our AugR-CP-ABE construction will use dual pairing
vector spaces, the security proof will use a lemma and a Subspace Assumption, which are introduced
and proved by Lewko and Waters [12], in the setting of dual pairing vector spaces. Please refer to
Appendix[A.T]for the details of this lemma and the Subspace Assumption. Here we would like to stress
that the Subspace Assumption is implied by DLIN assumption.

To construct our AugR-CP-ABE scheme, we further define a new notation. In particular, for any
v=(v1,...,0) € Zp, v = (vy,...,0 n)EZ” we define

(gv)v = ((gv)vi7 MR (gv)vn/) = (gvllvl7 A 7g’u£vn7 A 797);/1]17 AR 7gv’lnlvn) E Gnnl'

Note that for any v, w € Zj, v w' € Z” we have

~

n n

n n
/ /
e,m/((gv) H e( v Uz,gwywl = H e(g viWj

.
I
—
S
I
—
.
I
—
.
I
—
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Linear Secret-Sharing Schemes (LSSS). As of previous work, we use linear secret-sharing schemes
(LSSS) to express the access policies. An LSSS is a share-generating matrix A whose rows are labeled
by attributes via a function p. An attribute set S satisfies the LSSS access matrix (A, p) if the rows
labeled by the attributes in S have the linear reconstruction property, namely, there exist constants
{wilp(i) € S} such that, for any valid shares {A;} of a secret s, we have }_ ;) cqwiA; = s. The formal
definitions of access structures and LSSS can be found in Appendix [C|

Notations. Suppose the number of users N in the system equals n? for some n EL so we use [n,n]
instead of [N] in the following content. We arrange the users in a n x n matrix and uniquely assign
a tuple (i,7) where 1 < 4,5 < n, to each user. A user at position (,j) of the matrix has index
k = (i — 1) * n + j. For simplicity, we directly use (i,5) as the index where (i,j) > (i,7) means that
((i >i)V (i =14iAj > j)). The use of pairwise notation (i,j) is purely a notational convenience,
as k = (i — 1) *x n + j defines a bijection between {(i,7)|1 < 7,5 < n} and {1,...,N}. We conflate
the notation and consider the attribute universe to be [U] = {1,2...,U}, so U serves both as a
description of the attribute universe and as a count of the total number of attributes. Given a bilinear
group order p, one can randomly choose 74,ry,7, € Zp, and set x1 = (14,0,72), x2 = (0,7y,72),
X3 = X1 X X2 = (—=ryrs, =147, r21ry). Let span{xi,x2} be the subspace spanned by x; and xo,
ie. span{x1,x2} = {rixi + vaxe|vi,v2 € Zy}. We can see that x3 is orthogonal to the subspace
span{x1,x2} and that Zg = span{x1,x2,x3} = {rix1 + vax2 + vsxslvi,v2,v3 € Zy}. For any
v € span{x1, X2}, we have (x3-v) = 0, and for random v € Zz?;’ (x3-v) # 0 happens with overwhelming
probability.

4.2 AugR-CP-ABE Construction

Setupp(\, U, N = n?) — (PP,MSK). The algorithm chooses a bilinear group G of order p and
two generators g, h € G. It randomly chooses {hj € Zp} e, (B, B*), (Bo, Bf) € Dual(Z3,v) and

(B1,B7),...,[Buy,B;};) € Dual(Zg, ¥). Welet bj, b7 (1 < j < 3) denote the basis vectors belonging to

(B, B*), bo,j, by ;(1 < j < 3) denote the basis vectors belonging to (Bo, B), and by ;, b} ;(1 < j <6)

539 z,]
denote the basis vectors belonging to (B, B} ) for each x € [U]. The algorithm also chooses random

exponents
o1, € Zyp, {ri,zis i1, @i2 € Zptic)y 1¢j1,¢5.2: Yjs g € Zptjepn)-

The public parameter PP and the master secret key MSK are set to

PP = ((p7 G7 GT7 6)7 g, h7gb17gb27 {h]}]e[n]v hblv hb27 {hglv h?2}je[n}a
hbo,1,hbo,27 {hbz,1’ hbz,2’ hbz,3’ hbzA}zg[M]v
F = 6(9, h)qu? Fy = 6(97 h)¢027 {Fl,j = 6(97 hj)woanQ,j = e(ga hj)¢a2}j6[n]a
{Ei1 = e(g,9)¥%, Fig= e(gag)wai’2}ie[n},
[Gi= gn®r0e), Z; = by (H = V9%, Y = HY Yiegy)).

*k * * * * * k *k
MSK:< 1, b3, b[),l?b[),Q? {bac,b x,25 x,37bx,4}m6[u}704170‘27 {Tiazia O‘i,lyai,Z}iE[n]a {Cj,lacj,2}j6[n]>'

In addition, a counter ctr = 0 is implicitly included in MSK.
KeyGena (PP, MSK, S) — SK(; ;) 5. The algorithm first sets ctr = ctr + 1 and computes the corre-
sponding index in the form of (7, j) where 1 <i,5 <nand (i — 1) *n+ j = ctr. Then it randomly

i

L If the number of users is not a square, we add some “dummy” users to pad to the next square.
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chooses 0; j1,0; 2,91, 0: 2 € Zp, and outputs a private key

SK(ijys = ( (i,5),5, K;j= glQiatrics )b (276 2)b5 () (703,25 005,)bT H(043.2404,5,2)5
K/ _ g(a1+0'1 7, 1+51 s 1)b1+(a2+01 7, 2+5z N 2) K// (K/ ')Zl‘
7-7

_ (Uw,l+5w,1) 1+(‘7w72+5w72
{Kijj =h; et

IR FITRY Y S e o i1 (b b ) o ia(bY o db
Kijo=g"mPatobos (g, . —g 05,1 (b5 110} 0)+04,5,2(b] 5 IA)}:EES ).

Encrypta(PP, M, R,A = (A, p), (i,7)) = CTg (a,)- R C [n,n] is a revocation list. A is an I x m LSSS
matrix and p maps each row Ay of A to an attribute p(k) € [U]. The encryption is for recipients
whose (index, attributes set) pair ((¢,§), S ;)) satisfy ((i,7) € [n,n]\R) A (S ;) satis fies (A, p)) A
((4,4) = (i,4)). Let R = [n,n] \ R and for i € [n], R; = {j'|(i,j') € R}, that is, R is the non-
revoked index list, and R; is the set of non-revoked column index on the i-th row. The algorithm
first chooses random

3

Ry Ty 81wy 8ns tsenostn € Ly, Ve, Wi,..., Wy € Ly,
m
§1,1,81,2, &1, 812 € Zp, ur,u2 €7y

It also chooses random 74,7y, 7, € Zjp, and sets x1 = (72,0,72),x2 = (0,7y,72), X3 = X1 X X2 =
(=ryrz, —T2Ts, rry). Then it randomly chooses

viEZg fori=1,...,i, wv; € span{x1,x2} fori=i+1,...,n

Let m; and w9 be the first entries of u; and wy respectively. The algorithm creates a ciphertext
(R, (A, p), (Ri, R, Q1. Q1 QY. Ty, (C1.CLYy, (Py)l_y) as follows:
1. For each row i € [n]:

— if 4 <4: choose random $; € Zj, then set

Jj=b

Q; = gsz'(b1+b2)’ (h H hjr i(b1+b2) Zt h7r1b1+7r2b2 ;/ _ gti(bl—&-ln)7 T, = e(g,g)gi
j'ER;

—if i >4 set
R, = (G,)*", R.=R},
Q= gTSi(Ui"Uc)(bl‘i’bZ)’ Q= (h H hj,)Tsz'(vz‘-Uc)(b:Hrbz)Z?hmbﬂrﬂzbz’ Q! = gti(b1+b2)

1 1 )

J'ER;
(Ei,lEi,2)T$i(vi'vc)
(FllFQI)Tsi(vi.vc)anF;z )

;=M

where F' = Fy H Fy jand By = F, H F, ji respectively.
j'€R; J'ER;
2. For each column j € [n]:
— if j < j: choose random p; € Zp, then set C; = (H j)T(Wetrsxs) (Y ;)Rws C = (Y )vi.
—if j>jrset Cj=(H;)™(Y;)™i, C}=(Y;)".
3. Py = h7r1b0,1+7r2b0,2’ (P}, = h(Ak'u1+£k,l)bp(k),l_Ek,lbp(k),Q“"(Ak‘u2+£k,2)bp(k),3_gk,pr(k)A}kem.
Decrypta (PP, C’TR’(A p) SK(i,j),s) = M or L. The algorithm parses CTg (4,,) and SK; ;) 5 to (R, (4, p),

(Ri’R;’Qi7 ;’ i) )z 1 (0370/)] 1 (Pk)§€:0> and<( ) S K»J’K;j’K;/y{Ridvjl}j'e[n]\{j}’
Ko, {Kijaz}zes ) respectively. If (7,j) € R or S does not satisfy (A, p), the algorithm outputs

L, otherwise it
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1. Computes constants {wy, € Zp|p(k) € S} such that 3 ,)cgwpAr = (1,0,...,0), then computes

Dp =e3(Kij0,Po) [[ e6(Kijpm) Pr)*.
p(k)es

2. Since (i,j) € R(= [n,n] \ R) implies j € R;, the algorithm can compute
Kij=Ki;-( [[ Ki)
J'eR\{5}
_ g(a¢,1+n‘cj,1)b”f+(ai,2+7’icj,2)b’£ (hhj)(Ui,j,1+5i,j,1)b’{+(U¢,j,2+5i,j,2)b§
) ( H h§?i,j,1+5i,j,1)b’l‘+(0i,]’,2+5i,]’,2)b§)
J'eR:\{j}
:g(ai,l'f‘ricj,l)bT+(ai,2+7”iCj,2)b3(h H hj/)(O'i,j,l+6i,j,1)bf+(0'i,j,2+5i,j,2)b§'
J'ER;

Note that if (i,j) € R (implying j ¢ R;), the algorithm cannot produce such a K ;. The
algorithm then computes

e3(Kij, Qi) - es(K7;, Q) - eo(R;, CY)
e3(K} ;. Q) - eo(R;, Cj)

3. Computes M =T;/(Dp - Dy) as the output message. Assume the ciphertext is generated from
message M’ and index (i, j), it can be verified that only when (i > i) or (i = i A j > j),
M = M’ will hold. This follows from the facts that for i > i, we have (v; - x3) = 0 (since
v; € span{x1,Xz2}), and for i = i, we have that (v; - x3) # 0 happens with overwhelming
probability (since v; is randomly chosen from Zf’,).

Dy =

Correctness. Assume the ciphertext is generated from revocation list R, message M’ and index
(i,7). For i > i we have
e3(Kij, Qi) - e3(K7;, Q)
63(K;7j7 Q;)
e(g,g)d’(ai,l‘f’mcj,l+ai,2+7'icj,2)7'si(’ui"vc)e(h H hj,,g)w(ai,j,l+5i,j,1+U'i,j,2+5i,j,2)75i(Uz"'UC)

. J'eR
6(9, h H hj/)d)(al+Ui’j’1+6i’j’1+a2+0i’j’2+6i’j’2)7—8i(vi'vc)e(g, h)(Oq+0’i’j,1-I—(;i,]',l)7T11/)-&-((12-}—0’1',]"2-{-51"]"2)71'21/)

Jj'€R
e(g, g)d)(aivl+ricj»1+O‘i,2+7"i0j72)7'8i(’v7;"Uc)

:e(g, h H hj,)w(al+a2)75i(vi'v6)e(g, h)¢(a1+0i,j,1+5i,j,1)7T1+¢(a2+0i,j,2+5i,j,2)ﬂ2
J'ER
(Ei71Ei72)Tsi(vi'vc) . 6(97 g>wri(cj,1+cj,2)rsi(vi-ve)

(F{Fé)Tsi('Ui"Uc)F{rl ]—7‘27T2 . e(g’ h)¢(0i,j,1+5i,j,1)7F1+¢(Uz’,j,2+5i,j,2)ﬂ2 ’

where F}' = F} H Fy ;s and By = F, H F, ;s respectively.

j,GRi j'GRi
If i >iAj > j: we have
eo(R;, CY) eo((Gy)™*i, (Y )™i) 1 1

eo(Ri,Cj) — eo((Gi)¥vi, (H,)™e(Y;)7™5) — e3(Gy, Hy)(vve) — (g, g)vrilesatesa)rsifvive)”
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If i > i A j < j: note that for i > 7, we have (v; - x3) = 0 (since v; € span{x1,Xx2}), then we have
eo(R;, CF) eo((Gi)™i, (Y;)*9) _ 1

eo(Ri, Cj)  eg(Gy)»ivi, (Hj)T0etmXa (Y j)mws) — ey(Gy, H j)moi(vevel s (vixs)
1

6(97 g)wri(cjv1+cj,2)7—5i(’vi-’vc) .

If i =i Aj < j: note that for i = 4, we have that (v; - x3) # 0 happens with overwhelming
probability (since v; is randomly chosen from Zg), then we have

69(R27 C;) . 89((G¢)Hsivi, (Yj)wj) B 1
eo(R, Cj) a eo((Gi)%ive, (Hj)T(vC+‘qu3)(Yj)”wj) N es(Gi, Hj)Tsi(vi-vc)+‘rsi#j(vz")(3)
1
e(g, g)wri(cj,l“l‘cj,z)TSi(’vi“Uc) . e(g’ g)wri(cj,l'i‘cj,Q)TSiuj(’Ui~X3) :
Note that

Dp =e3(K; o, Po) H e6 (K j p(k)s Pr)*
p(k)es
263(Ki,j,07 PO) H (e(gai,jJ’ hAk'ul)e(gUi,j,27 hAk-uz))wwk
p(k)es
=e(g, h)¢(5i,j,17r1+(5i,j,27r2)e(g’ h)",/f(o'i,j,lwl+0'i,j,27r2)'

Thus from the values of T;, Dp and Dy, for M = T;/(Dp - Dy) we have that: (1) if (i > 1)V (i =
iAj>7), then M = M'; (2)ifi =iAj < j, then M = M’ -e(g, g)¥mi{cnte2)msini(vixs), (3) if
i < i, then M has no relation with M’.

4.3 Security of The AugR-CP-ABE Construction

The following Theorem [3|and Theorem [f]show that our AugR-CP-ABE construction is message-hiding,
and Theorem [5] shows that our AugR-CP-ABE construction is index-hiding.

Theorem 3. Suppose the DLIN assumption, the DSDH assumption, and the source group q-parallel
BDHE assumption hold. Then no PPT adversary can win Gamef‘,“_,l with non-negligible advantage.

Proof. We begin by defining our various types of semi-functional keys and ciphertexts. The semi-
functional space in the exponent will correspond to the span of b, b3, the span of by 3, bj 5 and the
span of each by 5,bz6,b; 5,b; ¢

Semi-functional Keys. To produce a semi-functional key for an attribute set .S, one first calls the
normal key generation algorithm to produce a normal key consisting of K j, K; ;, K7 ;, { K j ' }jren)\ (5}
K ;0,{Kiz}zes with index (i, j). One then chooses random value . The semi-functional key is

* * . * — bk
K j(hh;)%, K 97", Kéfjgmb?’,{Ki,j,j/h}3}jfe[n]\{j}, Ko, {Kijatzes

Semi-functional Ciphertexts. To produce a semi-functional ciphertext for an LSSS matrix (A, p)
of size [ X m, one first calls the normal encryption algorithm to produce a normal ciphertext consist-
ing of (R, (A,p), (R, R, Qi,Q;,Q/,T;)I" 4, (Cj,CS»)?:l, (Pk)i;:0>‘ One then chooses random values
73,&k,3(1 < k <) € Z, and a random vector uz € Zg‘ with first entry equal to 3. The semi-functional
ciphertext is:

(R,(A,p), (Ri, Ry Qi QD™ QY Ty, (Cy, Cl)I_y, Poh™00s, (Pyh(Ar s ters)bo s=6sbpm o)l _ ).

Our proof is obtained via a hybrid argument over a sequence of games:
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Game,.cq;: The real message-hiding game (i.e. Game',?‘AHl) as defined in the Section

Game; (0 <t < @): Let @ denote the total number of key queries that the attacker makes. For
each t from 0 to (), we define Game; as follows: In Game;, the ciphertext given to the attacker is
semi-functional, as are the first ¢ keys. The remaining keys are normal.

Gameyinq: In this game, all of the keys given to the attacker are semi-functional, and the ciphertext
given to the attacker is a semi-functional encryption of a random message.

The outer structure of our hybrid argument will progress as shown in Fig. [I| First, we transition
from Game;., to Gameg, then to Gamey, next to Games, and so on. We ultimately arrive at Gameg,
where the ciphertext and all of the keys given to the attacker are semi-functional. We then transition
to Game;,q1, which is defined to be like Gameg, except that the ciphertext given to the attacker is a
semi-functional encryption of a random message. This will complete our proof, since any attacker has
a zero advantage in this final game.

The transitions from Game,., to Gamey and from Gameg to Gamey;,, are relatively easy, and
can be accomplished directly via computational assumptions. The transitions from Game;_; to Game;
require more intricate arguments. For these steps, we will need to treat Phase 1 key requests (before
the challenge ciphertext) and Phase 2 key requests (after the challenge ciphertext) differently. We will
also need to define two additional types of semi-functional keys:

Nominal Semi-functional Keys. To produce a nominal semi-functional key for an attribute set
S, one first calls the normal key generation algorithm to produce a normal key consisting of
KiJ,K;-’j,K;/’j,{Ki7j7j/}j/€[n]\{j},Ki’j’(],{Ki7j7x}xes with index (4,7). One then chooses random
values o; j3,0; j3 € Zp. The nominal semi-functional key is: K; ;(hh;)(@63+915:8)05 K;7jg("ivﬂ'v3+5i7jv3)b§,
K g7 (a0l (K iy Ot 0asl® )y K og o0, (K jag7ios CratPiol} o We
note that a nominal semi-functional key still correctly decrypts a semi-functional ciphertext.
Temporary Semi-functional Keys. A temporary semi-functional key is similar to a nominal
semi-functional key, except that the semi-functional component attached to K;J will now be
randomized (this will prevent correct decryption of a semi-functional ciphertext) and K;;, K Z]
and {K ij.j" i'en)\{j} change accordingly. More formally, to produce a temporary semi-functional
key for an attribute set S, one first calls the normal key generation algorithm to produce a normal
key consisting of K ;, K ;, K7 ;, {Kijjr }jrepnjys Kijor {Kijatees with index (i, 7). One then
chooses random values 05 ; 3,0; 3,7 € Zp. The temporary semi-functional key is formed as:

. « e s b 5; + 3br i3 (b* b
K ()%, K 90%, K07, (Ko 00 ey Kigog™ 7200, {Kijag7oCeatbiol} g,
For each t from 1 to @, we define the following additional games:

Gameiv : This is like Game;, except that the ¢t** key given to the attacker is a nominal semi-functional
key. The first t — 1 keys are still semi-functional in the original sense, while the remaining keys are
normal.

Ga metT: This is like Gamey, except that the t* key given to the attacker is a temporary semi-functional
key. The first t — 1 keys are still semi-functional in the original sense, while the remaining keys are
normal.

In order to transition from Game;_; to Game; in our hybrid argument, we will transition first from
Game;_; to Game, then to Game! , and finally to Game;. The transition from Game) to Game! will
require different computational assumptions for Phase 1 and Phase 2 queries (As shown in Fig. |1} we
use two lemmas based on different assumptions to obtain the transition).

As shown in Fig. [I we use a series of lemmas, i.e. Lemmas [0, and [9) to prove the

transitions. The details of these lemmas and their proofs can be found in Appendix
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[y
Lemma 5 Lemma 8
Lemma 4 DLIN DLIN temma 9
DLIN
DLIN ¥ ] Phase 1: Lemma 6 D3DH —
| Game} | > Game] J
Phase 2: Lemma 7 g-pBDHE

Fig. 1. Lemmas and@rely on the subspace assumption (w.r.t. Deﬁnition, which is implied by DLIN assumption,
Lemma [f] relies on the D3DH assumption, and Lemma [7] relies on the source group g-parallel BDHE assumption.

Theorem 4. No PPT adversary can win Game’,’f‘,“_h\,+1 with non-negligible advantage.

Proof. The argument for security of Gameﬁ,lH Ny1 IS very straightforward since an encryption to index
N +1 = (n+ 1,1) contains no information about the message. The simulator simply runs actual
Setup, and KeyGen, algorithms and encrypts the message M, by the challenge access policy A and
index (n + 1,1). Since for all i = 1 to n, the values of T; contain no information about the message,
the bit b is perfectly hidden and I\/IHQHAdvA =0.

Theorem 5. Suppose that the DSDH assumption and the DLIN assumption hold. Then no PPT
adversary can win Gameﬁ‘_| with non-negligible advantage.

Proof. Theorem [5] follows Lemma, [T] and Lemma [2] below.

Lemma 1. Suppose that the DSDH assumption holds. Then for j < n no PPT adversary can distin-
guish between an encryption to (i,7) and (i,7 + 1) in Gamem with non-negligible advantage.

Proof. In Gameﬁ,, the adversary A will eventually behave in one of two different ways:

Case I: In Key Query phase, A will not submit ((4, j), Sij)) for some attribute set S; ;) to query the
corresponding private key. In Challenge phase, A submits a message M and a non-empty attribute
set S*. There is not any restriction on S*.

Case II: In Key Query phase, A will submit ((7,7), S 7)) for some attribute set S ;) to query the
corresponding private key. In Challenge phase, A submits a message M and a non-empty attribute
set S* with the restriction that the corresponding strictest access policy Ag« is not satisfied by
S(j)- Case II has the following sub-cases:

L (i,4) ¢ [n,n] \ R, S(;;) satisfies A*.
2. (4,5) & [n,n] \ R*, Sg 5) does not satisfy A*.
3. (i,4) € [n,n] \ R*, 5 ;) does not satisfy A*.

We flip a random coin ¢ € {0,1} as our guess on which case that A is in. In particular, if ¢ = 0,
we guess that A is in Case I, Case I1.1 or Case II.2. In this case, it follows the restriction in the
index-hiding game for Augmented Broadcast Encryption (AugBE) in [6], where the adversay does not
query the key with index (i,7) or (7,7) is not in the receiver list [n,n]\ R*. If ¢ = 1, we guess that A
is in Case I, Case II.2 or Case II.3. As of the fully secure CP-ABE schemes in [T0I9TIIT213], we
assume that the size of attribute universe (i.e. |U{|) is polynomial in the security parameter A, so that
a degradation of O(1/|U|) in the security reduction is acceptable. The proof details of Lemma (1| can
be found in Appendix

Lemma 2. Suppose the DSDH assumption and the DLIN assumption hold. Then for any 1 <i <n
no PPT adversary can distinguish between an encryption to (i,n) and (i + 1,1) in Gamelyy with non-
negligible advantage.
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Proof. The proof of this lemma follows from a series of lemmas that establish the indistinguishability
of the following games, where “less-than row” implies the corresponding v; is randomly chosen from
Z;; and T} is a random element (i.e. T} = e(g,g)%), “target row” implies the corresponding wv; is
randomly chosen from Zg and T; is well-formed, and “greater-than row”
is randomly chosen from span{xi, x2} and T; is well-formed.

implies the corresponding v;

— Hp: Encrypt to column n, row 7 is the target row, row i + 1 is the greater-than row.

~ Hy: Encrypt to column n + 1, row i is the target row, row ¢ + 1 is the greater-than row.

— Hj: Encrypt to column n + 1, row i is the less-than row, row 7 + 1 is the greater-than row (no
target row).

— Hy: Encrypt to column 1, row i is the less-than row, row i + 1 is the greater-than row (no target
row).

— Hj: Encrypt to column 1, row i is the less-than row, row i + 1 is the target row.

It can be observed that game Hj corresponds to the encryption being done to (i,n) and game Hj
corresponds to encryption to (74 1,1). As shown in Fig. [2, we use a series of lemmas, i.e. Lemmas
and [13] to prove the indistinguishability of the games H; and Hs. The details of these lemmas
and their proofs can be found in Appendix

Lemma 10\ Lemma 11\ Lemma 12\ Lemma 13\

H, D3DH | H, D3DH | H; D3DH Hy DLIN 7 Hs

Fig. 2. Lemmas and [12| rely on the D3DH assumption, and Lemma [13| relies on the DLIN assumption.

5 Conclusion

In this paper, we proposed a new Augmented R-CP-ABE construction on prime order groups, and
proved its message-hiding and index-hiding properties in the standard model. This CP-ABE achieves
full security in the standard model on prime order groups. Our contributions are (1)adding the revo-
cation list, and (2)proving its full security with revocability. We follow the proof method in [16] for
message-hiding, and build two direct reductions for the proof for index-hiding. The scheme is a fully
collusion-resistant blackbox traceable R-CP-ABE scheme. It achieves the most efficient level to date,
with the overhead in O(v/N) only.
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A Assumptions

The Decisional Linear Assumption (DLIN) Given a group generator G, define the following
distribution:

(p7G7(GT76)<£g7 g,f,’l)(iG, 61762<£Zp7
D = ((p,G,GT7€),g,f71),fcl,’[)62)7

Ty = g2, Ty < G.
We define the advantage of an algorithm A in breaking this assumption to be:
AdvEy = |Pr[A(D, Ty) = 1] — Pr[A(D, T})] = 1].

We say that G satisfies the DLIN Assumption if Advg f4 is a negligible function of the security parameter
A for any PPT algorithm A.
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The Decisional 3-Party Diffie-Hellman Assumption (D3DH) Given a group generator G, define
the following distribution:

(p7G7GT7€) i g7 g i Ga r,Y,z & Zp7
D:=((p,G,Gr,e€),9,9%,9%,9°),

TO = gzyz’ T1 (i G.
We define the advantage of an algorithm A in breaking this assumption to be:
AdvG3PM = |Pr[A(D, Ty) = 1] = Pr[A(D, Ty)] = 1].

We say that G satisfies the D3DH Assumption if Advg’itDH is a negligible function of the security
parameter \ for any PPT algorithm A.

The Source Group ¢-Parallel BDHE Assumption [12] Given a group generator G and a positive
integer ¢, define the following distribution:

(p,G,Gr,e) <= G, g~ G, c.d, fby,... by < 7,
2 +2 2
D == ((p7G7GT76)7 g?gf7gdf7 gc7gc 7"'7gcq7 7gcq 7"'7gcq7

oM vie {1, 2q) \ {q+ 1}, € {1,...,q},
gdfbj VJ€{177Q}7
gdfCibj//bj VZ S {17 . 7Q}7j7j/ € {17 7q} s.1. ‘7 %j/)’

To — gdcq+l’T1 (i G
We define the advantage of an algorithm A in breaking this assumption to be:
AduglE = | Pr{A(D, Ty) = 1] — PrlA(D, T1)] = 1.

We say that G satisfies the Source Group ¢-Parallel BDHE Assumption if Advg}jf is a negligible
function of the security parameter A for any PPT algorithm A.

A.1 Assumptions for Dual Pairing Vector Spaces

Let (B,B*) denote a pair of dual orthonormal bases over Z;, A € Z;"™ be an invertible matrix for
some m < n, and Sy, C {1,...,n} be a subset of size m. Then new dual orthonormal bases (B4, B)
are defined as follows. Let By, denote the n x m matrix over Z, whose columns are the vectors b; € B
such that i € S,,,. Then B,,A is also an n x m matrix. B4 is formed by retaining all of the vectors
b; € B for i ¢ Sy, and exchanging the b; for i € S, with the columns of B, A. To define B, similarly
let Bj, denote the n x m matrix over Z, whose columns are the vectors b; € B* such that i € S,,.
Then B;,(A™1)! is also an n x m matrix, where (A7!)* denotes the transpose of A~1. B* is formed by
retaining all of the vectors b} € B* for i ¢ S,, and exchanging the b} for ¢ € S, with the columns of
B, (A~1)t. We have

Lemma 3. [9] For any fized positive integers m < n, any fived invertible A € Z;*™ and set Sp, C

1,...,n} of sizem, if (B, B* & Dual Z7,1)), then (Ba,BY) is also distributed as a random sample
P A
from Dual(Zy,v). In particular, the distribution of (Ba,B%) is independent of A.
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The “Subspace Assumption” is introduced by Lewko [9], and is generalized by Lewko and Waters
[12]. In particular, let the parameter m denote the number of bases, and each basis pair has its own
dimension n; and its own parameter k; where k; is a positive integer such that k; < . The following
statement of the subspace assumption is implied by DLIN assumption, and is proved by Lewko and
Waters [12, Appendix A]. Note that this reduction (i.e., the Subspace Assumption is implied by DLIN
assumption) holds for any valid choices of the parameters m,n;, k;. We refer to [12] for more details
of the following statement of the subspace assumption.

The m dual orthonormal bases pairs will be denoted by (B1,B7), ..., (B, B},). For each i from 1 to

m, the basis vectors comprising (B;, B}) will be denoted by b; 1,...,b;n, and b} ..., b; . respectively.

Definition 5. (The Subspace Assumption [12]) Given a group generator G, define the following dis-
tribution:

R R R
(p7GaGTve) < g, g« G, 7/}’77,577—1>7_277—3a/‘1,ﬂ27ﬂ3<—Zpa

x R n * R n
(By,B]) «— Dual(Zpl,w), ooy (B, By)) — Dual(me,i/J),

Vie{l,...,m}:
U= g:ulbi,1+H2bi,ki+1+ﬂ3bi,2ki+l7 U := gﬂlbi,2+#2bi,ki+2+l‘3bi,2ki+27
Uiy, = gH Bk TH2biok; THbisk;
Vii:= gt Vig = ngb:‘ﬁTsz;’“ﬁzy
. Tinb! . +T2BbY 5,

., VZ,]CZ = g i,k; 2,21617
Wi, = gﬁnb;l+T?6b?,ki+1+73b;2ki+17 Wio = ng”bf,z+725bf,ki+2+73bf,2ki+27

* * *
Wik = g‘rmbi’ki+725bi»2k¢+73bi73ki,

D= ((p7 G7 GT7 e)vgu {gbz‘,17gbi,2’ cee 7gbi’2ki7 gbi’Ski-'—lu cee 7gbi’ni7

gﬂbzl, o 797717;1%7 gﬂb;kﬁl, o 7g,8b;"2ki7 gb;QkiJrl’ o 7gb;ni7
Ui, Uia, ..., Uik, 721, p13).
We assume that for any PPT adversary A (with output in {0,1}),
Advg g = |PrlA(D AV i1, Vig }i2h) = 1] = PrlAD AW, ., Wi 1) = 1]|

1s negligible in the security parameter .

B Proofs

B.1 Proof of Theorem [3

Lemma 4. Under the subspace assumption, no PPT attacker can achieve a non-negligible difference
i advantage between Game,.q and Gameg.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Game,..y
and Gamegy, we will create a PPT algorithm B to break the subspace assumption. We will employ the
subspace assumption with parameters m =U + 2, n; = 3, k; = 1 for two values of ¢, and n; = 6,k; =2
for the rest of the values of 4. In order to reconcile the notation of the assumption with the notation of
our construction as conveniently as possible, we will denote the bases involved in the assumption by
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(D, D*), (D, D) € Dual(ZS,¢) and (Dy,D7),..., (Dy,Dy) € Dual(Zg,ib). B is given (we will ignore
the U terms and p3 because they will not be needed):

d d d d, d, dy d d,
Gapv.ga g 1ag 27 g 071’9 0727 {g 7179 7279 7379 74}m€[1/{}7
ds  dk d} d? d? d* d* d* d* d* d*
g1, gfh g g% gFdon gdos  [g1den g%z gPdes gPdes gdes ges} oy

Ty, Tox, {Tz1,Te2}aey

The exponents of the unknown terms T', T are distributed either as Tindj + m2fd3 and Tindg | +
To8d; 5 Tespectively, or as Tindy + 2 8d; + 13d3 and Tindj | + 12fdj 5 + T3d) 5 respectively. Similarly,
the exponents of the unknown terms T’y 1, T'; 2 are distributed either as Tind} | +728d; 3 and Tind; 5+
Tod;, 4 respectively, or as Tind; | + 72fd; 5 + T3d; 5 and Tind; 5 + 720d; 4 + T3d; ¢ Tespectively. It is
B’s task to determine if these 73 contributions are present or not.

Setup. B implicitly sets the bases for the construction as:

by=ndi, by=pd;, by=dj, bi=7'di, bi=pF"dp, b3=dj,
bo1 = ndy 1, boz = Bdj o, bos = df 5, b5 = n~'do 1, b5, = B do2, b 5 = dog,

bey =ndy,, brp=ndy,,  by3=fd;s, 1’4 =pd; 4, by =ds, bs = dg Va € [U],
by =0 de1, by =0 "dyo, bl 5 =5 Yy 3, b va =B "dya, b5 =ds, b = dg YV € [U].

We note that these are properly distributed because (D,D*), (Do, D), etc. are randomly chosen
(up to sharing the same 1) value).
B chooses random exponents

/ / / / / /
0, ay,ay € Zy, {ri, 2, Q1,09 € Zp}ie[n]v {cj,17cj,27 Yj, Uj € Zp}je[n]*

Then B gives to A the following public parameter:

( g.h=9" {hitiem, g%, 9%, BP = (¢")?, hP = (g**)?,
{hsl = (gbl)ij h?Q = ( b2)U] }]E[n]v hbo’l = (gbo’l)ev th'Q = (gboz)aa
{Bbe1 = (gP1), . Bt = (g% ) e, Fi = es(g™, g"M)%, By = e3(g®, g7%)" 2,
{F1; = es(g™, g"") "%, Fyj = es(g™®, g"%) 7% } e,
{Gz _ gri(b1+b2)’ Z; = gZi(b1+b2)’ Ei,l _ eg(gdl,g"dl) ”17E1L,2 — 63(9 Bd*) 12} €ln>

{Hj = (g%)51(g%)%2, Y= (Hj)¥}jep )
Note that B implicitly sets
ar =nah, ag = fay, {air =g, Q2= B stiem, {1 =nc1, 2 = B} jem

Phase 1. To respond to a query for ((7,7), S, ), B produces a normal key as follows. It randomly

chooses 0” 1 ” 9) 6” 1 5273 5 € Zyp, and outputs a private key SK;, NSy = ((7,9): S.,5), Kij K;J,
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’L]’ {KZ]] }J E[TL {.7}7 7]70’ {Kivjvx}xes(iyj)> as

K; i :g(ai,l+T¢Cj,1)bi‘+(ai,2+n’cj,2)b§ (hhj)(Ui,j,1+5i,j,1)bf+(0¢,j,2+5i,j,2)b§

:(gdl)0‘2,1'H"icg',l+(9+Uj)(‘71{,j,1+61,‘,j,1)(gd2)a;,2+ric},2+(9+va)( i, 2+ 7, 2)
K =(g™ )% o B (gt oot e, K = (K )",
(K birempgy = (bl PO i tonalbiy,
= {g®0y haatoinn) gty ThoatOinaly s 1y,

Kijo =(g%) % (g%02) s,
Kija =(g%) s (gh2) o (g2) a2 (g41) T2 Vo € S5 ).

Note that B implicitly sets

/ / !/
Oij,1 = N0 515 0ij,2 = /BUi,j,Q, 5i,j,1 = 775i,j,1» i,9,2 = 55 1,5,2

Challenge. A submits to B a revocation list R, an LSSS matrix (A, p) of size | x m and two equal
length messages Mg, My, B produces the challenge ciphertext for index (i = 1,5 = 1) as follows.
B first chooses random

Ky T, Sl,-.-38n, t1,...,tn € Zp,

3 3

Ve €72, Wi,..., Wy € 7Ly,

! ! ! !/ EZ / / EZm
51,1af1,2a--~afz,1>fl,2 py, U, Ug p s

where the first entries of u} and uf are equal to 0. It also chooses a random vector u € Z, with
first entry equal to 1, and chooses random exponents 5’173, e ,52’3 € Zyp. B implicitly sets

™ = T1, T2 = T2,
U, =nu+ ui, U9 = ToUu + u'z,
g = EaT + &1y Sk = EpaTe + & Vh € [I].

B chooses random 1,7y, 7. € Zp, and sets x1 = (12,0,72),x2 = (0,7,72), X3 = X1 X X2 =
(—=ryrs, —1aTs, T21y), then it chooses random vy € Z}O’), v; € span{xi,Xxz2} fori=2,...,n.

B chooses a random b € {0, 1}, then creates a ciphertext (R, (4, p), (Ri, R}, Q;,Q}, Q7 , T;)1,, (C},
Ch)_y, (Pr)L_,) as follows (note that i = 1,5 = 1):

1. For each ¢ € [n]: it sets

R; = (Gi)*™, R;= R},
Qi _ gTS,L'(’Ui-UC)(b1+b2)7 Q; _ (]’L H hj/)TSi(vi.vc)(bl+b2)Z;iT§7 Q;/ _ gti(b1+b2)’

j'ER;
T, =M (Ei1 Bi2)™ (i)
T b F /F/ Tsz'('Ui"Uc) dq T 00/1 ds T 90/27
( 1 2) 63(9 ; 1) 63(9 ; 1)
where P/ = Fy [] Fuiy = es(g®, "% ] es(g®. 9" and By = B [[ Foy =
J'€R; J'€R; J'ER;

63(9d2,g"d§)9al2 H eg(gd2,g”d5)“ja/2 respectively.

J'ER;
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2. For each j € [n]: it sets Cj = (H;)™0(Y )™, C% = (Y ;)*i.
3.

PO _T017

A, / et
P =((Tym)1) ku+£k’3(Tp(k) 2) Sk
(gnd;(k),l)Ak'u,1+§;€,1 (g &), 2) Skl(gﬁ p(k),3>Ak.u'2+§/’c,2(g5 plk),4) ™ 34 2) vk € [l]

Phase 2. Same with Phase 1.

If the exponents of the T terms do not include the 73 terms, then Q) and Py are in their normal
forms, and the exponent vector of Py, is

(Ap - Tiw + Ay - uy + 718 5 + gl/e,l)nd;(k),l + (~71ks — 51/6,1)77d;(k),2
+ (A - mou + Ag - uh + 18 5 + & 0) B 5+ (=28 3 — &4 o) B 4
=(Ag - w1 + &e1)bpey1 — Ek1bp) 2 + (Ak - w2 + &12)boy 3 — Ek2bpi) 4

Thus we have a properly distributed normal ciphertext in this case.
If the exponents of the T terms do include the 73 terms, then Q) and Py are in their semi-functional
forms with w3 = 73, and the exponent vector of P} is

(Ak w1 + & 1)bpry1 — Sk1bpy 2 + (Ak - U2 + Ek2) by 3 — Ek2bp(r) 4
+ (A - 13w + 7385 3)bp).5 — T3Ek3Dp00) 6

This is a properly distributed semi-functional ciphertext with uz = 73w and &, 3 = 7352’3. (Note that
these values are distributed randomly and independently from wq, w2, & 1,&k,2-)

Thus, when the 73 terms are absent, B properly simulates Game,.q;, and when the 73 terms are
present, B properly simulates Gamey. As a result, B can leverage A’s non-negligible difference in
advantage between these games to gain a non-negligible advantage against the subspace assumption.

Lemma 5. Under the subspace assumption, no PPT attacker can achieve a non-negligible difference
i advantage between Game;_1 and Game,{V for any t from 1 to Q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Game;_1
and Gameiv , we will create a PPT algorithm B to break the subspace assumption. We will employ the
subspace assumption with parameters m =U + 2, n; = 3, k; = 1 for two values of ¢, and n; = 6, k; = 2
for the rest of the values of . In order to reconcile the notation of the assumption with the notation of
our construction as conveniently as possible, we will denote the bases involved in the assumption by
(B,B*), (Bo, BS) € Dual(Z;’,d)) and (B1,B}),..., (By,B;,) € Dual(ZS,zﬁ). B is given (we will ignore
ps because it will not be needed):

va’ga glag 7901 072’ {g ’1ag ’2ag ’3ag ’4}.?6[1/{]7

b* b5 bk b b} b} b b* b* b* b* b*
gn 1795 2,93, g77 0’179/3 02,9703, {gn I’lagn 1’279/3 z’37gﬂ oh,97, g I’G}IE[Z/{]7
b b b b b b
U1 — gm 1+p2b2+us3 37 on1 — gul 0,1+12b0 2+ 13 0,37

_ by 1+u2by 3+u3b _ by o+u2by a+pusb
{Ux,l — gﬂl z,1 TH202 313 1,5’ Ux,? — g,ul z,2 TH20: 4T3 z,e}re[u],

Ty, Toy, {Ten, Taplecu)

The exponents of the unknown terms T'y, T 1 are distributed either as T7inb] + T28b5 and Tinbg; +
T28bj) 5 respectively, or as T1nb] + 2 8b5 + T3b5 and Tinbj | + T28bf 5 + T3by 5 respectively. Similarly, the
exponents of the unknown terms T’y 1, T2 are distributed either as mnb} | + 728 3 and Tinb} 5 +
T28b}, 4 respectively, or as Tinb} | + 72Bb; 3 + T3b 5 and Tinb; 5 + T28b; 4 + T3b] ¢ respectively. It is
B’s task to determine if these 73 contributions are present or not.
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Setup. B implicitly sets (B, B*), (Bo,B§), {(Bz,B})} as the bases for the construction.
B chooses random exponents

0, oy, € Zp, {ri, 2i, ag’l,a;z € Zp}icin); {0371,0972, Yi,Vj € Lp}icn)-
Then B gives to A the following public parameter:
(9.0 =" hsdjems g™ g7 0% = (g%)7 b2 = (g™,
(B2 = (g%)"2, B2 = (g%)"7 Y jepy, Bt = (gP01)?, hbo2 = (gP02)?,
{RPet = (gP=1)? et = (g% ) e, F1 = es(g® g™)P, By = ex(g™, g7%2)"%,
{F1j = es(g®, g"1)™, Faj = es(g”, ™) } e,
(G = gi0tb2) | 7, = g5i01F82) By — ey(g®, g™1) 0 By = e3(g%, g

{H = ("1)5 (") %2, Yy = (H})% }jepn) )-

o5)%52 i),

Note that B implicitly sets

a1 =nad, ag = fay, {air =g, @iz = Bstiem)y {1 =nc, 2 = B atjem)

Phase 1. To respond to a query for ((i,7), S(; j)), B acts as follows.

— If it is in the first ¢ — 1 key queries, B generates a semi-functional key as follow. B randomly

chooses 5” 15 5” 9,0 7]71, agd 2, 7y € Zp, and outputs a private key SK(M),S“_ N = ((4,7), Sy Ki g

K, K AKijjYemniy Kios {Kijatees,,, ) as:

INE 0,77
gnb i l+r"cj 1+(9+’U])(Ul 3Js l+§z 3T 1)(95@) i 2+7'ZC] 2+(9+U])(Uz 3T 2+6z 3T 2)g(e+vj)7b§’

K; )*
Ubf)o‘,1+gg,j,1+5§,j,1( 5b§)o‘,2+gg,j,2+5§,j,ngb§ K’.’. — (K’, .)Zi,
)"

083y v (91327 0052) g OH0 W5}

(
(
{R’i’m (gnb v/(0”1+51]1)(g
(
(

Note that this is a properly distributed semi-functional key with implicitly setting

/ / !
045,10 =N0; 515 0ij2 = 50’1‘,;’,27 0ij1 = n5i,j,17 ,5,2 = = f36; i,5,2°

— If it is the " key query: B randomly chooses d; 1005 ] 9,0l .3 € Zp, and outputs a private key
SKi).5gy = ((60)s (i) Ky K5 K5 AK b ey Koo { Ko Yaes, ;) a8

gnb ) iatrich 1 +(04v;)0] ”1( J1 ) z2-‘rri129-72-"-(H-i-vj)él’.’jﬂ1—,5&9—1—1@')1-,§6Urvj)5i,j,3’

(
=(g"1) 0 (g7 >a2+%2T1<T1> b, Ky = (K™,
16! b3 0%
{Kij —(g 1)1 % (g78) a2 T T Y e gy
K;jo =(g™1)%1(g"%2) g’j’QTof’lj’g’?
Ki,j,x :Tx,lT‘«mQ Vo € S(%])
Note that B implicitly sets

Oij1 =171, Oig2 = BTe, 0ij1=n(0; ;1 +0;3m), dij2= B0 2+ 0 ;372).
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If the exponents of the T terms do not include the 73 terms, then this is a properly distributed
normal key. If they do include the 73 terms, then this is a properly distributed nominal semi-
functional key with o;,3 = 73 and 0; ;3 = 6;]-737'3. (Note that these values are distributed

randomly and independently from 04,5,1,04,5,2, (52',]',1, 52',]',2.)

— If it is in the {t + 1 ,...,Q} key queries: B generates a normal key as follows. B randomly

chooses 0; ; 1,0; ;2,0 ;1
/ 11 .
Kl_]’ Kz], {Kz,],] }] 6[n]\{j}> K@j@, {Ki’j,x}fceg(i’j) > as:

gnb 7 1—0—7‘16] 1+ 0+U])(GZ 3T 1+§z B 1)( Bb;)a2,2+ricé,2+(9+fuj)( 1,7, 2+57, 3 Jy 2)

9

)
gﬂb )O‘ +U@ 3T 1+61 3T 1( Bb*)a2+az 7, 2+61] 2 K{L/,] s (K’/L .)Zi’
)

enN\{j}>
77b01) 231( ﬁboz) 042

NR‘N'

(
(
<g’l7b ’U]/ 1+51]1)<gﬂb2)v /( z]2+51j2)}
=(g
=(g"

) i,j,l (gﬂbx,z) i,j,l(gﬁb;S)Ué,jj (gﬁb;A)U;,j,z Vo € S(i i)
Note that this is a properly distributed normal key with implicitly setting

/ / ! !
045,10 = N0 515 0i52 = 5‘71',]',2» dij1 = 775i,j,17 ij,2 = B9; 05,2

04%2 € Zyp, and outputs a private key SK(i,j%Sw) = ((i,7),Sa,), Ki

Challenge. A submits to B a revocation list R, an LSSS matrix (A4, p) of size [ x m and two equal
length messages My, M1, B produces a semi-functional ciphertext for index (i = 1,7 = 1) as follows.

B first chooses random

Ky T, Sl,-.-38n, tl,...,tn € Zp,

3 3

Ve €72, Wi,..., Wy € 7Ly,

/ / / / I m
51,1751,2? s 7£l7l>§l,2 € va U, Uy € Zp )

where the first entries of u) and w), are equal to 0. It also chooses a random vector u € Ly with

first entry equal to 1, and chooses random exponents & 3, ..., & 5 € Zj. B implicitly sets

T = M1, T2 = M2, T3 = U3,
up =+ ul, ug = pou + uh, us = psu,
§k1 = &1+ Ehatt, Ek2 = o +Epatiz, k3 = & aua VE € (1.

B chooses random 1,7y, 7, € Zp, and sets x1 = (r2,0,72),x2 = (0,7,72), X3 = X1 X X2

(=ryrs, =TTz, rxTy), then it chooses random vy € Zg, span{xi,x2} fori=2,...,n

B chooses arandom b € {0, 1}, then creates a ciphertext (R, (4, p), (Ri, R}, Q:,Q, Q7 , T;)1,, (C},

Ch)i_1s (Pr)L_,) as follows (note that i = 1,5 = 1):
1. For each ¢ € [n]: it sets

R; = (G))"™, R;=Ry,

Qi = g i (p ] hy)eereditb gl Qr = ghbitba),
J'ER;

(B B p)7si(vive)

T, = M, S S—
i b (F{FQI)TSZ‘(’UZ“’UC)G?)(U]-’gﬂbl)ealeg(U:b g”b2)90‘2
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where Iy = Fy [ Fiy = es(g”.g™)" [ es(e®, ™) and By = By [[ Foy =

J'eR; J'ER; J'eR;
e3(g®, gb2)%o H 63,(91’2,g”b;)“j’“,2 respectively.
J'€R;
2. For each j € [n]: it sets C; = (H;)™(Y;)"i, C’ = (Y )i,
3.
Py :Ug,la

Py =((gPrw1) itk (gboo2) S

A u+£k 3 fk 3

(gbp(k),B)Ak'u/2+E;c,2(gbp(k),él) ﬁk 2U (k)1 ok )

) vk € [1].
Phase 2. Same with Phase 1.

Thus, when the 73 terms are absent, B properly simulates Game;_1, and when the 73 terms are
present, B properly simulates Gamet As a result, B can leverage A’s non-negligible difference in
advantage between these games to gain a non-negligible advantage against the subspace assumption.

Lemma 6. Under the DSDH assumption, no PPT attacker can achieve a non-negligible difference in
advantage between GameiV and Gamef for any t from 1 to Qy (recall these are all the Phase 1 queries).

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Gameiv
and GametT from some ¢ between 1 and ()1, we will create a PPT algorithm B to break the D3DH
assumption. B is given g, g%, ¢¥, g%, T, where T is either ¢*¥* or a random element of G. B will simulate

cither Gamel¥ or Game! with A depending on the nature of 7.

Setup. B chooses random dual orthonormal bases (D, D*), (IDg, D) of dimension 3 and (D, D}) of
dimension 6, all with the same value of 1. It then implicitly sets (B, B*) and (Bo, Bf) as follows:

bi=di, by=dy, b3=(xy)! d3, by =d;, bi=d; b;=(xvy)d;,
bo1 = do,1, boo = dog, boz = (zy) 'dos, by, = dfs 1, by o = dj o, b5 3 = (zy)dj 5.

We note (B,B*) and (Bo, Bf;) are properly distributed.
B sets the normal portions of (By,BY),. .., (By,B},) as follows:

b:r:,l = dx,la b:r:,2 = dx,2a b:r:,S = dx,Sa b:t:,4 = dx4 Vo € [U]

w1 =dp1, b0 =4d5 5,05 5 =d; 5, b,y =d; V€ .
The semi-functional portions of these bases will be set later (at which point we may verify that all
of (By,B7),..., (By,B;,) are properly distributed).
B chooses 6, Oél,@?,Tl,Oél,l,OéZ’Q,Zl(’l € [n]),cj1,¢52,y5,vi(j € [n]) € Z, randomly. We observe that
B can now produce the public parameter (with h = ¢, {h; = g% }jeln])> and also know the master
secret key (enabling it to create normal keys). It gives the public parameter to .A.

Phase 1. To create the first t — 1 semi-functional keys in response to A’s key requests, B first
creates a normal key, then chooses a random exponent v’ € Z,, and multiples K g K . and

K;,/y {Ki,j,j’}j/e[n}\{j} by g(0+vi)y v'd; ,q7 'd3 and g* 'd3 g% a3 respectively. We are using here that

B does not need to know g% precisely in order to create well-distributed semi-functional keys — it
suffices for B to know g% for some (non-zero) c € Z,.
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A requests the t™* key for some pair ((i¢, jz), S(i,,j,)) where S(;, 5.y C [U]. At this point, B implicitly
defines the semi-functional parts of the bases (By,B}),..., (By,B;,) as follows (note that these
have not been involved in the game before this):

b:p,5 = l'_lda:,Sa bx,6 = da:,ﬁa b ’:Ud:r 59 d;,ﬁ Va ¢ S(it,jt)7
bx,5 = da:,57 bm,6 = d:}c,ﬁa bx,5 = dx,57 bac,6 - dZ,G Vi € S(it,jt)‘

We observe that all of (B, B*), (Bo,Bj), (B1,B}), ..., (By,B;,) are properly distributed, and their
distribution is independent of z,y, and S, ;) (the involvement of x,y, and S(is,je) 18 only present
in B’s view and is information-theoretically hidden from A, see [12, Lemma 11]).

To create the " key, B chooses random exponents o; ;1,0 ;2,06 1,0i .2, 0; j3 € Zp, then forms
the key as

ai,1+ric1+(04v5) (045,140, 1)(gdS)ai,2+7”icj,2+(9+vj)(Ui,j,2+5i,j,2)T(9+Ug) (0+v;)3; ; 3.

Y
a1+0211+6z]1(g )a2+01]2+6232Td39 1]3 K” (K/ )Zz

a
I
Q
Q..
vvv

U]/(O'i’j,1+5i,j,1)( v /(G’Z 7, 2+6; 7 Q)TU gdE v 6

g ) 8g 7B 3}j "eln)\{j}>

it,Jt) "
If T = ¢g"¥#, this is a properly distributed nominal semi-functional key with o; ;3 = 2,0; ;3
—ly7 Otherwise, this is a properly distributed temporary semi-functional key.
1,5,3"

Challenge At some later point, A submits B a revocation list R, an LSSS matrix (A, p) of size

I x m and two equal length messages My, M1, B produces a semi-functional ciphertext for index
(i=1,7 =1) as follows.

Note that S(;, ;) does not satisfy (A, p), B first computes a vector w € Z;' that has first entry
equal to 1 and is orthogonal to all of the rows Ay of A such that p(k) € S, j,) (such a vector must
exist since S(;, ;) fails to satisfy (A, p), and it is efficiently computable). B also chooses a random
vector uf € Zy' subject to the constraint that the first entry is zero. It implicitly sets 73 = zy and
sets uz = zyw + zus. We note that 73 is random because all of the dual orthonormal bases are
distributed independently of z,y, and w3 is distributed as a random vector with first entry equal
to 3. B also chooses random values {3 € Z,, for all k such that p(k) € S(it,jt) and random values
{13 € Zp for all k such that p(k) ¢ S, j,). For values of k such that p(k) ¢ S, j,), it implicitly
sets {3 = $£§g,3. B can then produce the semi-functional components of the ciphertext as it can
compute:

g7r3b3 _ gdg’ g7r3b0,3 — gd03
g(Ak u3+€k,3)b,(k),5—Ek,3b0(k),6 — = (g y)(Ak'w)dp(k),Sg(Ak'u/3+§;c,3)dp(k)15 (gx)_ffc,sdp(k),ﬁ Vk s.t. p(k) ¢ S(it i

g(Ak~U3+£k,3)bp(k),5—€k,3bp(k),e _ (gl“)(Ak'ué)dp(k),5g€k,3dp(k),5—§k,3dp(k),6 Vk s.t. p(k) € S(it,jt)'

Here we have used the fact that A - w = 0 mod p to avoid needing to produce a multiple of
g™¥de)5 for k such that p(k) € Sieje)-

Note that h = ¢? and B knows the value of §, B can produce the semi-functional components using
the value of 6 and the above values. Then it multiplies these semi-functional components by the
normal components to form the semi-functional ciphertext, which is given to A.

Phase 2. B can respond to A’s key queries by calling the normal key generation algorithm.

IfT = ¢g*¥*, then B has properly simulated Ga met ,and if T" is a random group element, then B has

properly simulated Ga met Thus, B can leverage A’s non-negligible difference in advantage between
these games to gain a non-negligible advantage against the D3DH assumption.
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Lemma 7. Under the source group q-parallel BDHE assumption, no PPT attacker can achieve a
non-negligible difference in advantage between Gameiv and Game? for at > Q1 using a revocation list
R C [N], and an access matriz (A, p) of size | x m where [,m < q.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Ga meiv and
Gamef for some t such that @)1 <t < (@) using an access matrix with dimensions < ¢, we will create a
PPT algorithm B to break the source group g-parallel BDHE assumption. B is given: g, gf, g%, g% Vi €
2q)\ {q +1},g°/% Vi € 2]\ {q+ 1}, j € [q], g% Vj € [q], g¥“*/% Vi € [q), 4.5 € a],j # j', and T,
where T is either equal to gdchr1 or is a random element of G. B will simulate either Game]' or Game]
with A depending on the nature of T

Setup. B chooses random dual orthonormal bases (D, D*), (IDg, D) of dimension 3 and (D, D%) of
dimension 6, all with the same value of 1. It then implicitly sets (B, B*) and (By, Bj) as follows:

b1 = dl, bg = dg, b3 = (Cd)fld;),, bf = T, b; = d;, b§ = (Cd)d;,,
bo1 =do1, boo =dog2, boz = (¢c) 'dog, b, =djy, b5, = df 5, b5 = (c)dj 5.

We note (B,B*) and (Bp, Bf) are properly distributed.
B sets the normal portions of (By,B}),..., (By,B;,) as follows:

bx,l = d.Z’,lu bx,2 = d.Z‘,27 bx,S = d.Z‘,37 bx,4 = dz‘,4 Vo € [u]a

by1=dy1, b0 =d; 5. b3 =d; 3, by =dy Vo € .

The semi-functional portions of these bases will be set later (at which point we may verify that all
of (By,B}),...,(By,B},) are properly distributed).

B chooses 6, a1, ao, 1, 2, 041, 4 2(1 € [n]), ¢j1,¢52,95,v5(j € [n]) € Z, randomly. We observe that
B can now produce the public parameter (with h = ¢, {h; = g% }jeln))> and also know the master
secret key (enabling it to create normal keys). It gives the public parameter to .A.

Phase 1. To create the first )1 semi-functional keys in response to A’s key requests, B first cre-
ates a normal key, then chooses a random exponent 7' € Z,, and multiples K;;, K ;, K7 and
{Ki,j,j’}j’e[n]\{j} by g@tvilr'ds gv'd; gz7'd3 and ¢V’ % respectively. As in the proof of the pre-
vious lemma, we note here that B does not need to know g% precisely in order to create well-
distributed semi-functional keys.

Challenge. Before requesting the t** key, A will request the challenge ciphertext for some revocation
list R C [N] and access matrix (A, p) of size [ x m, where both I, m < ¢. For each attribute = € [I/],
we let J, denote the set of indices k € [I] such that p(k) = x. For each attribute x € [U], B chooses
a random value 7, € Z, and defines a value 7, by

Ny = 77; + Z CAk,l/bk + -+ CmAk’m/bk.

At this point, B implicitly sets the semi-functional portions of the bases (By,B}),..., (By,B},) as
follows (note that these have played no role in the game before this point):

by = dy5,b26 = Uajld:v,ﬁa b§,5 = d;,Bv ;,6 = ndeZ,e vz € [U].

)

We observe that all of (By,B7), ..., (By,B;,) are properly distributed.

B produces a semi-functional ciphertext for index (i = 1,5 = 1) as follows.

To create the challenge ciphertext, B first creates a normal ciphertext using the normal encryption
algorithm. To create the semi-functional components, it implicitly sets w3 = cdf. It also chooses
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random values ub, ..., u,, € Z, and random values 5,’%3 € Z, for each k € [l]. It implicitly sets
uz = (cdf,dfc + uby, ..., df¢™ + ul,). E| This is distributed as a random vector with first entry
equal to 3. For each k € [I], B implicitly sets {3 = —dfbxm,u) + 5,27377[,(,6). These are distributed
as uniformly random elements because each 52’3 is random and 7, # 0 (with all but negligible
probability). We observe:

Ap - us + §k,3 :df(cAkJ + CQAkQ +..., CmAhm) + Ak,gulz + -+ Ak,mu;n

—dfb(hy + > CAwa /b + o+ A b)) + € T
k’EJp(k)

By definition, k € Jj), so we have some cancelation here:

Ap - ug + &z =Apouy + -+ Apmun,
—dfor(y + D> A /bt A /o) + o)

k/EJp(k)\{k}

We now see that B can compute g% %3+¢ks using the terms it is given in the assumption, enabling
it to produce ¢4 3 +&r3)bp).5 — o(Akus+Ek3)dpk).5 We also see that

—&k,3b,(k).6 = _ék,377;(}€)dp(k),6 = (dfbr — &.3)dpi) 65

so B can also produce g~*3%).6_ In this way, B can produce the semi-functional component of
Py, for each k € [I] with the proper distribution, as h = ¢ and B knows the value of 6.
B also produces the semi-functional components of Q) and Py as it can compute:

gﬂ'3b3 — (gf)d3 g7l'3b0,3 — (gdf)do,3.

)

It gives the resulting properly distributed semi-functional ciphertext to A.

Phase 2. To create the Qﬁh, ..., (t = 1)*" semi-functional keys in response to A’s key requests, B

first creates a normal key, then chooses a random exponent ' € Z,, and multiples K; j, K ; o K ;’ j
and {Ki’j’j/}jle[n]\{j} by g0tvivds ¢7'ds gz7'd3 and ¢V "' respectively. As in the proof of the
previous lemma, we note here that B does not need to know ¢ precisely in order to create
well-distributed semi-functional keys.

A requests the t" key for some pair ((i¢, ji), S(ir.j.)) Where Si;, .y C [U]. B can create the normal
parts of the key using the normal key generation algorithm. To create the semi-functional parts,
B proceeds as follows. Since S;, j,) does not satisfy (4, p), B can (efficiently) compute a vector
w = (wi,...,Wy) € Zy" such that its first entry is non-zero and w is orthogonal (modulo p) to
all rows Ay of A such that p(k) € S(;, j,)- We may assume the first entry of w is randomized. B
implicitly sets 05 ;3 = wic? 4 - -+ W™+ which is properly distributed because w; is random

(and ¢ is non-zero with all but negligible probability). B also chooses a random value 5;7]-73 and
2,j,3.
(521 ;3 1s random (and fc~! is non-zero with all but negligible probability).

We observe that

implicitly sets &; ;3 = —wac?™! — -+ —wp, ™ 4 feol§ This is properly distributed because

(O‘i,j,g + 5i,j,3)b§ = (w1d6q+1 + df(sgjj’g)dg.

2 Note that this is assuming that m > 2. For the case of m = 1, we will set uz = (cdf), 043 = wic?, and §; ;3 =
fcfléi,j,g, and it can be verified that the following proof follows as well.
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B forms the semi-functional part of K;] as: T3 (g df) w39 If T = quH, this is equal to
gl7i3.319i5.3)05 a5 required for a nominal semi-functional key. Otherwise, this exponent is dis-
tributed as a random multiple of b3, as required for a temporary semi- functional key. B forms the
semi-functional parts of K j, K} jand {K; j ji} jrepp (53 as (T4 (g df)%5.5,393)(0+vg) (wids(gdf)%i5,393 )7,
and (195 (g¥)° 3,3 43)%5 respectively. We also have

* —m~+2 / *
0i43b03 = (—wac? — -+ — wp,c? + f8;;.3)d0 35

enabling B to produce g(s"’j"?’ba?’ using the terms given in the assumption.
z,5 — g

Ulj3b Jl]3d

Now, B can also produce ¢?%3:3, and hence can compute g
We observe

=5 for each x € S, j,.

* *
0i,j,3b3.6 = 0ij3Mxd; ¢, and

Oigae = (Wic? + -+ wn e ") + 7 A b+ 4 " Ag g /br).
k€Jy

For each k € J;, we have p(k) = x. So for x € S(;, j,), we have A -w = 0 modulo p for every k € J,.
Thus, all of the terms involving c?t! cancel, and we are left with terms that can be created in the
exponent from the group elements given in the assumption (note that m < ¢, so 2¢ is an upper
bound on the powers of ¢ involved here). This shows that B can create g°*% 3br for all z € S, j,,
and hence can produce properly distributed semi-functional components for each K ;. of the tth
key.

B can respond to the rest of A’s key requests by producing normal keys via the normal key
generation algorithm.

T = quH , then B has properly simulated Gamet , and if T is distributed randomly, then
B has properly snnulated Gamet Thus, B can leverage A’s non-negligible difference in advantage
between these games to achieve a non-negligible advantage against the source group ¢-parallel BDHE
assumption.

Lemma 8. Under the subspace assumption, no PPT attacker can achieve a non-negligible difference
in advantage between Game! and Game; for any t from 1 to Q.

Proof. This proof is almost identical to the proof of Lemmal5] except that B adds an additional terms
of g@Tvibs, g185 g20%5 and g% to K, K ;, K} ; and {K; ;i }jrcmp () respectively for the ¢
key (where it chooses v € Z,, randomly). This ensures that when the 73 terms are not present, the tth
key will be a properly distributed semi-functional key.

Lemma 9. Under the subspace assumption, no PPT attacker can achieve a non-negligible difference
in advantage between Gameg and Game ;.

Proof. Given a PPT attacker A achieving a non-negligible difference in advantage between Gameg and
Gamey;nqi, we will create a PPT algorithm B to break the subspace assumption. We will employ the
subspace assumption with parameters m =U + 2, n; = 3, k; = 1 for two values of ¢, and n; = 6,k; =2
for the rest of the values of 7. To coincide with our notation for the construction, we will denote
the bases involved in the assumption by (B, B*), (Bo, Bj) € Dual(Z3,v) and (By,B5), ..., (By,Bj;) €
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Dual(ZS, ¥). B is given (we will ignore u3 and T'o,1,{Tz,1, Tz2 }zefy because they do not be needed):

va7ga g 1ag » 9 01 0’27 {g ’1ag ’2ag ’3ag ’4}1‘6[1/{]7
b* b5 bk b b} b} b* b* b* b* b* b*
gn 1795 2,93, g77 0’179/3 02,9703, {gn I’lagn 1,2’9/3 1’3796 vh,970, g I’G}:L‘G[Z/{]?
b b b b b b
U1 — g/u 1+p2b2+pus3 37 (J071 — gul 0,1+12b0 2+ 13 0,37

— by 1+u2by 3+u3b _ by o+p2by a+p3b
{U:c,l — gﬂl z,1 TH20: 313 1,5’ Ux72 — gﬂl z,2 TH20: 4T3 z,e}ze[u],

T,.

The exponent of the unknown term T’y is distributed either as 71nb] 47283, or as T11b] +128b5 +713b3.
It is B’s task to determine if this 73 contribution is present or not.

Setup. B sets (B,B*), (B, Bf), { (B, B})} as the bases for the construction.
B chooses random exponents
9,0/1,0/2 € va {ria Zis a'/i,17 1,2 € ZP}%E[TL {C ,1? 7, 2:%7% € ZP}]G

Then B gives to A the following public parameter:

( 9.l =9 {hi}iem), 9% g% W0 = (g")%, hP? = (g*2)°,
{h?l = (gbl)vja h?Q = ( bQ)UJ }]E[n]a hb()’l = (gb0’1)97hb0’2 = (gb072)9’
{hb””’l _ (gbx,l)97 o 7hbx,4 — (gbx,4) }a:E[U]? F = 63(gb1,T1)0, Fy = 63(9527T1)97
{Fr; = es(g", T1)", Foj = es(g”, T0)" Yy
{Gz — g’r‘i(b1+b2)’ Zz — gzi(bl-i-bg)7
E;iy = es(gbl,T19)€3(9b1,gnbf)a;’1,Ei,2 = 63(9b2,Tf)63(9b27Qﬂbg)a;’Q}ie[n]
(H, = ()5 (65)55, Y = (H,) e ).
Note that B implicitly sets

a1 = N7, 02 = ﬁTQa
{air =n((0+vj)m +aiy), aia=B((0+v)m2+ais)bijems {1 =nc1, cia= B2} jem)

Phase 1. To respond to a query for ((7,7),S5(;;)), B generates a semi-functional key as follow.

B randomly chooses 0; ;1,0 ;5,07 1,0} ;9,7 € Zp, and outputs a private key SK(

1,5)55(1,5)
((3:9) Sti gy, Kigs K o K7 5 A K i jr Y jremi\ Gy Kios 1K i jaaes,, ;) ) ast

Ki,j :T§6+Uj)(g77bi() 11+Tlc 1+(9+UJ)( %57, 1+613 1)( Bb;) 12+Tlcj 2+(0+U3)( zj2+6zj2) (0+Uj)7/b§,

g
K =Ty (g7 (g75) a2 02 705 KT = (K ),
(i =T 013500 s
K jo =(g"01)%i1 (g"%2)%2,
Kijo =(g"51)701 (g7002) 700 (g703) 7002 (¢7054) 002 Y € Sy ).

9"} e Gy

Note that this is a properly distributed semi-functional key with implicitly setting

/ / !/
Oij1 = N0 515 0ij,2 = 501‘,]‘,27 5i,j,1 = 7751‘,]‘,1» i,7,2 = ﬂ5 5,2
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We note that the multlple of b3 appearlng in the exponent of K (K, K; s {Ki,j,j’}j’é[n]\{j}a resp.)
is either equal to v ( 7/, z;7/, 7/, resp.) or v/ + 713 (7' + 73, zz(’y —|— 73), 7' + 73, resp.), depending on
the nature of T';. Either way, this is a properly distributed semi-functional key (whose distribution
is independent of 73 even if it is present).

Challenge. A submits B a revocation list R, an LSSS matrix (A, p) of size [ x m and two equal
length messages My, M. To create the semi-functional ciphertext B can use the same procedure
employed in the proof of Lemma [f] to use the U terms to provide the semi-functional components.
We repeat the description of this procedure below for the reader’s convenience. The only difference
here comes in computing the blinding factor for T';.

B produces a semi-functional ciphertext for index (i = 1,j = 1) as follows.
B first chooses random

Ky Ty S1y...385n, t1,...,tn € Zyp,

3 3

Ve €72, Wi,..., Wy € 7Ly,

/! / / !/ GZ !/ / ezm
§11:8120 581,812 p,  Up, Uy D s

where the first entries of u)} and w), are equal to 0. It also chooses a random vector u € Ly with
first entry equal to 1, and chooses random exponents 5{73, ...,& 3 € Zy. B implicitly sets

T = M1, T2 = M2, T3 = U3,
up =+ ul, ug = pou + uh, us = psu,
k1 = Epatn + &1y Er2 = Epatiz + o k3 = & anz Yk € [1].

B chooses random 1,7y, 7. € Zp, and sets x1 = (12,0,72),x2 = (0,7,72), X3 = X1 X X2 =
(=ryrz, =TTz, ryTy), then it chooses random vy € Zg, v; € span{x1,xz2} fori=2,...,n.

B chooses a random b € {0, 1}, then creates a ciphertext (R, (A, p), (R;, R, Q;,Q’, QY. T;)"_,,(C},
Ch)y, (Py)L_o) as follows (note that ¢ = 1,5 = 1):

1. For each i € [n]: set

Ri = (Gi)Sivi7 R; = Rfa

Qi — gTsi('vi.vc)(bl—‘,-bg)’ Q{L — (h H hj/)Tsi(’vi'vc)(bl—‘rbg)Z?'U?’ ;:l — gti(bl+b2)’
J'ER;
(Ei71Ei72)TSi(vi'vc)
b (F{Fé)‘l’Si(’l}i'vc)eg(Ul’ Tl)a )

T, =

where Fll = F1 H Fl,j' = eg(gbl,Tl)eall H eg(gbl,Tl)Uj,all and FQ’ = F2 H Fg,j/ = 63(_qt’2,’1-'1)90/2

s JeR: J'€R
H e3(g%2, T )2 respectively.
J'ER;
2. For each j € [n]: set C; = (H;)™<(Y;)"™i, C = (Y ;).
3. Set
PO :Ug,h

Py = (g0 ) it Py ~Sha - (ghawyo) et (o) ~Sharr TR k) vk e )

If the exponent of T’y is equal to Tinb] + 75b5 then we have

es(U1, T1)" = e(g, g°) Y matmhie) — e(g, p)v(eamtesns) — prpre,
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and hence we have a properly distributed semi-functional encryption of M, as required in Gameg.
If instead the exponent of 77 is equal to 7nb] 4+ 78b5 + 13b3, then we have

63(U17T1)9 _ 6(9790)¢(T1nu1+72,8u2+T3u3) _ e(g’h)w(alfr1+a27r2+7'3#3) _ FlmFng(g, h)mus.

Since 73 is random (and independent of the semi-functional keys and the rest of the ciphertext), this
blinding factor is distributed as a freshly random group element of G7. Therefore the ciphertext

is distributed as a semi-functional encryption of a random message, as required in Game ;4.
Phase 2. Same with Phase 1.

Thus, B can leverage A’s non-negligible difference in advantage between these games to achieve a
non-negligible advantage against the subspace assumption.

B.2 Proof of Lemma (1l

Proof. Suppose there exists a PPT adversary A that breaks the Index Hiding Game with advantage
€. We build a simulator B to solve a D3DH problem instance. B flips a random coin € {0,1}, if ¢ =0,
B interacts with A in Case A as guessing “A is not in Case II1.3”, otherwise B interacts with 4 in
Case B as guessing “A is not in Case I1.17.

Case A: B receives the D3DH challenge from the challenger as ((p,G,Gr,e),9,A = g%, B =
g?,C = ¢¢,T), and it is expected to guess if T is g or if it is random. In this case, the simulator
guess the challenge value ¢ and generates the public parameters correctly. In case the value of the
¢ does not match the value later provided by the adversary then the simulation aborts. Since the
simulator will successfully guess the right value of ¢ with probability at least %, the simulation will
work with probability at least %

Setup. Firstly, B randomly chooses a value for ¢ to guess that ¢ = 0 (regardless of whether A behaves
in Case I or Caes II.1) and ¢ = 1 if A behaves in Case II.1 or Case II.2.
B chooses random dual orthonormal bases (D,D*), (Dg, D) of dimension 3 and (D,,D}) of di-
mension 6, all with the same value of . It then implicitly sets (B, B*), (Bo,Bj;) and {(B,,B})} as
follows:

by =di, by = do, by =ds, b =dj, b5 = d3, b; = d,
bo1 = (¢)"'do,1, bo2 = (¢)'do2, bos = dos, b, = (c)dy 1, by, = (c)df 5, b 3 = di 5.
bry=dy1, ..., b =dyg, by =d;q, ..., b 5=d;sVr € [U]
We note (B,B*), (Bo,Bj) and {(B,,B})} are properly distributed.

B chooses random exponents

0,a1, a9 € Zy, {ai1,ia, 21 € Lpliem)s {Ti € LplicpGy 1651625 Yis V5 € Lp}jemp\G)

/ / /
Tis G GG

B gives A the following public parameter PP:
(9:h =g g™ 9% {hs = 9" bictupgiy by = 97, ¥ = g P2 = g2,
{hz)l = (gbl)vj7 h?2 = (ng)Uj }ze[n}\{i}7 {hgl = (Cbl)vi/7 h?2 = (CbQ)v;/}a
pbot = gfdor phoz — ghdoz (pbet — gfder  pbet — g¥deay up,
Fy = e(ga h)d}al) Fr = e(ga h’)wQQa {Fl,j = e(ga hj)’d}al’FZ,j = 6(97 hj)wO[Q}]E[n}’
{Ei,l = e(ga g)’ébai,l’ E’i,Q = e(ga 9)711‘11',2 }ie[n}v
(G =gty gy, Gy =Bt d) (7, = galdidy,

C_cjadiesad o vj ~ ek dicl d o di e di\yk
{H]_gJ 1716520 YJ_I—IJ, }je[n]\{j}7 Hj_CJ,l 3272 Yj—(gj,l 3:272)% ).

/ /
yj, ’Uj S Zp.
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Note that B implicitly chooses r;, 25 U% and y; € Z; such that

3,17

e
br: = r; mod p, cc; 1 = ¢, mod p, 00]2_

7, ¢j,0 mod p, CU% = v; mod p, y%/c = y; mod p.

Key Query. To respond to a query for ((4,7), 5 )),
—if (4,5) # (i,7): B randomly chooses o; ;1,0 2,0 ,1,0ij2 € Zp, then creates a private key
< (17])75(27]) K; ,jaszaK;,]’ {Ki,j,j’}j’e[n}\{j}a Ki,j,Oa{Ki,j,x}xES(i,j) > where

g% 1di+a; 2d3 ngCj,ld’{+ricj,2d§ (hhj)(ai,j,1+5¢,j,1)d{+(oi,j,2+§,‘,j,2)d§7 Li ;,j 7&5
K;;=< g™ 1di+ay,2d5 Bricj1di+ric;2d; (hh.)(Uz‘,j,l+5i,j,1)dI+(Ui,j,2+5i,j,2)d§’ i=1,]#]
goinditaizd; Criciditric od (hh )(ffi,j,1+5i,j,1)dI+(0i,j,2+5i,j,2)d§, it j=7
K|, = g1 toij 105, 1)di (oot 04005 2)d5
K., = (K.,)"
{K iy = h(flfz,g,l+5z’,j,1)df+(0i,j,2+5i,j,2)d§ }j/e[n]\{j}v i £ g,j ” j

Kijo= C5i,j,1d8,1+5i,j,2d6,2
K ija = Ti,5, 1(dac 1+dac 2)+0ij,2(d 13+d 4)
—if (4,7 ) = (,J): it means that A behaves in Case II.1 or Case IL.2. B chooses random

j2 € Z and sets the value of 0; ;1,052 by implicitly setting o; ;; —bric;/(0' +v}) =
—br! c] 2/((9/+U ) = 0i 2 mod p. In addition B randomly chooses 9; ;1,0; 2 €

/
z] 1,0
Oi g1 mod P, o

1] 2
! 1
Zy. B creates a private key ( (i, 7), Sy Kigs K, K7, {Kw’] } rem\{}> Ko {K; ,J,w}gceg(i’j) )
where
K= gaz‘,ldﬁai,zdé(hh.)(Ué,j,l+5i,j,1)d’{+(U§,j,2+5i,j,2)d’£,
K/ (aﬁ—ol s 1+61 7, 1)d1+(a2+0'2 g 2+6z ' 2)d 5 (Bcéyldf-‘rl%ad*) rl /(9/—{-7) ) K/I (K/ ')Zg

(K= h("ij,l+5i»]’»1)dﬁ(“g,j,z*‘sivjv?)d
iggt = Ny

Kijo= ORERL RREEL
Kijz= b ) o (A g o) (Bt 000 (5 s ) o (o) v ¢ g

*Yiremh gy

(4,4)

Challenge. A submits a revocation list R*, a message M and an attribute set S*, B sets R* =
[n, n] \ R* and constructs the LSSS matrix (A, p) for Ag-. Let I x m be the size of A.

— if (4,4) € }:?* Aé=1: Ais in Case II.3. B returns b € {0, 1} to its challenger, then aborts.

— if (,7) € R* A é=0: B continues the following interaction.

— if (4,7) ¢ R* A ¢ = 1: B continues the following interaction.

- 1f (i,7) ¢ R* ANé=0: B sets ¢ = 1 and generates the private key ( (i, 7), Sty Kij, Ky K7 s
{Ki,j,j/}jle[n}\{j}, Ko, {Ki,j,m}zesu,j) ). Then B continues the following interaction.

B chooses random

/ /
Ty Sl 871,55 Sitls -2 Sny  Ulyeo o1t b, 5 tn € ZLp,

B / ! / 3
Wiy W), W5 WSy, Wy € Zy,

§1,0,812, -, &1,812 € Zp, m1,T2 € Zp, ui,uz € Zy,

where the first entries of u), u), are equal to zero.
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B chooses random 1,7y, 7. € Zp, and sets x1 = (r2,0,72),x2 = (0,7y,72),X3 = X1 X X2 =
(—=ryrs, =127, T21y), then it chooses random

UZ-EZIB) fori=1,...,1

v; € span{x1, X2} fori=i+1,....n

B chooses random (ve,1, V2, Ve 3) € Zg. Let vt = Ve, 1X1 + Ve2X2 and vl = Ve,3X3, in the following
simulation, B will implicitly set

ve = a ol + v,

B creates a ciphertext (R*, (4, p), (Ri, R}, Q:, Q;, Q7 , )iy, (C;,C%)} 4, (Pr)k_o) as follows:
1. For each ¢ € [n]:

— if i <i: it chooses random §; € Z,, and sets
R; = (gb1+b2)vi’ R/' — (Bb1+b2)vi
Qi _ gsi(bl—l-bg)’ Qz _ Qze JrZ]/eR* UJ)Z;i(bl+b2)h7r1b1+7r2b2’
Q,'/ _ gti(b1+b2)
(2 9
T; = e(g,9)"
— if i =4 it sets
R, = (gdﬁ-dg)rés%v;’ R; _ (Bdl—i-dg)r%s%v;7
L T’si(vi~v€)(d1+d2) T’si(vi-vg)(d1+d2)
Qi=g " AT% )
Q/ — Q(9/+Zjleé* Uj)Zti(b1+b2)h7r1b1+7T2b2
7 7 Y

i

(di+d
QY = g ),
e . 4Qq1d] oy od]
1_17; - M 3(Q’Lug )

* * ! ! ay—nyD * * ! ol ny_nyd °
63(gd1+d2, (h H hj/)a1d1+a2d2)7 StvvUe 63(Ad1+d2, (h H hj,)a1d1+a2d2)7' sgvichlﬂ'l F27T2
j'ER* j'eR

— if i >4 it sets
R, = (gd1+d2)'f'i5ivi7 R/- — (Bdl"rdZ)T’isi'Ui,
(V08 (d1+d / (0"+3" 57 e r* V5) ti(b1+ba b b
Q, = BTS ;o) (d1+ 2)’ Qz _ Qz j'e Zil( )hm 1+72 2
1 t;(di1+d
Q’L' =g ( ! 2)7
e3(Q;, g¥i1ditaiads)
d* d* / U7 ICJ °
ea(Bltda, (h [T hy)acitesdiyromet o pye
jIER*

;=M

2. For each j € [n]:

— if j < j: it chooses random u] € Zy and implicitly sets the value of 1; such that (—;} Dves =
p; mod p, then sets

Cj — (Bcjylbf—i-cj,gb;)r/vg (gc]-,lb’l‘+cj,2b;)7—’u;.vg (Bcj,1b’{+cj,2b§)ij]-’ C; — (Yj)wj.
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—if j =j:

L b¥+cl b\ ! b 4cl  bE\yLtwl wl L b¥+cl bi\—1/yP
Cj _ (chyl 1+C],2 2)7- vC(Bcjyllercj’sz)y] j, C; _ (Yj) ](chyl 1+c]y2 2) T'e

—if j > g

C; = (Bcj,lbi‘—l—cj,zb;)ﬂ-’v;c’ (BCj,lbf+Cj,2b§)ij;’ C; _ (Yj)w; (chJb{—I—cj’gb;)—T/vg'

3. Py = ge(mbo,ﬁmbo,g)’ (P, = (ge)(Ak'ul-i-fk,l)bp(k),l_gk,lbp(k),2+(Ak'u2+£k72)bp(k)73_gk’QbP(k%‘l}kem.

Note that B implicitly chooses k, T, sj, ti(i € [n]\ {i}), m,m2 € Z, and w; € Zg(] < j <mn) such
that

b=k modp, abr’ =7 mod p,

s7/b = s; mod p,

/ 2 W
w; — T vc/yjzwj mod p,

w —at'vi/y; =w;modp Vj e {j+1,...,n}.
If T = g%, then the ciphertext is a well-formed encryption to the index (4, 7). If T is randomly
chosen, say T' = ¢" for some random r € Z,, the ciphertext is a well-formed encryption to the
index (i,j + 1) with implicitly setting u; such that (g5 — 1)ve3 = p; mod p.
Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger as its answer to
the D3DH game.
When B does not abort, B’s advantage in the index-hiding game for our AugR-CP-ABE scheme

is €- Pr [A is not in Case I1.3 A(c =0)] = e Pr [AIL3 A (¢ =0)].

Case B: B receives the D3DH challenge from the challenger as ((p,G,Gr,e),9,A = ¢*, B =
g?,C = g¢¢ T), and it is expected to guess if T is g?*¢ or if it is random.

Setup. Firstly, B randomly chooses an attribute € [U] to guess that Z will be in the challenge
attribute set S* (regardless of whether A behaves in Case I or Caes II) and will not be in S; ;)
if A behaves in Case II.2 or Case II.3.

B chooses random dual orthonormal bases (D,D*), (IDg, D) of dimension 3 and (D,,D}) of di-
mension 6, all with the same value of . It then implicitly sets (B, B*), (Bo, Bf;) and {(B,,B})} as
follows:

b, = d;, by = do, bs =ds;, b =dj, b5 = d3, b; = d,
bo,1 = (¢)"'do,1, bo2 = (¢)'do2, bos = dos, b = (c)d 1, by, = (c)d§ 5, b 53 = di 5.

| =dy, cbpe=deg,  biy =dhy, . bhg=dig Vo e U]\ {z);
1= (&) o, - by = ¢ hdag, bry = (O)dEy, .., b = (O)di.

We note (B,B*), (Bo,Bj) and {(B,,B})} are properly distributed.
B chooses random exponents

0 a1, a2 € Zp, {1, iz € Lplicin), {Tis 2 € Lplicppgy 16315620 Y5 € Lo} jep\ (i)

R A A A )
T % Cys G Y {Uﬂ}je[n} € Zp.
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B gives A the following public parameter PP:
( g h=C", g%, g% {hj = C"}jcp, B = OV pP2 = 7',
{h?l = (Cb1)v§’ hz?z = (Cbz)v; Vit pbo1 — 99’d0,1,hb0,2 _ geldw’
{hbl’l = CGIdIJ, cees hbzA = Ce,dzA }xe[u]\{i‘}7 {hbz’l = geldz’l, RN hbz’4 = ge/dz’4}m:a'ﬁa
k= e(g? h>¢a17 Fy = e(g, h)wazv {FLj = e(gv hj)¢a17F2,j = 6(97 hj)waz}jE[nb

{Ei1 = e(g,9)"", Eiz=e(g,9)""2}ic,
{Gz‘ _ gm(dl—&—dz), Z;, = ng(dﬁ-dz), }ie[n]\{g}a Gg _ Br%(d1+d2)7 Z; — gzz(dﬁ-dz)’

C_ cjadidciads o Yj ~ ek di4cl d ok dic dyyk
{H] =g r1TeT2 Y] = Hj }]E[n]\{]}7 H] =(C"it 3,272 Y] = (g J,1 3,2 ) J o).

Note that B implicitly chooses 13, ¢; 1, ¢j2, yj € Zp and {2; € Zp}cp,)\ (73 Such that

brg = r; mod p, cc% 1 = ¢5,1 mod p, 003’2 = ¢j 9 mod p, yj/c = y; mod p,
¢z} = z; mod p Vi € [n] \ {i}.

Key Query. To respond to a query for ((4,7), S ;)),
—if (4,4) # (i,7): B randomly chooses o; ;. 1,017372,517371,5232 € Zp, then creates a private key

< (i,j), S(z‘,g)7 K; 1,59 K@J) K;/ja {Kz,],] }] ren\{7}> 1,],Oa {Kz,j,x}xes(i,j) > where

g ditaid; gricjiditricsad; (hhj)(Um',l+5m‘,1)dT+(0i,j,2+5z‘,j,2)d§’ iA A
K, j = { grinditeizd; Briciadi+ric;ad; 2 (hhy .)(Uz',j,l+5i,j,1)df+(0i,j,2+5i,j,2)d§, i=1,7#
gQinditaid; Criciaditric),d (hh )(Ui,j,l+5i,j,1)df+(Ui,j,2+5i,j,2)d§’ i, j=]

K = g(al+Ui,j,1+5m’,1)dT+(a2+0’i,j,2+5i,j,2) 3

(Cleatoijatdija)dit(atoiotdijo)ds)e . j Ly 545

"o / ,_ LT -
Ki,j_ (Ki,j)zlv =10, F
(C(al+0i,j,1+5i,j,1)dI+(a2+Ui,j,2+6~L,j,2)d§)Zl/-’ A, =]

7 _ 1 (04,4,1+0i5,1)d]+(0 5,240 5,2)d3 S LT i L
{Kijj =hy Yirem\Gy, i FELIF]

Ki,j,(] — C‘Sz,J,ldo,1+5i7.i72do,2,
0i,5,1(dy 1 +d3 5)+0ij2(d] 5+d; . 7
1% _ g Jl( 1 2) J2( 3 4) a:;é:z
D) 0oiga(dy it d] o) o 2a(dy s tdr ) L —

— if (i,7) = (i,7): it means that A behaves in Case I1.2 or Case I1.3. if 7 € S(i,j) then B aborts
and outputs a random b’ € {0, 1} to the challenger. Otherwise B chooses random o7 ;1,07 ;5 €
Zy and sets the value of 0; j1,0; j2 by implicitly setting o} ;; — bric} 1 /(0 +v}) = 0,5, mod p,

;] o —briclo/(0'+0}) = 0 52 mod p. In addition B randomly chooses d; j,1, ;2 € Zy. B creates

: 1 7
a private key ( (z,]),S(i’j),K J,K”,KH, {Ki,j,j’}j’e[n}\{j}, Ki,j,ov{Ki,j,x}xeS(iyj) ) where
K, = gtnditaizdi(pp, ) (i +0ig) Al (75 5 5 F0i5,2)d
9, M
K/'j — g(a1+0¢,j,1+5i,j,1)d1+(0¢2+02,j,2+5i,j,2)d§ (BC§,1dT+C§,2d§)—7‘§/(9’+v§)7 K;/j _ (K’- )

{K , h(z71+5111) 1+( 2+6112d2
4,5, —

K',jO — 052,1,1d0,1+5i,j,2d6,2’

Firelmh\ys

K'j:c — gag,j,l(d;,l"'d;g)‘*“’;,j,z(d;,3+d;,4)(B_Té/(el"'vg))'33',1(d;,l+d;,2)+cg,2(d;,3+d;,4) Vo € S(i )k
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Challenge. A submits a revocation list R*, a message M and an attribute set S*. If z ¢ S* then
B aborts and outputs a random ¥ € {0,1} to the challenger. Otherwise, B constructs the LSSS
matrix (A4, p) for Ag~. Let [ x m be the size of A.

Note that S*\ {Z} does not satisfy (A, p), B first computes a vector w € Z;' that has first entry
equal to 1 and is orthogonal to all of the rows Ay of A such that p(k) € S*\ {Z} (such a vector
must exist since S* \ {z} fails to satisfy (A4, p), and it is efficiently computable).

B chooses random

/ / / / /

T Slyees Sic15 S5 Siglr-- -2 Sy byt n g G gt € ZLp,
_ / 3

Wiy, W)_g, W3y, W € Zy,

/ / ! !
§1,0,812, -, &11,812 € Ly, ™, Ty € Ly, uy,uy € 7Ly,

/
n
!/
n

where the first entries of u/, u}, are equal to zero.
B chooses random 74,7y, 7, € Zp,, and sets x1 = (r3,0,7;),x2 = (0,7y,72), X3 = X1 X X2 =
(=ryrz, =727, T21y), then it chooses random

UZ'GZ;); fori=1,...,1i,
v; € span{x1,xe} fori=i+1,... n.

B chooses random (v¢1,Ve2, Ve3) € Zg. Let v = ve1x1 + Veo2Xx2 and v = v, 3X3, in the following
simulation, B will implicitly set

ve = a ol + v,

B creates a ciphertext (R*, (4, p), (Ri, R}, Qi Q}, Q7 , )iy, (C;,CY)} 4, (Pr)k_o) as follows:
1. For each ¢ € [n]:
— if i <i: it chooses random §; € Z,, and sets

Ri= (g"10)%, Ry = (BM0),
. si(b1+b2) I \Si(b1+b2) ~zit; (b1+b2) 3, 7 b1+, b
Qz g ) Qz (h h]’) C h )
j/eR*
le _ (gtéA(G/"‘zj/GR* vj/)fr’s%(vg-’ug)/z;)(b1+b2)’

3

T, = e(g,9)

— if 4 = i: it sets
R; = (¢htd2)risivi. R = (Bdtdz)risivi,
Qi — gTIS%(vi"Ug)(dl-f-dz)AT’SL(vi.v‘CI)(d1+d2)

7
)

'l (v.:-vP t= / ’
Q{L = (h H hj/)T Si(vl vC)(d1+d2)Zilh7r1d1+7T2d2’
j'ER*
" t:(d1+d
Qi =g i(ds 2)7
e3(Q;, ginditaiads)

(F{Fé)T’s%(m'vg)Ffi F27r/2 ’

;=M

where Fy' = Fy H Fy j and By = F, H F, ji respectively.

j'e€ R; j'e Ri
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— if i >i: it sets
R, = (gd1+d2)nswi’ R; — (Bd1+d2)Ti3ivi7
Qi — BTISi(”i'v;g)(dl"'dﬂ Q( — ngt;(d1+d2)h7r’1d1+7r’2d2
Y 1 Y
;/ _ (gt;Bf(G’Jij/GR* vj/)T’si('ui-v’c’)/zgA(G’Jrzjxeg* Uj/)T’sg(vg-vg)/zg)(d1+d2)’
e3(Qs, gai,ldIJrai,zdS)

7 7 o (e ad "
es (Qu (h H hj,)aldTJragdg)Flﬁ F27r2€3 (Ad1+d2’ (h H hj/)aldiuragdg) sz (v5v¢)
j/eR* j/ER*

T, =M

2. For each j € [n]:

— if j < j: it chooses random u;- € Zy and implicitly sets the value of 1; such that (% —Dves =
p; mod p, then sets

Cj _ (Bcj',1b1*+c]~,2b§)7-’v€ (gcj,1b*1‘+Cj,2b§)T/,LL;vg (BCj,le+Cj72b§>ijj7 C; _ (Yj>wj-

—if j =j:
e bi+ck b5\ r'vd . b 4c b\ yiw? / wl , ~ck byl by 7P
Cj = (T 3,171 %5,2 2) (B 3,1917%,2 2) ii, Cj = (Y;) ](C 31717552 2) .

—if j > 5:

(j‘7 —_ (Bc]v,lb{Jer,gb;)T’v’g (Bijlb’f+c]',2b§)ij;’ C; — (Yj)w; (ch'ylb{#»cj‘,gb;)fT/’vg.

P0 :gel(ﬂ-id0a1+7r/2d0«2)A_((GI—FZJ"GR* ’Uj/)/9')7"5%(’11;’1)2)(do@-‘y—doyz),
P, :(99’)(Ak'(Wiw+u'1)+£k,1)dp(k),1—§k,1dp(k),2+(Ak'(Wéw‘i‘u’z)-i—fk,z)dp(k),a—Ek,zdp(k),4

A= O+ e px v0) /0757 (v30E) (Apw)(dp (k) 1+ dp (k) ,3) Vk € [I] s.t. p(k) = Z,
P, :(CG/)(Ak'u/1+£k,1)dp(k),l761@,1dp(k:),2+(Ak'u/2+5k,2)dp(k),375k,2dp(k),4 Vk € [I] s.t. p(k) # z.

Note that B implicitly chooses &, 7, s;, ti(i € [n]\{i}), m1,m € Z, and w; € Z3(j < j < n) such
that

b=rxmodp, abr’ =7 mod p,
st/b = s; mod p,
t: + a(0 + Z v )T sH(v; - vl) [z =t mod p Vi€ {1,...,1— 1},

j'GR*
/ / S N / S NS . =
t; — b(0 + Z v )T si(vi - VP) /2 4+ a(f + Z vj)T sz (v;-vl)/zp =t;modp Vie {i+1,...,n},
j’GR* j’ER*

! ol
w; — T vc/yjzwj mod p,

w; —at'vi/y; = wjmodp Vj e {j+1,...,n},
1 —at' (0 + Z vjr)sz(v; - v?) /0" = 7 mod p,
jIER*
/ (! N (v--v1) /0 =
Ty — a1 (6" + Z vy )s;(v; - vl) /0" = w3 mod p,
jIER*
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and implicitly sets

uy =(m) — aTIS%(’Ug cvd))w + ul,

ug =(my — a7’ s5(v; - vE))w + uh.

If T = g%, then the ciphertext is a well-formed encryption to the index (4, ). If T is randomly
chosen, say T' = ¢" for some random r € Z,, the ciphertext is a well-formed encryption to the
index (7,7 + 1) with implicitly setting p; such that (;- — 1)ve3 = p5 mod p.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this ' to the challenger as its answer to
the D3DH game.

Note that when B does not abort, the distributions of the public parameter, private keys and
challenge ciphertext are same as the real scheme. As S* # () and when A doesn’t behave in Case
I1.1 the attribute set S@;) must satisfy S* \ Saj # (), the event that B does not abort will happen
at least 1/|U|. Thus, B’s advantage in the D3DH game will be at least e- Pr [A is not in Case II.1
AS*\ Sizz) # 0)] = e Pr [AIL3 A (S*\ S(z5 # 0)]. As of the fully secure CP-ABE schemes in
[TOJTOITTIT2ITS], the size of attribute universe (i.e. [U|) in our scheme is also polynomial in the security
parameter A. Thus,

€ PrAIL3 A (c=0)] + € Pr[AIL3 A (5% \ S(;5) # 0)]

= ¢ Pr[AIL3] - Pr[c = 0] + ¢ - Pr[AIL3] - Pr[S™ \ S5 # 0]
=e- (1 = Pr[AIL3]) - Prlc = 0] +€- (1 — PrlAIL3]) - Pr[S*\ ;3 # 0]
)

>+ (1—Pr[AIL3))- W1|

e (1 — Pr[AIL3]

N | =

v
N

'6,

Since Pr [AIL3]+ Pr [AIL1] < Pr [AI] + Pr [AIL.1] + Pr [AIL.2] + Pr [A.IL.3] and |U| > 2.

B.3 Proof of Lemma [2|

Lemma 10. If the DSDH assumption holds, then no PPT adversary can distinguish between games
Hy and Hy with non-negligible probability.

Proof. This lemma can be proved by applying the result of Lemma [T}

Lemma 11. If the D8DH assumption holds, then no PPT adversary can distinguish between games
Hy and H3 with non-negligible probability.

Proof. Consider an adversary A that can distinguish between Hs and Hj3 with a probability greater
than e. We build an algorithm B that uses A to solve the D3DH problem. B receives the D3DH
challenge as ((p, G,Gr,e),9,A = g% B = g*,C = ¢¢,T), and it is expected to guess if T is g2 or if it
is random. B interacts with A in the Gamejy as follows:

Setup. B randomly chooses two pairs of dual orthonormal bases (B, B*), (Bo,Bj) of dimension 3 and
U pairs of dual orthonormal bases (Bq,B7),. .., (By,B;,) of dimension 6, subject to the constraint
that all of these share the same value of .

B also randomly chooses

97 Q1,00 € Zp7 {r’iv Q31,02 € Zp}ze[n]\{g}a Qg 1, %2 € Zp7 {ZZ € Zp}ie[nb {69,1703'727 Yj, V5 € Zp}ye[n]
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B sets the public parameters to

(9:h= g%, g g Thdye B = (621 = (g2, (A% = (g")5 % = (g%)} e
o1 = (), W = (g0, (R e
Fy = e(g, h)P™, Fy = e(g,h)"2, {F1; = es(g™,g"1)", Faj = e3(g”, 9"%) 7} jepu),
{Gi =g ™% By =e(g,9)"", Eia = e(9,9)"™ b iy
G;=B"%) | E; | = e(A,B)e(g,9)" ", ;5 = (A, B)e(g,9)" "2

Note that B implicitly sets
r;=0b, a;;=ab+ 0‘;,17 Qo = ab+ 04;2, {¢j1= c}l —a, ¢jo = c;-’z — a}je[n].

Key Query. To respond to a query for ((4,7), S(; j)), B randomly chooses o ;1,0 52, 6i 4.1, 0ij2 € Zp,
then creates a private key as

K' e * « " —
b g%iah +aj ,b5 p(c) b +¢) ,b3 )(hh V(001400500 +(00 240052005 L =G

a {g(az 1+T’i0; )b} (o, 2+n-c;- 5)b3 A_ri(b’lk—"_b;)(hhj)(Ji’j’l+6i’j’1)bT+(O—i’j’2+6i’j’2)b;, -4 ;é %
I (en40i148; 5 1)b (o to; i 040 " I\
K,y g(l 9110i,5,1)bi+H(a2+0i 5,2+6i,5,2)b3 K (K) ,
_ (02]1+6231) 1+(U7,j2+57,32 2
{Kijj =hj FEBNG?
Ki,j,(] =g 7«7]71b0,1+5%],2b0,27

Kij.= gaz‘,j,l(b§,1+b§,2)+0i,j,2(b2,3+b2,4) Vz € ().

Challenge. A submits a message M, a revocation list R and an attribute set S*. B constructs the
LSSS matrix (A, p) for Ag«. Let [ x m be the size of A.
B chooses random

KyTy  S1y-eeySny tyenoytn € Zp,
wi,...,w, € ZI?;,
§1,0,81.2, -, &11,82 € Zp, ur,u2 €7y
where the first entries of u; and us are equal to m; and o respectively.
B chooses random 1y, 7y, 7. € Zp, and sets x1 = (13,0,72),x2 = (0,7y,72), X3 = X1 X X2 =
(=7ryrz, =727, T2Ty), then it chooses random
v €Zy fori=1,...,1,
v; € span{x1, X2} fori=i+1,....,n

B chooses random (Ve,1, Ve,2,Ve,3) € Zg. Let v% = ve1Xx1 + Ve2x2 and vé = v 33, in the following
simulation, B will implicitly set

ve = V8 + (c)vl.

B creates a ciphertext (R, (4, p), (R, R;,Q;,Q;,Q],T;),, (C;,C%)"
1. For each i € [n]:

b1 (Pr)k_o) as follows:
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— if i <i: it chooses random §; € Z,, and sets
bi1+b2\v; —
=(g"")", R;=R},

Q gsz(b1+b2) Q/z _ hsi(b1+b2)Z§i hﬂ1b1+7r2b2’ ;/ — gti(b1+b2)’
= ¢(

9,9)%.
— if i =14 it sets

Rz’ = (l?l’l'i'b?)sivi7 R; — (Bb1+b2)ffs;'vg,

Qi — gTSl'('u,L'.vlg)(b1+b2)CTSi('Ui-’UZ)(b1+b2)’ Q/ _ Q(9+ZJJER* ’Uj/)Z?L‘ h7’r1b1+7T2b27 Q;/ — gti(b1+b2)’

e(A, B)yWTsi(vive)e(g T)2UTsi(vivd) (g, g)"/’(ah+a§,2)78i(vi'v’c’)e(g7C)w(aé,ﬁaé,g)ﬂi(vrvg)

T, =M e (o Y(ar14a2)7s;(vivd) oy oo
IS ICERD] | (e ) Bk

where Fl’ — Fl H Fl,j/ and FQ’ = F2 H F2,j’ l"eSpeCtively.
_ J'ER; ieh
— if 7 > 4: it sets
Ri - (gb1+b2)ri5ivi7 R; - (gd1+d2)ﬁri8i’vi7
@i = gTSi(vi.vg)(leer)’ Q; = QEQJFZjIER* Ujl)Zl;i h7T1b1+7r2b2, Q;’ = gti(b1+b2),
6(97 g)qz)(ai’l"‘ai@)Tsi(vi-vg)

(F{Fg)riwive) F R

P =

where F\/ = F} H Fy o and By = F, H F, ji respectively.
j'€R; J'ER;
2. For each j € [n]: Since j < n+ 1, B chooses random ,u; € Zjy and implicitly sets the value of p;
such that p; = ,u;- — cv. 3, then sets

C; = (H])T(vc-i-MJXs)(Yj)nwj, C; _ (Yj)wj.

3. Py = hriboatmbo, 2 Py, = — BAru1+ER )by k), 1 =8k, 105 (k) 2 (Al u2+Ek 2) b (), 38k, 20 (), 4}k -

If T corresponds to g"“bC then the encryption corresponds to game Hs; and if T is randomly chosen,
then the encryption corresponds to game Hj.
Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger.

The advantage of B is exactly equal to the advantage of the adversary A.

Lemma 12. If the D8DH assumption holds, then no PPT adversary can distinguish between games
Hs and H4 with non-negligible probability.

Proof. Hz to Hy can be expressed as a series of games H3 41, H35,...,H31. In the game H33. all

column ciphertexts (C}, C;) are well-formed for all j such that 7 < j < n. It can be seen that Hj ) is
the same as Hy, and H3 541 is the same as H3. We prove the indistinguishability of games H, 3 and

H 3541 for all 7 where 1 < j < n. The proof for this is similar to that of Lemma

Consider an adversary A that solves the index hiding game with a probability greater than e.
The adversary is considered successful if it can distinguish between games H, 3. and H, - i1 . We
build an algorithm B that uses A to solve the D3DH problem. B receives the D3DH challenge as
((p,G,Gr,e),9,A = g% B =g’ C=g°T), and it is expected to guess if T is g?* or if it is random.

B interacts with A in the Gameyy as follows:

i
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Setup. B randomly chooses two pairs of dual orthonormal bases (B, B*), (Bg,B§) of dimension 3 and
U pairs of dual orthonormal bases (B1,B7}), ..., (By,B;,) of dimension 6, subject to the constraint
that all of these share the same value of .

B also randomly chooses

97 g, 2 € Zp, {Ti7 Zis ai,laai,Z € Zp}iE[n]a

/ / /
{¢i1:¢i2s Y5 € LoYjepansy G0 G0 € Los (V5 € LpYjepn)-

B sets the public parameter to

< g:h = ge7gb1,gb27 {h’j}je[n]a Wb = (gb1>07 hb? = (gb2)97
G D N e e O N (N U P i e
Fy=e(g,h)", Fy = e(g,h)"*2, {F1; = e(g, hj)"™, Fa; = e(g,h)"**} i),
{Gi =gt Z; = g=O1F%) By = e(g,9)Y, Eig = e(9,9)" ™ hicp),

/ * / * / / * / *
_ ¢j,1b]+cj 2b5 _ ¥ _ ~Ch bt b5 _yi(ch  bi+cl b3)
{H; = gobitasbs y, = HY) H, = C5750% s = gl GG ),

jelm\I}

Note that B implicitly sets

/
= CC»

i 7,17

— / . — /
5 Cio=CCo Yj = yj/c.

Key Query. To respond to a query for ((4,), S(; j)), B randomly chooses ; j 1,0i 2, 0:5,1, i j2 € Zp,
then creates a private key as

o {g(ai,l-i-?‘icj,l)b’{+(ai,2+7“icj,2)b§(hhj)(Ui,j,l+5i,j,1)bf+(‘7i,j,2+5i,j,2)b§7 g #5
27-] - ~

gai,1b’{+ai,2b§CTi(C;JbTJFC;',zbE)(hhj)(Ui,j,l+5i,j,1)bT+(Ui,j,2+5i,j,2)b§7 Lj=7
K;,j — g(oq+Uz‘,j,1+5i,j,1)b1‘+(az+0i,j,2+5i,j,2)b§’ K;’J — (K;j)zi’

{Ki,j,j’ _ hg‘/"i,j,l+6i,j,l)bI+(Ui,j,2+5i,j,2

K o= g°i1%0at0us2b5,

)b
e\
Ki,j,a: = g"i,j,l(b;,1+b;,2)+0i,j,2(b;,3+b;,4) Vo € S(i,j)-

Challenge. A submits a revocation list R, a message M and an attribute set S*. B constructs the
LSSS matrix (A, p) for Ag-. Let I x m be the size of A.
B chooses random

/
T 81y Sny iy tn € Zp,
/ / 3
Wiy, Wi, Wos e, Wy EZp,
m
§1,1,81,2,- -5 &1, 812 € ZLp, w1, u2 €Z,,

where the first entries of u; and us are equal to m; and s respectively.
B chooses random 1y, 7y, 7. € Zp, and sets x1 = (12,0,72),x2 = (0,7,72), X3 = X1 X X2 =
(=ryrs, =TT, ryTy), then it chooses random

’UZ'EZ]?; fori=1,...,1,

v; € span{x1, Xz} fori=1i+1,...,n.
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B chooses random (V¢ 1, Ve 2, Ve 3) € Zg. Let vt = Ve, 1X1 + Ve2aX2 and ve = 1.3X3, in the following
simulation, B will implicitly set

ve = a ol + vl

B creates a ciphertext (R, (4, p), (R, R, Qi,Q;, Q;, 1)y, (C;,C%)}
1. For each i € [n]:

T (Pr)k_o) as follows:
— if 4 < 4: it chooses random §; € Ly, and sets
(gb1+l>2)m7 R;; _ (Bb1+b2)’vi’
Q gSz(b1+b2) Q; — h&;(byﬁ-bg)z? h7r1b1+7r2b2’ ;/ — gti(bl-i-bz)7
= e(g,9).
— if 4 > i: it sets

R; = (gb1+b2)7’i5ivi’ Rl- — (Bb1+b2)7’i5i'vi’

Q; = BTk g _ QUUTRser U glipmbitmaba g ghi(batba)
5 7 i i , ! ’

T M e(B’ g)w(ai,l+Oéi’2)T/si(vi-'Ug)

i /g, ..

(e(B7 h) H 6(97 hj/))¢(a1+a2)r si(v; v’c’)F17r1 o

j/ER*

2. For eachj € [n]:

—ifj < ] it chooses random u] € Zy, and implicitly sets the value of 1; such that (—i Dves =
w5 mod p, then sets

C,= (BCbiteabsyr've

(gc] 1b7 +cj, zb*) vl (BcJ 1b74-cj,2b3 )ij] C; — (Yj)wj.
—ifj =7

Cj (T bl""C b3 )‘r vl (Bc] 161+ b5 )y w~’ C’j _ (Yﬁ)wé (Ccé,ylb“f—&-cé,zb;),yvg'
—ifj >

Cj _ (Bijlb{+Cj’2b§)T/’U€ (Bijlb’l‘+c]',2b§)ij; C; _ (Yj)w; (ACj,lb{Jer,gb;)f‘r’vg.
3. Py = pmiboatmboz (P, — p(AkwitEe)bogk). 1~k 18p00 2 (Ak w2k, 2)bp(0).3 €k 20, (0) Y rep

b _
Note that B implicitly chooses ,7 € Z), and w; € 73(j < j < n) such that

b=rxmodp, abr’ =7 mod p,
/_ /4P {\: ~

wh —cT vc/yj = w; mod p,
w); — at'vl/y; = w; mod p Vie{j+1 n}.

If T = g°¢, then the encryption corresponds to the game H, 53 and if T is randomly chosen, say
J— T

T = g" for some random 7 € Zj, then the encryption corresponds the game H, - Gt with implicitly
setting p; such that (Zz — 1)ves = p; mod p.

Guess. A outputs a guess b’ € {0,1} to B, then B outputs this b’ to the challenger

The advantage of B is exactly equal to the advantage of the adversary A
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Lemma 13. If the DLIN assumption holds, then no PPT adversary can distinguish between games
Hy and Hs with non-negligible probability.

Proof. Consider an adversary A that can distinguish between Hy and Hjs with a probability greater
than €. We build an algorithm B that uses A to solve the DLIN problem. B receives the DLIN challenge
as (G, g,9% g% g% g%, g%, T), and it is expected to guess if T is g +Y) or if it is random. Then B
interacts with A in the Gameyy as follows:

Setup. B randomly chooses two pairs of dual orthonormal bases (B, B*), (Bo,Bj) of dimension 3 and
U pairs of dual orthonormal bases (Bq,B7), ..., (By,B;,) of dimension 6, subject to the constraint
that all of these share the same value of .

B also randomly chooses

0, ar,a2 € Zy, {riy zi, i1, @i2 € Lplicpn]s 1¢.1,¢5.2, Yj» V5 € Lp}jeln-

B sets the public parameter to

(9:h =g g 0%, {hidic B = (g7)F 0% = (g%)7, {2 = ("), hE* = (g%) )i,
hPor = (gho1)? o2 = (gP02)?, (b=, R ey,
F = e(g,h)wo‘l,Fg = e(g, ) 2 {F1j=-e(g,hj ) W =e(g,h ) }Je[n],
(G =g tP2) | Z; = g#rt82) ) = (g, 9)V 1 By p = e(g,9)" " bicin,
{Hj = go2bi%e2% Y = HY Yo )

Key Query. To respond to a query for ((4,), S(; j)), B randomly chooses ; j1,0i 2, 0i,5,1,ij2 € Zp,
then creates a private key as

K= g(ai,1+ﬁ'0j,1)b’{+(ai,2+ri0j,2)b§(hh.)(ffz',j,l+5i,.7',1)bf+(<7i,j,2+5i,j,2)b§7
K/ — g(al“l‘o'z 7y 1"1‘61 s 1)b1+(062+0'7, s 2+67, s 2) K// (K/ )Zz
7‘7

T4,5, "F(Sz, N b+ 04,5, +5L, s
{K:hgv J,1 Jl) 1 ( 3,2 J2) 2}j’€[n]\{j}a

Kijo= géi,j,lbé,ﬁ&,jabé,z

K i = gau (b 1+b1 2)+oi,,2(b; 3+bL 4 Vo € S(l J)-

Challenge. A submits a revocation list R, a message M and an attribute set S*. B constructs the
LSSS matrix (A, p) for Ag«. Let [ x m be the size of A.
B chooses random

KyTy  S1y-eeySny tyenoytn € Zp,

3

Ve, Wi,..., Wy EZp,

m

51,1751,27"'7&,1){[,2 EZpa Uy, U2 EZp,

where the first entries of u; and us are equal to m; and s respectively.

B implicitly sets x1 = (a,0,¢),x2 = (0,b,¢),x3 = X1 X X2 = (—be, —ac,ab). Note that a valid
DLIN tuple will lie in the subspace formed by vectors x1 and x2. In the following, a DLIN problem
tuple will be used for setting row ciphertext for row i + 1. A valid tuple leads to encryption as in
game Hy, and a random tuple will cause the encryption to be as in game Hsp.

B creates a ciphertext (R, (A4, p), (Ri, R}, Q;,Q., Q. T;)"_,, (Cj,C;-)?zl, (Pk)€€:0> as follows:
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1. For each i € [n]:
— if ¢ <i: it chooses random v; € Zg and §; € Z,. Then it sets
(gb1+b2)vz’ R; = RY,
Q gsz b1+b2) Q; _ hSi(b1+b2)Z§i hﬂ1b1+7r2b2’ Q;/ _ gti(b1+b2),
T; = e(g,9)".
—if i =i+ 1: B implicitly chooses v; € Zg such the g% = (g%, ¢*, T). Since B knows the
values of by, by, and v, it can compute the value of (g®17%2)? and g(®ive) Then it sets
R, = (gb1+b2)swi, R; — (gb1+b2)nswi’
(0s 0 e Bx Vst . )
Qi _ gTSz('Uy’Uc)(bl'i‘bQ)’ Q; _ QZ( +Z] cR* Y )Zzlhwldl—i—wzdz’ Q;l _ gtz(dl-‘rdg),
e(g(vi‘UC) , g)w(ai,lJrai,Q)TSi

(g, n) TT elg®oe), hy)) o2 pp e
j’ER*

;=M

— if ¢ > i+ 1: it chooses random v; € span{x1, X2}, i.e., chooses random v; 1,v;2 € Z, and
sets v; = v;,1X1 + Vi2X2. B cannot compute the value of v;, but it can compute the value of
g, le., g¥i = ((ga)”iyl, (gP)viz, (gc)”ivﬁyiv?). Also, since B knows the values of by, by, and
., it can compute the value of (g?1+%2)? and g(*i¥<). Then it sets

R, = (gb1+b2)7"i5ivi’ R; — (gb1+b2>m“isivi

Q; = gTsi(vi‘Uc)(b1+b2) Q/' _ Q@Jrzj’efi* Uj’)Zl§ih7Tld1+7r2d2 Q// — gti(d1+d2)
) i i 3 ) i )
e(g(vi'vc)7g)w(ai,1+ai,2)75i

(e(g(vi.uc)7 h) H e(g(vi'”c), hj/))w(m-i-ocz)rsiFlm P
j/eR*

;=M

2. For each j € [n]: since j > 1, B sets

Cj = (Hj;)™(Y; )™, C;=(Y;)".

3. Py = hﬂ'lbo,1+ﬂ’2b0,2’ (P, = h(Ak-U1+£k,1)bp(k),1*Ek,lbp(k),2+(Ak-UQ+£k,2)bp(k),3*£k,2bp(k),4}kem.
If T corresponds to gc(”“/), then the encryption corresponds to game Hy; and if T is randomly
chosen, then it corresponds to game Hsp.

Guess. A outputs a guess ' € {0,1} to B, then B outputs this & to the challenger.

The advantage of B is exactly equal to the advantage of the adversary A.

C Access Structure and Linear Secret-Sharing Schemes

Definition 6. (Access Structure) [23] Let P be a set of attributes. A collection A C 27 is monotone
if VB,C : B€ A and B C C imply C € A. An access structure (resp., monotone access structure) is
a collection (resp., monotone collection) A of non-empty subsets of P, i.e., A C 2P \ {0}. The sets in
A are called authorized sets, and the sets not in A are called unauthorized sets. Also, for an attribute

set S C P, if S € A then we say S satisfies the access structure A, otherwise we say S does not satisfy
A.
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As shown in [2], any monotonic access structure can be realized by a linear secret sharing scheme.

Definition 7. (Linear Secret-Sharing Schemes (LSSS)) [23] A secret sharing scheme IT over a
set of attributes P is called linear (over Zy) if

1. The shares for each attribute form a vector over Zy.
2. There exists a matriz A called the share-generating matrix for II. The matriz A has | rows and n

columns. Fori=1,...,1, the i row A; of A is labeled by an attribute p(i) (p is a function from
{1,...,1} to P). When we consider the column vector v = (s,ra,...,ry), where s € Zy is the secret
to be shared and ra, ..., € Zy are randomly chosen, then Av is the vector of I shares of the secret

s according to II. The share \; = (Av);, i.e., the inner product A; - v, belongs to attribute p(i).

Also shown in [2], every LSSS as defined above enjoys the linear reconstruction property, which is
defined as follows: Suppose that IT is an LSSS for access structure A. Let S € A be an authorized
set, and I C {1,...,l} be defined as I = {i : p(i) € S}. There exist constants {w; € Zy};cr such that
YierwiA; = (1,0,...,0), so that if {)\;} are valid shares of a secret s according to I, ) . ;wi\; = s.
Furthermore, these constants {w;} can be found in time polynomial in the size of the share-generating
matrix A. For any unauthorized set, no such constants exist.
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