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Serum carotenoid concentrations in US children and adolescents1,2

Earl S Ford, Cathleen Gillespie, Carol Ballew, Anne Sowell, and David M Mannino

ABSTRACT
Background: Carotenoids, a class of phytochemicals, may affect
the risk of several chronic conditions.
Objective: Our objective was to describe the distributions and corre-
lates of serum carotenoid concentrations in US children and adolescents.
Design: Using data from the third National Health and Nutrition
Examination Survey (1988–1994), a cross-sectional study, we
examined the distributions of serum concentrations of �-carotene,
�-carotene, �-cryptoxanthin, lutein and zeaxanthin, and lycopene
among 4231 persons aged 6–16 y.
Results: After adjustment for age, sex, race or ethnicity, poverty-
income ratio, body mass index status, HDL- and non-HDL-cholesterol
concentrations, C-reactive protein concentration, and cotinine con-
centration, only HDL-cholesterol (P < 0.001) and non-HDL-
cholesterol (P < 0.001) concentrations were directly related to all
carotenoid concentrations. Age (P < 0.001) and body mass index sta-
tus (P < 0.001) were inversely related to all carotenoid concentrations
except those of lycopene.Young males had slightly higher carotenoid
concentrations than did young females, but the differences were signi-
ficant only for lycopene concentrations (P = 0.029). African Ameri-
can children and adolescents had significantly higher �-cryptoxanthin
(P < 0.001), lutein and zeaxanthin (P < 0.001), and lycopene
(P = 0.006) concentrations but lower �-carotene (P < 0.001) concen-
trations than did white children and adolescents. MexicanAmerican chil-
dren and adolescents had higher �-carotene (P < 0.001), �-cryptoxanthin
(P < 0.001), and lutein and zeaxanthin (P < 0.001) concentrations but
lower lycopene (P = 0.001) concentrations than did white children and
adolescents. C-reactive protein concentrations were inversely related
to �-carotene (P < 0.001), lutein and zeaxanthin (P < 0.001), and
lycopene (P = 0.023) concentrations. Cotinine concentrations were
inversely related to �-carotene (P = 0.002), �-carotene (P < 0.001),
and �-cryptoxanthin (P < 0.001) concentrations.
Conclusion: These data show significant variations in serum
carotenoid concentrations among US children and adolescents and
may be valuable as reference ranges for this population. Am J
Clin Nutr 2002;76:818–27.
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INTRODUCTION

The benefits of consuming an adequate amount of fruit and veg-
etables are well known, although which of their numerous phyto-
chemicals account for their health benefits remains unresolved.
Fruit and vegetable intake is inversely related to cardiovascular
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disease (1, 2), cancer (3, 4), diabetes (5), and other conditions.
Despite these benefits, fruit and vegetable intake in the US popu-
lation is inadequate (6, 7).

Carotenoids, a prominent class of phytochemicals, are compounds
with vitamin A–like chemical structures that are found mostly in
plants (8). Many carotenoids have been described, but 5—�-carotene,
�-carotene, �-cryptoxanthin, lutein and zeaxanthin, and lycopene—
account for most of the concentrations of carotenoids found in
humans. Their health benefits are not conclusively established, but
epidemiologic studies suggest that carotenoid intake or circulating
concentrations are inversely related to all-cause mortality (9), car-
diovascular disease (10–17), various cancers (18), insulin resistance
(19, 20), and other chronic conditions. The antioxidant potential of
carotenoids is thought to account for their health benefits, but other
mechanisms have been proposed as well (21).

Because of the possible health benefits of carotenoids, knowing the
population distribution of their concentrations and identifying sub-
groups with low concentrations, who might be at increased risk of
future disease, are of considerable interest. Recently, significant differ-
ences in carotenoid concentrations by sex and ethnicity were reported
for the adult US population (22), but few population-based data about
the distribution of carotenoid concentrations in children and adoles-
cents are available. Furthermore, it is important to examine predictors
of carotenoid concentrations to identify potentially modifiable deter-
minants of these concentrations and to identify possible confounders
for epidemiologic studies of carotenoids. Therefore, we examined the
distributions and determinants of the concentrations of 5 carotenoids—
�-carotene, �-carotene, �-cryptoxanthin, lutein and zeaxanthin, and
lycopene—for children and adolescents who participated in the third
National Health and Nutrition Examination Survey (NHANES III).

SUBJECTS AND METHODS

NHANES III was started in 1988 and completed in 1994. A rep-
resentative sample of the US population, selected using a multi-
stage sampling design, was contacted and asked to participate.
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TABLE 1
Distribution of serum �-carotene concentrations among children and adolescents aged 6–16 y who participated in the third National Health and Nutrition
Examination Survey, 1988–1994

Percentile

x– ± SE 5th 15th 25th 50th 75th 85th 95th Minimum Maximum

µmol/L µmol/L µmol/L µmol/L

Total (n = 4231) 0.0698 ± 0.0026 0.0118 0.0160 0.0204 0.0524 0.0745 0.0969 0.1580 0.0100 0.8800
Non-Hispanic white (n = 1158) 0.0694 ± 0.0032 0.0117 0.0157 0.0197 0.0525 0.0765 0.0978 0.1601 0.0100 0.6900
Non-Hispanic black (n = 1442) 0.0500 ± 0.0013 0.0112 0.0141 0.0170 0.0325 0.0575 0.0666 0.1047 0.0100 0.7300
Mexican American (n = 1433) 0.0717 ± 0.0030 0.0127 0.0184 0.0296 0.0568 0.0754 0.0971 0.1533 0.0100 0.4100
Other (n = 198) 0.1019 ± 0.0097 0.0171 0.0430 0.0548 0.0673 0.1007 0.1234 0.2258 0.0100 0.8800

Male (n = 2115) 0.0703 ± 0.0033 0.0118 0.0160 0.0206 0.0523 0.0757 0.0976 0.1475 0.0100 0.8800
Non-Hispanic white (n = 578) 0.0683 ± 0.0033 0.0116 0.0156 0.0196 0.0510 0.0773 0.0983 0.1441 0.0100 0.6900
Non-Hispanic black (n = 726) 0.0527 ± 0.0017 0.0114 0.0146 0.0177 0.0364 0.0607 0.0677 0.1132 0.0100 0.6100
Mexican American (n = 710) 0.0692 ± 0.0024 0.0128 0.0184 0.0293 0.0559 0.0747 0.0934 0.1491 0.0100 0.3900
Other (n = 101) 0.1139 ± 0.0203 0.0169 0.0464 0.0594 0.0686 0.1008 0.1227 0.2255 0.0100 0.8800

Female (n = 2116) 0.0693 ± 0.0027 0.0119 0.0160 0.0202 0.0526 0.0731 0.0960 0.1668 0.0100 0.7300
Non-Hispanic white (n = 580) 0.0706 ± 0.0039 0.0119 0.0159 0.0199 0.0542 0.7570 0.0971 0.1767 0.0100 0.4500
Non-Hispanic black (n = 716) 0.0473 ± 0.0019 0.0110 0.0137 0.0164 0.0291 0.5340 0.6480 0.9790 0.0100 0.7300
Mexican American (n = 723) 0.0743 ± 0.0048 0.0126 0.0184 0.0300 0.0577 0.0763 0.1010 0.1577 0.0100 0.4100
Other (n = 97) 0.0898 ± 0.0085 — 0.0402 0.0510 0.0660 0.1005 0.1240 0.2049 0.0200 0.3900

Age (y)
6–7 (n = 839) 0.0745 ± 0.0035 0.0124 0.0177 0.0304 0.0613 0.0845 0.1054 0.1515 0.0100 0.6100
8–11 (n = 1753) 0.0790 ± 0.0038 0.0127 0.0188 0.0337 0.0607 0.0824 0.1060 0.1984 0.0100 0.6900
12–16 (n = 1639) 0.0601 ± 0.0033 0.0113 0.0143 0.0174 0.0388 0.0661 0.0837 0.1374 0.0100 0.8800

Poverty-income ratio
≤1.3 (n = 2100) 0.0619 ± 0.0027 0.0115 0.0150 0.0184 0.0459 0.0683 0.0889 0.1355 0.0100 0.6100
>1.3–3.5 (n = 1704) 0.0702 ± 0.0038 0.0117 0.0158 0.0199 0.0511 0.0734 0.0950 0.1541 0.0100 0.8800
>3.5 (n = 427) 0.0808 ± 0.0059 0.0131 0.0193 0.0362 0.0622 0.0874 0.1086 0.2098 0.0100 0.3500

BMI (percentile)
≤15 (n = 378) 0.0756 ± 0.0034 0.0124 0.0210 0.0389 0.0623 0.0831 0.1121 0.1448 0.0100 0.3900
16–84 (n = 2645) 0.0740 ± 0.0034 0.0121 0.0168 0.0245 0.0550 0.0779 0.1000 0.1831 0.0100 0.8800
85–94 (n = 629) 0.0641 ± 0.0035 0.0117 0.0152 0.0187 0.0516 0.0704 0.0882 0.1419 0.0100 0.7300
≥95 (n = 579) 0.0483 ± 0.0037 0.0110 0.0132 0.0154 0.0250 0.0549 0.0679 0.1226 0.0100 0.2600

Participants, who were interviewed at home, were asked to come
to the mobile examination center for additional tests and to com-
plete additional questionnaires. For most participants a blood sam-
ple was drawn during the examination, but for those who could
not attend, a blood sample was requested during the original home
interview. To provide more stable estimates, children aged 2 mo to
5 y, African Americans, and Mexican Americans were oversam-
pled. More detailed information about the survey is available else-
where (23, 24).

Participants attended a morning, afternoon, or evening exami-
nation session. Those who attended morning sessions were asked
to fast for 12 h, and those who attended afternoon or evening ses-
sions were asked to fast for 6 h. Five carotenoids were assayed at
the NHANES laboratory at the Centers for Disease Control and
Prevention: �-carotene, �-carotene, �-cryptoxanthin, lutein and
zeaxanthin, and lycopene. Detailed procedures for these assays
were published elsewhere (25). Reversed-phase HPLC with mul-
tiwavelength detection was used to quantify the concentrations of
these carotenoids (26). Because a longer run time is needed to
measure concentrations of lutein and zeaxanthin separately, the
decision was made to measure them together for practical reasons.
Total carotenoid concentrations were calculated by summing the
concentrations of the individual carotenoid concentrations.

We included the following covariates: age, sex, race or eth-
nicity, poverty-income ratio, body mass index, serum HDL- and
non-HDL-cholesterol concentrations, C-reactive protein concen-
tration, supplement use, cotinine concentration, physical activity,

and fruit and vegetable intake. As discussed below, associations
between these variables and carotenoid concentrations have been
examined in adults. Four racial or ethnic groups were created:
white, African American, Mexican American, and other. Because
the last group was small, we excluded it from some analyses. The
poverty-income ratio represents reported family income divided
by the poverty threshold produced annually by the Census Bureau
and adjusted for changes caused by inflation. Body mass index
(in kg/m2) was calculated from measured heights and weights.
Using the body mass index growth charts recently released by the
Centers for Disease Control and Prevention, body mass index was
divided into the following categories by age- and sex-specific per-
centiles: < 15th, 15th to < 85th, 85th to < 95th, and ≥ 95th (27).
Serum concentrations of total and HDL cholesterol (after pre-
cipitation with a heparin–manganese chloride solution) were
measured enzymatically with a Hitachi 704 analyzer (Boehringer
Mannheim Diagnostics, Indianapolis). We calculated the non-
HDL-cholesterol concentration by subtracting the concentration
of HDL cholesterol from that of total cholesterol. C-reactive pro-
tein concentrations were measured by using latex-enhanced neph-
elometry. The lower detection limit was 3.0 mg/L. Participants
with a concentration below the lower detection limit were assigned
a value of 2.1 mg/L (3.0 mg/L divided by the square root of 2).
C-reactive protein concentrations were divided into 2 cate-
gories: ≤ 2.1 and > 2.1 mg/L. Serum cotinine concentrations were
determined by using HPLC with atmospheric pressure chemical
ionization tandem mass spectrometry. The number of times per
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TABLE 2
Distribution of serum �-carotene concentrations among children and adolescents aged 6–16 y who participated in the third National Health and Nutrition
Examination Survey, 1988–1994

Percentile

x– ± SE 5th 15th 25th 50th 75th 85th 95th Minimum Maximum

µmol/L µmol/L µmol/L µmol/L

Total (n = 4231) 0.3023 ± 0.0052 0.1038 0.1409 0.1754 0.2529 0.3550 0.4384 0.5994 0.0200 1.7700
Non-Hispanic white (n = 1158) 0.3007 ± 0.0073 0.1026 0.1390 0.1733 0.2513 0.3564 0.4366 0.5909 0.0400 1.5300
Non-Hispanic black (n = 1442) 0.2920 ± 0.0046 0.0986 0.1360 0.1705 0.2505 0.3460 0.4059 0.5954 0.0400 1.7700
Mexican American (n = 1433) 0.2964 ± 0.0072 0.0952 0.1370 0.1727 0.2477 0.3480 0.4239 0.6261 0.0200 1.4500
Other (n = 198) 0.3356 ± 0.0169 0.1236 0.1648 0.1946 0.2716 0.4135 0.4902 0.6657 0.0900 1.3800

Male (n = 2115) 0.3046 ± 0.0070 0.0990 0.1428 0.1767 0.2568 0.3552 0.4416 0.6032 0.0400 1.7700
Non-Hispanic white (n = 578) 0.2988 ± 0.0090 0.0967 0.1382 0.1713 0.2530 0.3554 0.4409 0.5745 0.0400 1.4200
Non-Hispanic black (n = 726) 0.3029 ± 0.0084 0.1018 0.1426 0.1801 0.2622 0.3475 0.4111 0.6062 0.0600 1.7700
Mexican American (n = 710) 0.2992 ± 0.0092 0.0902 0.1334 0.1725 0.2460 0.3565 0.4290 0.5996 0.0600 1.4500
Other (n = 101) 0.3566 ± 0.0289 0.1518 0.1800 0.2061 0.2896 0.4033 0.4666 0.6874 0.0900 1.3800

Female (n = 2116) 0.2998 ± 0.0068 0.1102 0.1392 0.1739 0.2476 0.3547 0.4324 0.5969 0.0200 1.6200
Non-Hispanic white (n = 580) 0.3027 ± 0.0092 0.1106 0.1400 0.1759 0.2489 0.3575 0.4270 0.5963 0.0700 1.5300
Non-Hispanic black (n = 716) 0.2809 ± 0.0063 0.0960 0.1306 0.1626 0.2362 0.3443 0.3990 0.5750 0.0400 1.6200
Mexican American (n = 723) 0.2937 ± 0.0111 0.1026 0.1397 0.1729 0.2493 0.3445 0.4134 0.6525 0.0200 1.3600
Other (n = 97) 0.3143 ± 0.0319 0.1189 0.1474 0.1888 0.2567 0.4172 0.5133 0.5991 0.0900 0.8400

Age (y)
6–7 (n = 839) 0.3410 ± 0.0116 0.1240 0.1754 0.2062 0.2848 0.4199 0.4764 0.6633 0.0700 1.4500
8–11 (n = 1753) 0.3267 ± 0.0076 0.1193 0.1637 0.1986 0.2847 0.3891 0.4607 0.6485 0.0400 1.7700
12–16 (n = 1639) 0.2664 ± 0.0078 0.0908 0.1212 0.1492 0.2168 0.3075 0.3687 0.5443 0.0200 1.5300

Poverty-income ratio
≤1.3 (n = 2100) 0.2848 ± 0.0081 0.1020 0.1392 0.1685 0.2381 0.3338 0.4157 0.5584 0.0200 1.4500
>1.3–3.5 (n = 1704) 0.3034 ± 0.0074 0.0995 0.1387 0.1724 0.2512 0.3665 0.4463 0.6017 0.0400 1.3800
>3.5 (n = 427) 0.3262 ± 0.0144 0.1128 0.1530 0.1958 0.2746 0.3703 0.4520 0.6643 0.0600 1.7700

BMI (percentile)
≤15 (n = 378) 0.3286 ± 0.0106 0.1198 0.1767 0.2116 0.3019 0.3934 0.4589 0.5775 0.0400 1.3400
16–84 (n = 2645) 0.3185 ± 0.0072 0.1144 0.1520 0.1891 0.2634 0.3684 0.4562 0.6624 0.0600 1.7700
85–94 (n = 629) 0.2788 ± 0.0117 0.0958 0.1336 0.1634 0.2369 0.3384 0.4164 0.5117 0.0200 1.1600
≥95 (n = 579) 0.2173 ± 0.0086 0.0688 0.1002 0.1215 0.1753 0.2524 0.3275 0.4539 0.0400 1.3200

month that children and adolescents aged 12–16 y consumed fruit
and vegetables was estimated from 18 questions on a food-
frequency questionnaire.

A total of 4231 males and nonpregnant females aged 6–16 y
with complete data on serum carotenoid concentrations, body
mass index, and poverty-income ratio were used to examine the
distributions of these compounds. Additional exclusions for
missing values for independent variables reduced the number of
participants for multiple linear regression models to 3828. Dif-
ferences in carotenoid concentrations for continuous variables
that were categorized into more than 2 levels were assessed with
a test for linear trend. Differences in concentrations for categor-
ical variables with 2 or more levels were tested with a t test or
analysis of variance, respectively. To examine the independent
relations between carotenoid concentrations and the study vari-
ables, we log transformed the carotenoid concentrations before
running multiple linear regression analyses. Analyses were per-
formed with the statistical software SUDAAN to account for the
complex sampling design of the survey and produce valid vari-
ance estimates (28).

RESULTS

The young males had slightly higher mean and median con-
centrations of all carotenoid concentrations than did the young

females, but the differences were not significant (Tables 1–5). Age
was inversely related to the concentrations of all carotenoids (P ≤
0.001) except lycopene (P = 0.584). African American children
and adolescents had the highest mean and median total serum
carotenoid concentrations, and white children and adolescents had
the lowest (P < 0.001). Of the 3 major race or ethnic groups,
African American children and adolescents had the highest mean
and median concentrations of lutein and zeaxanthin and lycopene,
Mexican American children and adolescents had the highest con-
centrations of �-carotene (but not significantly higher than those
of white children and adolescents) and �-cryptoxanthin, and white
children and adolescents had the highest concentrations of
�-carotene although race or ethnicity was not significantly asso-
ciated with �-carotene concentrations. The poverty-income ratio
was positively associated with �-carotene (P = 0.005) and
�-carotene (P = 0.022) concentrations and inversely associated
with lutein and zeaxanthin (P = 0.018) concentrations. Body mass
index percentiles were inversely associated with the concentra-
tions of all carotenoids (P ≤ 0.001) except lycopene.

We also examined the distributions of carotenoid concentra-
tions among 2554 children and adolescents after excluding from
the full sample of 4231 those who reported having had a cold, flu,
diarrhea, vomiting, pneumonia, or ear infection in the past 4 wk;
those who were thought by the examining clinician to have a pos-
sible active infection; those with a C-reactive protein concentration
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TABLE 3
Distribution of serum �-cryptoxanthin concentrations among children and adolescents aged 6–16 y who participated in the third National Health and
Nutrition Examination Survey, 1988–1994

Percentile

x– ± SE 5th 15th 25th 50th 75th 85th 95th Minimum Maximum

µmol/L µmol/L µmol/L µmol/L

Total (n = 4231) 0.1907 ± 0.0026 0.0659 0.0930 0.1114 0.1527 0.2298 0.2724 0.3799 0.0200 1.9500
Non-Hispanic white (n = 1158) 0.1775 ± 0.0035 0.0611 0.0874 0.1041 0.1382 0.2108 0.2486 0.3506 0.0200 1.2700
Non-Hispanic black (n = 1442) 0.2104 ± 0.0044 0.0811 0.1132 0.1323 0.1788 0.2443 0.2940 0.4076 0.0200 0.8700
Mexican American (n = 1433) 0.2517 ± 0.0062 0.0915 0.1271 0.1476 0.2180 0.3037 0.3610 0.4951 0.0400 1.9500
Other (n = 198) 0.2034 ± 0.0097 0.0720 0.0982 0.1187 0.1735 0.2416 0.3163 0.3658 0.0500 0.9600

Male (n = 2115) 0.1923 ± 0.0033 0.0632 0.0937 0.1118 0.1534 0.2308 0.2823 0.3848 0.0200 1.9500
Non-Hispanic white (n = 578) 0.1775 ± 0.0045 0.0577 0.0873 0.1040 0.1381 0.2112 0.2493 0.3474 0.0200 1.2700
Non-Hispanic black (n = 726) 0.2139 ± 0.0056 0.0809 0.1139 0.1327 0.1835 0.2452 0.3023 0.4231 0.0200 0.8700
Mexican American (n = 710) 0.2540 ± 0.0080 0.0891 0.1227 0.1460 0.2115 0.3137 0.3659 0.5152 0.0400 1.9500
Other (n = 101) 0.2189 ± 0.0112 0.0853 0.1073 0.1405 0.1750 0.2666 0.3348 0.3962 0.0500 0.9200

Female (n = 2116) 0.1890 ± 0.0039 0.0685 0.0922 0.1111 0.1519 0.2290 0.2636 0.3745 0.0500 0.9800
Non-Hispanic white (n = 580) 0.1774 ± 0.0047 0.0645 0.0874 0.1042 0.1385 0.2101 0.2476 0.3565 0.0500 0.6300
Non-Hispanic black (n = 716) 0.2067 ± 0.0055 0.0812 0.1125 0.1319 0.1743 0.2434 0.2863 0.3902 0.0500 0.7200
Mexican American (n = 723) 0.2495 ± 0.0078 0.0939 0.1311 0.1491 0.2236 0.2939 0.3559 0.4568 0.0500 0.9800
Other (n = 97) 0.1877 ± 0.0129 0.0684 0.0870 0.1096 0.1678 0.2202 0.2485 0.3422 0.0500 0.9600

Age (y)
6–7 (n = 839) 0.2110 ± 0.0052 0.0838 0.1103 0.1310 0.1796 0.2450 0.2918 0.3889 0.0500 1.0100
8–11 (n = 1753) 0.2027 ± 0.0044 0.0737 0.1016 0.1213 0.1691 0.2421 0.2848 0.4175 0.0200 1.9500
12–16 (n = 1639) 0.1725 ± 0.0037 0.0579 0.0818 0.0987 0.1352 0.1970 0.2474 0.3460 0.0400 1.2700

Poverty-income ratio
≤1.3 (n = 2100) 0.1943 ± 0.0053 0.0689 0.0943 0.1146 0.1579 0.2309 0.2888 0.3849 0.0500 1.0100
>1.3–3.5 (n = 1704) 0.1841 ± 0.0032 0.0645 0.0918 0.1079 0.1503 0.2217 0.2539 0.3501 0.0200 1.9500
>3.5 (n = 427) 0.2007 ± 0.0092 0.0643 0.0950 0.1145 0.1512 0.2436 0.3149 0.4236 0.0400 1.2700

BMI (percentile)
≤15 (n = 378) 0.2142 ± 0.0077 0.0741 0.1119 0.1311 0.1904 0.2483 0.2982 0.3631 0.0200 1.9500
16–84 (n = 2645) 0.1985 ± 0.0033 0.0710 0.0973 0.1171 0.1606 0.2400 0.2840 0.3946 0.0200 1.2700
85–94 (n = 629) 0.1703 ± 0.0054 0.0661 0.0859 0.1006 0.1352 0.1896 0.2401 0.3624 0.0500 0.7800
≥95 (n = 579) 0.1532 ± 0.0054 0.0499 0.0724 0.0924 0.1262 0.1677 0.2185 0.3099 0.0400 0.8500

> 10 mg/L; and those with liver enzymes > 2 times the upper nor-
mal limit. With few exceptions, the differences between the
median concentrations of this sample and those of the full sample
were < 5% (data not shown).

In multiple linear regression analyses of log-transformed
carotenoid concentrations among children and adolescents aged
6–16 y that included age, sex, race or ethnicity, poverty-income
ratio, body mass index status, HDL- and non-HDL-cholesterol
concentrations, and C-reactive protein concentration, only HDL-
and non-HDL-cholesterol concentrations were directly related to
all carotenoid concentrations (Table 6). Age and body mass
index status were inversely related to the concentrations of all
carotenoids except lycopene. African American children and ado-
lescents had significantly lower �-carotene and significantly
higher �-cryptoxanthin, lutein and zeaxanthin, and lycopene con-
centrations than did white children and adolescents. Mexican
American children and adolescents had significantly higher
�-carotene, �-cryptoxanthin, and lutein and zeaxanthin concen-
trations but significantly lower lycopene concentrations than did
white children. The poverty-income ratio was directly associated
with �-carotene concentrations. C-reactive protein concentra-
tions were inversely related to �-carotene, lutein and zeaxanthin,
and lycopene concentrations. Cotinine concentrations were
inversely related to �-carotene, �-carotene, and �-cryptoxanthin
concentrations.

To further explore the associations between cotinine concen-
trations and carotenoid concentrations, we restricted analyses

to children with a cotinine concentration < 15 ng/mL, which is
the concentration considered to separate people who smoke
from those who are exposed to environmental tobacco smoke
only (n = 3699). In multiple linear regression models with coti-
nine entered as a continuous variable, significant inverse asso-
ciations were noted for �-carotene and �-cryptoxanthin con-
centrations (�-carotene: � = �0.01734, P = 0.099; �-carotene:
� = �0.02352, P < 0.001; �-cryptoxanthin: � = �0.02480,
P = 0.002; lutein and zeaxanthin: � = 0.00699, P = 0.335; and
lycopene: � = �0.0651, P = 0.348). Similar results were found
when quartiles of cotinine concentration were entered in these
models.

Information about fruit and vegetable intake was requested
only from the children and adolescents aged 12–16 y. Using
multiple linear regression models that included the same set of
covariates listed in Table 6, as well as physical activity and
fruit and vegetable intake (n = 1415), we found significant pos-
itive associations between fruit and vegetable intake and the
concentrations of all carotenoids except lycopene (�-carotene:
� = 0.00532, P = 0.007; �-carotene: � = 0.00469, P < 0.001;
�-cryptoxanthin: � = 0.00496, P < 0.001; lutein and zeaxan-
thin: � = 0.00304, P < 0.001; and lycopene: � = �0.0032, P = 0.667).
Because tomatoes are a rich source of lycopene, we examined
the association between the frequency of tomato consumption
during the previous 30 d and lycopene concentrations (n = 1427)
and found no significant relations in univariate and multivariate
linear regression models.
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TABLE 4
Distribution of serum lutein and zeaxanthin concentrations among children and adolescents aged 6–16 y who participated in the third National Health and
Nutrition Examination Survey, 1988–1994

Percentile

x– ± SE 5th 15th 25th 50th 75th 85th 95th Minimum Maximum

µmol/L µmol/L µmol/L µmol/L

Total (n = 4231) 0.3122 ± 0.0055 0.1396 0.1837 0.2097 0.2801 0.3682 0.4143 0.5479 0.0700 1.7400
Non-Hispanic white (n = 1158) 0.2911 ± 0.0058 0.1313 0.1758 0.1944 0.2586 0.3381 0.3912 0.5113 0.0700 1.0200
Non-Hispanic black (n = 1442) 0.3894 ± 0.0072 0.1864 0.2387 0.2728 0.3565 0.4517 0.5176 0.6856 0.1100 1.7400
Mexican American (n = 1433) 0.3294 ± 0.0083 0.1546 0.1970 0.2310 0.3000 0.3869 0.4543 0.5670 0.0900 0.9700
Other (n = 198) 0.3318 ± 0.0192 0.1810 0.2140 0.2402 0.3107 0.3934 0.4421 0.5386 0.1100 0.8300

Male (n = 2115) 0.3160 ± 0.0054 0.1391 0.1834 0.2087 0.2796 0.3742 0.4250 0.5841 0.0700 1.7400
Non-Hispanic white (n = 578) 0.2933 ± 0.0066 0.1310 0.1750 0.1929 0.2567 0.3412 0.3939 0.5262 0.0700 1.0200
Non-Hispanic black (n = 726) 0.3900 ± 0.0078 0.1818 0.2370 0.2721 0.3569 0.4474 0.5146 0.6918 0.1200 1.7400
Mexican American (n = 710) 0.3376 ± 0.0089 0.1516 0.2042 0.2366 0.3020 0.3998 0.4745 0.5736 0.0900 0.9700
Other (n = 101) 0.3568 ± 0.0166 0.1876 0.2174 0.2472 0.3236 0.4391 0.4818 0.5778 0.1100 0.8300

Female (n = 2116) 0.3080 ± 0.0071 0.1404 0.1841 0.2108 0.2807 0.3612 0.4044 0.5295 0.0900 1.1600
Non-Hispanic white (n = 580) 0.2886 ± 0.0070 0.1316 0.1767 0.1960 0.2622 0.3346 0.3859 0.4866 0.0900 0.9300
Non-Hispanic black (n = 716) 0.3888 ± 0.0086 0.1928 0.2400 0.2736 0.3561 0.4558 0.5198 0.6673 0.1100 1.1600
Mexican American (n = 723) 0.3213 ± 0.0090 0.1594 0.1910 0.2252 0.2971 0.3765 0.4215 0.5565 0.1100 0.8600
Other (n = 97) 0.3065 ± 0.0236 0.1578 0.2025 0.2380 0.2825 0.3569 0.4035 0.4516 0.1200 0.5800

Age (y)
6–7 (n = 839) 0.3357 ± 0.0075 0.1777 0.2000 0.2384 0.3031 0.3958 0.4548 0.5752 0.1100 1.0500
8–11 (n = 1753) 0.3412 ± 0.0072 0.1684 0.2010 0.2441 0.3153 0.3940 0.4571 0.5937 0.0900 1.7400
12–16 (n = 1639) 0.2783 ± 0.0057 0.1235 0.1649 0.1864 0.2477 0.3267 0.3784 0.4725 0.0700 1.1800

Poverty-income ratio
≤1.3 (n = 2100) 0.3295 ± 0.0077 0.1504 0.1902 0.2270 0.2944 0.3900 0.4518 0.5984 0.0900 1.7400
>1.3–3.5 (n = 1704) 0.3052 ± 0.0055 0.1340 0.1801 0.2039 0.2743 0.3603 0.4043 0.5330 0.0700 1.0700
>3.5 (n = 427) 0.3025 ± 0.0111 0.1374 0.1840 0.2026 0.2719 0.3535 0.3980 0.5117 0.0900 0.9300

BMI (percentile)
≤15 (n = 378) 0.3350 ± 0.0124 0.1396 0.2029 0.2437 0.3131 0.4000 0.4360 0.5753 0.0900 0.9000
16–84 (n = 2645) 0.3164 ± 0.0059 0.1470 0.1866 0.2154 0.2846 0.3679 0.4162 0.5665 0.0700 1.2000
85–94 (n = 629) 0.2970 ± 0.0079 0.1194 0.1752 0.1892 0.2690 0.3578 0.3990 0.5127 0.0900 1.7400
≥95 (n = 579) 0.2896 ± 0.0082 0.1251 0.1684 0.1902 0.2540 0.3379 0.3988 0.5234 0.0900 0.8300

DISCUSSION

Carotenoids endow the plant world with much of its vibrancy.
Fortunately, these compounds also have biological actions that
may be important in maintaining health and staving off disease.
Because little is known about the descriptive epidemiology of
serum carotenoid concentrations in children and adolescents, we
examined the serum concentrations of 5 carotenoids in a repre-
sentative sample of US children and adolescents aged 6–16 y. The
NHANES III data show that serum carotenoid concentrations are
not uniformly distributed among children and adolescents. The
highest total carotenoid concentrations occurred among African
American children and adolescents, and overweight children and
adolescents had the lowest concentrations. In general, the patterns
among children and adolescents reported here corresponded rea-
sonably well to those of the adults in this data set (22).

Because the carotenoid concentration distributions described in
this article are the only national data to date, they could serve as
reference ranges for US children and adolescents. Unfortunately,
good dietary data for the younger participants were unavailable,
which prevented us from examining distributions among children
meeting current recommendations for fruit and vegetable intake.
Examining the distributions of carotenoid concentrations among
children eating sufficient quantities of fruit and vegetables would
provide more optimal reference ranges.

Fruit and vegetables are the main sources of carotenoids, and it
is not surprising that carotenoid concentrations were lowest in
groups that are known to eat the least amount of fruit and vegetables.

In the 1989–1991 Continuing Surveys of Food Intakes by Indi-
viduals, age was inversely associated with fruit intake and directly
associated with vegetable intake, sex and race or ethnicity were
unrelated to fruit and vegetable intake, and socioeconomic status
was directly associated with fruit intake but not vegetable intake
among children and adolescents aged 2–18 y (29, 30). In the
Nationwide Food Consumption Surveys of 1977–1978 and
1987–1988, fiber intake from fruit and vegetables was higher
among young males than among young females, and age was
directly related to vegetable intake but not fruit intake among chil-
dren and adolescents aged 2–18 y (31). In a large study of chil-
dren and adolescents aged 8–17 y, the sex and race or ethnicity
patterns of fruit and vegetable intake varied geographically (32).

Strauss (33) reported that concentrations of �-carotene and
�-carotene were lower among obese children and adolescents than
among nonobese children and adolescents in NHANES III. Our
results extend these observations to �-cryptoxanthin and lutein and
zeaxanthin. Lycopene concentrations were not associated with body
mass index, however. Although the fruit and vegetable intake of
most children is less than the recommended intake, Strauss reported
that obese and nonobese children and adolescents aged 12–18 y
reported similar fruit and vegetable intake in NHANES III.

Studies of adults have shown relations between carotenoid con-
centrations, particularly �-carotene concentrations, and age, sex,
socioeconomic status (education and income), marital status,
smoking status, cholesterol concentrations, HDL-cholesterol con-
centrations, C-reactive protein concentrations, glucose tolerance
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TABLE 5
Distribution of serum lycopene concentrations among children and adolescents aged 6–16 y who participated in the third National Health and Nutrition
Examination Survey, 1988–1994

Percentile

x– ± SE 5th 15th 25th 50th 75th 85th 95th Minimum Maximum

µmol/L µmol/L µmol/L µmol/L

Total (n = 4231) 0.4545 ± 0.0061 0.1953 0.2608 0.3169 0.4202 0.5512 0.6263 0.7936 0.0200 1.7100
Non-Hispanic white (n = 1158) 0.4472 ± 0.0082 0.1966 0.2584 0.3087 0.4114 0.5415 0.6211 0.7714 0.0200 1.4900
Non-Hispanic black (n = 1442) 0.5140 ± 0.0084 0.2133 0.3087 0.3576 0.4760 0.6142 0.7087 0.9031 0.0700 1.7100
Mexican American (n = 1433) 0.4063 ± 0.0113 0.1610 0.2212 0.2699 0.3704 0.4982 0.5679 0.7116 0.0400 1.1600
Other (n = 198) 0.4582 ± 0.0191 0.2042 0.2689 0.3433 0.4295 0.5538 0.6064 0.7652 0.0900 1.3600

Male (n = 2115) 0.4628 ± 0.0097 0.1968 0.2651 0.3269 0.4296 0.5606 0.6366 0.8097 0.0400 1.7100
Non-Hispanic white (n = 578) 0.4563 ± 0.0136 0.1980 0.2604 0.3137 0.4232 0.5566 0.6326 0.8031 0.0400 1.1700
Non-Hispanic black (n = 726) 0.5241 ± 0.0103 0.2240 0.3200 0.3747 0.4831 0.6161 0.7015 0.9086 0.0700 1.7100
Mexican American (n = 710) 0.4197 ± 0.0214 0.1558 0.2295 0.2741 0.3840 0.5213 0.6000 0.7289 0.0700 1.1400
Other (n = 101) 0.4556 ± 0.0206 0.1942 0.3189 0.3492 0.4258 0.4978 0.6078 0.7182 0.0900 1.0400

Female (n = 2116) 0.4453 ± 0.0058 0.1928 0.2552 0.3088 0.4063 0.5415 0.6147 0.7807 0.0200 1.6600
Non-Hispanic white (n = 580) 0.4368 ± 0.0074 0.1937 0.2560 0.3057 0.3987 0.5241 0.6087 0.7549 0.0200 1.4900
Non-Hispanic black (n = 716) 0.5037 ± 0.0107 0.1991 0.3002 0.3450 0.4684 0.6113 0.7150 0.8899 0.1100 1.6600
Mexican American (n = 723) 0.3929 ± 0.0077 0.1630 0.2094 0.2635 0.3579 0.4772 0.5419 0.6711 0.0400 1.1600
Other (n = 97) 0.4608 ± 0.0281 0.2078 0.2410 0.3215 0.4242 0.5684 0.6055 0.8417 0.0900 1.3600

Age (y)
6–7 (n = 839) 0.4554 ± 0.0128 0.1671 0.2498 0.3152 0.4232 0.5563 0.6545 0.7793 0.0200 1.3600
8–11 (n = 1753) 0.4632 ± 0.0063 0.1972 0.2706 0.3336 0.4296 0.5562 0.6254 0.8142 0.0400 1.7100
12–16 (n = 1639) 0.4466 ± 0.0097 0.2000 0.2557 0.3040 0.4093 0.5446 0.6196 0.7802 0.0400 1.4900

Poverty-income ratio
≤1.3 (n = 2100) 0.4470 ± 0.0075 0.1916 0.2605 0.3182 0.4139 0.5289 0.6085 0.7999 0.0400 1.7100
>1.3–3.5 (n = 1704) 0.4702 ± 0.0096 0.2023 0.2683 0.3253 0.4382 0.5703 0.6523 0.8231 0.0400 1.5600
>3.5 (n = 427) 0.4286 ± 0.0125 0.1794 0.2375 0.3004 0.3920 0.5318 0.6097 0.7345 0.0200 0.9900

BMI (percentile)
≤15 (n = 378) 0.4486 ± 0.0140 0.1901 0.2539 0.3067 0.4146 0.5670 0.6057 0.7367 0.0400 1.6600
16–84 (n = 2645) 0.4583 ± 0.0069 0.1938 0.2600 0.3176 0.4237 0.5592 0.6430 0.8044 0.0200 1.5600
85–94 (n = 629) 0.4551 ± 0.0136 0.2069 0.2655 0.3255 0.4187 0.5438 0.6114 0.8035 0.0400 1.7100
≥95 (n = 579) 0.4355 ± 0.0114 0.1996 0.2634 0.3144 0.4143 0.5010 0.5909 0.7542 0.0700 1.4000

status, insulin resistance, alcohol use, body mass index, fat-free
mass, physical activity, fruit and vegetable intake, and use of
dietary supplements (15, 19, 22, 34–69). Little is known about
such relations in children and adolescents, however. In a study of
French children and adolescents aged 10–15 y (263 males and 246
females), plasma cholesterol concentrations were positively
related and triacylglycerol concentrations and body fat were
inversely related to plasma �-carotene concentrations (70).
�-Carotene, �-carotene, �-cryptoxanthin, lutein, and lycopene con-
centrations were examined in 2 small studies of 10 and 50 children,
respectively (71, 72). Among 97 children aged 6–10 y in Georgia,
the sum of the �-carotene, �-carotene, and �-cryptoxanthin con-
centrations was higher among the girls than among the boys, was
higher among the African American children than among the
white children, and increased with age (73). Among 467 Aus-
tralian children, the mean �-carotene concentration was
0.30 �mol/L, and �-carotene concentrations were similar in the
boys and the girls (74). In a study of 70 children, African Ameri-
can children had higher median concentrations of �-carotene and
lycopene than did white children, but only the difference in
lycopene concentrations was significant (75). In an intervention
study of 41 Chinese children, increased vegetable consumption
favorably affected serum concentrations of several carotenoids
(76). Very recently, a study of 285 children and adolescents in 3
US cities found significant associations between carotenoid con-
centrations and race or ethnicity, obesity, and dietary intakes that

were consistent with our findings (77). The NHANES III data
showed that carotenoid concentrations were related to age, race or
ethnicity, poverty-income ratio, body mass index, serum lipid con-
centrations, C-reactive protein concentrations, cotinine concen-
trations, and fruit and vegetable intake in children and adolescents.

Several studies in adults have shown inverse associations
between circulating concentrations of carotenoids and markers
of inflammation such as C-reactive protein concentrations (68,
78–84). We believe that our results are the first to show this
inverse association in a representative sample of US children
and adolescents. In addition, concentrations of serum retinol
and C-reactive protein are also inversely related (85). Although
the directionality of associations in cross-sectional studies is
difficult to discern, the more likely explanation for our findings
is that underlying sources of inflammation, represented by ele-
vated C-reactive protein concentrations, result in decreased
concentrations of various circulating antioxidants including
carotenoids.

The importance for children and adolescents of having adequate
body stores of carotenoids has not been shown. In adults, how-
ever, inadequate intakes or concentrations of carotenoids have
been linked to increased all-cause mortality and risk of various
chronic conditions. Because many of these conditions have their
roots in childhood, it seems reasonable to assume that adequate
carotenoid concentrations in youth, achieved mainly by sufficient
consumption of fruit and vegetables, may promote better health
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in adulthood. The unique results of the present study should pro-
vide researchers and clinicians with a better understanding of the
distributions and sociodemographic patterns of serum carotenoid
concentrations in US children and adolescents. Furthermore, the
results of the present study enabled us to identify several deter-
minants of serum carotenoid concentrations, such as excess
weight, exposure to environmental tobacco smoke, and inadequate
fruit and vegetable consumption, that are amenable to clinical and
public health interventions.
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