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Effect of zinc on the treatment of Plasmodium falciparum malaria in
children: a randomized controlled trial1–3

The Zinc Against Plasmodium Study Group

ABSTRACT
Background: Zinc supplementation in young children has been
associated with reductions in the incidence and severity of diar-
rheal diseases, acute respiratory infections, and malaria.
Objective: The objective was to evaluate the potential role of zinc
as an adjunct in the treatment of acute, uncomplicated falciparum
malaria; a multicenter, double-blind, randomized placebo-
controlled clinical trial was undertaken.
Design: Children (n = 1087) aged 6 mo to 5 y were enrolled at
sites in Ecuador, Ghana, Tanzania, Uganda, and Zambia. Children
with fever and ≥ 2000 asexual forms of Plasmodium falciparum/�L
in a thick blood smear received chloroquine and were randomly
assigned to receive zinc (20 mg/d for infants, 40 mg/d for older
children) or placebo for 4 d.
Results: There was no effect of zinc on the median time to reduc-
tion of fever (zinc group: 24.2 h; placebo group: 24.0 h; P = 0.37),
a ≥75% reduction in parasitemia from baseline in the first 72 h in
73.4% of the zinc group and in 77.6% of the placebo group
(P = 0.11), and no significant change in hemoglobin concentra-
tion during the 3-d period of hospitalization and the 4 wk of fol-
low-up. Mean plasma zinc concentrations were low in all children
at baseline (zinc group: 8.54 ± 3.93 �mol/L; placebo group:
8.34 ± 3.25 �mol/L), but children who received zinc supplemen-
tation had higher plasma zinc concentrations at 72 h than did those
who received placebo (10.95 ± 3.63 compared with 10.16 ±
3.25 �mol/L, P < 0.001).
Conclusion: Zinc does not appear to provide a beneficial effect
in the treatment of acute, uncomplicated falciparum malaria in
preschool children. Am J Clin Nutr 2002;76:805–12.
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INTRODUCTION

Childhood malaria is a major public health problem worldwide,
with an estimated 2 million children dying of malaria yearly, pri-
marily because of Plasmodium falciparum and its complications
(1). Approximately 400 million people are estimated to suffer
from malaria morbidity annually; two-thirds of those people reside
in sub-Saharan Africa.

Prompt diagnosis and early treatment continue to be the main-
stays of the current approach to malaria control (2). Second-line
drugs are often required to deal with chloroquine resistance, but
their high cost and greater potential for adverse effects restrict
their use in malaria-endemic countries. Because of the increasing
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prevalence of malaria, its associated morbidity and mortality in
children, and the progressive increase in the resistance of the par-
asite to antimalarial drugs (3), new treatment options are desper-
ately needed.

Children < 5 y old in malaria-endemic areas are at risk of protein-
energy malnutrition, as well as deficiencies in micronutrients
including zinc (4). Zinc deficiency in humans leads to growth
retardation, thymic atrophy, lymphopenia, impaired T and B lym-
phocyte function, impaired chemotactic activity of neutrophils,
and a reduction in thymulin activity, interferon-� concentrations,
and the number of CD4 (helper) lymphocytes (5). These alter-
ations in the cellular and humoral functions may increase host
susceptibility to P. falciparum (5, 6). Zinc supplementation of
children in developing countries has resulted in improvement of
delayed cutaneous hypersensitivity (7) and an increase in CD4
lymphocytes (8). Zinc supplementation has been shown to reduce
the incidence of diarrhea and pneumonia (9) and to be beneficial
when used as adjunctive therapy for acute diarrhea (10, 11).

A community-based zinc supplementation trial in The Gambia
designed to evaluate the effect of zinc on growth found a trend
toward fewer health center visits for malaria by children who
received zinc (12). In Papua New Guinea, zinc supplementation
in preschool children reduced malaria-attributable health center
visits by 38% (13). On the basis of the therapeutic benefits of zinc
for acute and persistent diarrhea, zinc’s crucial role in immune
system function, and recent evidence that zinc supplementation
appears to reduce malaria morbidity, we examined the hypothesis
that zinc given as an adjuvant to standard antimalarial therapy
would improve the outcomes of acute episodes of P. falciparum
malaria in children.
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806 THE ZAP STUDY GROUP

SUBJECTS AND METHODS

Study design and sites

The study was a multicenter, double-blind, randomized
placebo-controlled clinical trial at the following sites: Hospital
Delfina Torres (Esmeraldas, Ecuador), Komfo Anokye Teaching
Hospital (Kumasi, Ghana), Kisarawe District Hospital (Kisarawe,
Tanzania), Mpigi Health Center (Mpigi, Uganda), and Arthur
Davison Children’s Hospital (Ndola, Zambia). These sites serve a
mixture of urban and rural populations in Africa and Latin Amer-
ica. The 4 African sites are in malaria-hyperholoendemic zones,
whereas Ecuador is in a hypoendemic zone. Subject enrollment
took place between December 1998 and May 2000.

Study population

All children aged 6–60 mo who presented to the participating
health institution for evaluation of fever were screened for the
study. A finger-stick blood sample was taken from children with
an axillary temperature ≥ 37.5 �C. Children with ≥ 2000 asexual
forms of P. falciparum/�L in a thick blood smear were consid-
ered eligible for enrollment into the trial. If the child did not meet
any of the exclusion criteria and if his or her parent or caretaker
was willing to give written, informed consent, then the child was
enrolled in the study. Exclusion criteria included a hemoglobin
concentration < 70 g/dL; severe malaria as defined by the pres-
ence of any of the following: cerebral malaria, severe anemia,
renal failure, pulmonary edema, hypoglycemia, shock, sponta-
neous bleeding, or repeated convulsions (14); non-P. falciparum
or mixed Plasmodium infections; concurrent severe infections
(ie, lower respiratory infection, acute otitis media, pyelonephri-
tis, typhoid fever, bloody diarrhea, meningitis, or measles); severe
dehydration; malnutrition as defined by the Wellcome criteria
(15) (ie, marasmus, kwashiorkor, or marasmic kwashiorkor);
inability to tolerate oral medications or fluids; chronic illness
(including tuberculosis, acquired immunodeficiency syndrome,
severe congenital anomalies, sickle cell disease); and prior par-
ticipation in this trial.

Randomization and blinding

Zinc and placebo tablets that were identical in appearance
were packaged in identical polypropylene tubes labeled with
subject identification numbers. Randomization was performed
in blocks of 20 by using a table of random numbers and was
stratified by site. Once a child was enrolled, the next container
in the sequence was opened, and the corresponding regimen was
provided to the child. Investigators, clinical staff, and patients
were blinded to study group assignment. The study code was
broken after completion of enrollment and follow-up of all
study subjects.

Treatment specification

The zinc preparation that was used consisted of an effervescent,
citrus-flavored tablet containing 25 mg Zn in the form of zinc sul-
fate (Biolectra Zink; Hermes Arzneimittel GmbH, Munich, Ger-
many) dissolved in 25 mL water. The placebo, a zinc-free tablet
having color, taste, and appearance similar to those of zinc sulfate
and that was especially prepared by Hermes Arzneimittel GmbH,
was put into solution in an identical fashion. The strong lemon-
lime flavor of the solution effectively concealed the metallic taste
of zinc, thus preventing study participants or personnel from being
able to determine whether a preparation contained zinc or placebo.

Zinc was given in a total daily dose of 20 mg for children aged
< 12 mo and 40 mg for children aged 12–60 mo. The zinc or
placebo was administered in 2 equally divided daily doses during
the first 3 d of the study and as a single dose on the fourth day.
The drug was given under direct supervision 15–30 min before a
meal. If the child vomited ≤ 15 min after drug administration, the
dose was repeated.

Clinical care of subjects

Baseline evaluation

Demographic data, information on the use of antivector meas-
ures to prevent malaria or on recent antimalarial use, and signifi-
cant medical history were obtained. A complete physical exami-
nation, including vital signs, anthropometric measurements,
hydration status, neurologic status according to the Blantyre coma
scale (16), and abdominal examination to measure liver and spleen
size, was performed. Subjects were admitted to the inpatient ward
for 48–72 h.

Inpatient care

Clinical monitoring of patients included measurement of axil-
lary temperature every 4 h and physician evaluation every 24 h or
more frequently if clinically indicated. In addition, standard nurs-
ing care was provided. All subjects received standard medical care
for any concurrent illnesses that were present at baseline or that
developed during the study. For these infections, the use of the
antibiotics trimethoprim, sulfamethoxazole, erythromycin, and
doxycycline was avoided because of their antimalarial effects.
Paracetamol was administered for temperatures ≥ 38.5 �C at a dose
of 10–15 mg/kg every 6 h.

Antimalarial therapy

Chloroquine was given as the first-line drug in accordance
with the national treatment guidelines for malaria in all 5 coun-
tries. The following schedule was used: 10 mg/kg on day 0, 10
mg/kg on day 1, and 5 mg/kg on day 2. Tablets containing
150 mg base were used. If either a treatment or parasitologic
failure occurred, subjects were changed to a standard dose of
either amodiaquine or sulfadoxine as second-line antimalarial
therapy. Treatment failure was defined as the presence of axil-
lary temperature ≥ 37.5 �C and parasitemia of > 25% of the base-
line value at 72 h. Parasitologic failure was defined as para-
sitemia of > 25% of the baseline value Swith resolution of fever
(ie, temperature < 37.5 �C at 72 h). Children who developed cere-
bral malaria or who failed to respond to second-line therapy were
treated with quinine. If, during the course of treatment, the con-
dition of the patient deteriorated or complicated malaria devel-
oped, then the clinician had the option to change treatment as
clinically indicated. Children with severe symptomatic anemia
were given a transfusion of packed red blood cells. Discharge
from hospital occurred once the fever had resolved (axillary tem-
perature < 37.5�C for ≥ 12 h) and there was a ≥ 75% reduction in
parasitemia relative to baseline.

Outpatient follow-up

Parents were asked to bring the subject back to the study site at
72 h (if discharged at 48 h) and on the mornings of days 7, 14, and
28. Parents were instructed to bring the child to the study site
immediately if he or she developed fever or other signs of illness
at any time between discharge and day 28. If the patient did not
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return for follow-up, a research assistant went to the subject’s
home to locate him or her. At each follow-up visit, subjects were
asked about any illnesses since the last visit, especially those man-
ifested by fever, and about any use of an antimalarial drug. Blood
smears were obtained and hemoglobin concentrations were meas-
ured at each follow-up visit.

Criteria for withdrawal from the study

If a subject, during the inpatient phase of the trial, developed
coma or the inability to tolerate oral fluids or medicines, he or she
was withdrawn from the assigned treatment arm of the study, but
outcome data were still collected, including outpatient follow-up.
If informed consent was withdrawn at any time during the trial,
the subject was discharged from the study.

Laboratory evaluation

Giemsa-stained thick blood smears were made on admission
(time 0); at 24, 36, 48, and 72 h; and on days 7, 14, and 28. The
total parasite count per �L was quantitated (17). A thick smear
was declared negative after the viewing of high-power fields con-
taining 500 white blood cells. Hemoglobin concentrations were
determined by Hemacue (Angelholm, Sweden) on admission and
on days 7, 14, and 28. Blood for plasma zinc was taken on day 0
before the administration of the study drug and then at 72 h. Sam-
ples were obtained just before meals. Venous blood was drawn
with zinc-free syringes and placed into heparinized zinc-free
tubes. Blood was immediately centrifuged and plasma was trans-
ferred into zinc-free tubes with a plastic zinc-free pipet and frozen
at �20 �C. Plasma zinc was assayed by atomic absorption spec-
trophotometry at the University of Colorado Center for Human
Nutrition.

Outcomes

Primary outcomes were the number of hours to the resolu-
tion of fever (fever resolution time was defined as the time at
which axillary temperature remained < 37.5 �C for 12 consec-
utive hours) and the proportion of subjects with ≥ 75% reduc-
tion in parasitemia at 72 h (compared with parasitemia values
on admission). Secondary outcomes were the proportion of
subjects who were aparasitemic at 72 h and on days 7, 14, and
28; the mean change in hemoglobin from day 0 to days 7, 14,
and 28; and the change in mean plasma zinc concentrations
between time 0 and 72 h.

Quality control

Clinical measurements

All investigators took part in a protocol development workshop
during which the protocol was designed and a consensus was
reached on the details of clinical care of children with acute
malaria. Uniformity in the application of inclusion and exclusion
criteria, as well as in case management, was emphasized, and a
study manual was written. Training of study personnel and enroll-
ment of 5 pilot subjects were performed at all sites. Technical staff
made site visits at the beginning of enrollment to assess study pro-
cedures.

Laboratory measurements

Hemoglobin measurements were made at all sites by using the
same portable machine (Hemacue) and technique. Blood smears
were performed in an identical manner at all sites. Internal quality

control consisted of the duplicate reading of a 10% subsample of
smears by an experienced parasitologist. External quality control
on a 5% sample of slides from all sites was done by an experi-
enced parasitologist who was not otherwise involved in the study
(18). The comparison of the results of the external quality control
of blood smears performed by an independent reader with the
blood smear results found by the study parasitologist at each site
yielded a mean (± SD) difference of 0.14 ± 3.55 between the 2
groups in log-transformed parasite density counts. This means that
there was an average difference in parasite density counts of 15%
(with a large amount of variation) between the blood smear read-
ings done at each site and those done by the external quality-
control parasitologist. However, this difference was not signifi-
cant (P = 0.59).

Data management, statistical power, and statistical methods

All case report forms were checked for missing, discrepant,
and illogical responses by the study supervisor. The Applied
Research for Child Health Project (Cambridge, MA) was the
trial’s data coordinating center. Double data entry was per-
formed; one entry was done at the site, and the second entry
and validation were done at the Applied Research for Child
Health Project. Data entry and management were carried out
with EPI-INFO software, version 6.04c (Centers for Disease
Control and Prevention, Atlanta) and Integrated Microcomputer
Processing System, version 3.1 (US Bureau of the Census,
Washington, DC).

To obtain the proper sample size for the trial, we calculated
the statistical power necessary to examine the effect of the
supplements on each of the 2 primary outcomes, and the
larger of the 2 sample sizes thus obtained was used. It was
estimated that 25% of the children in the placebo group would
fail to achieve ≥ 75% reduction in parasitemia at 72 h. Assum-
ing a potential efficacy of 30% for the zinc regimen and a
10% loss to follow-up, 1025 subjects were required for enroll-
ment to answer the question with a power of 80% and a two-
tailed level of significance of 5%. The assumption of a 30%
beneficial effect of zinc supplements was based on a study
from Papua New Guinea, in which zinc supplementation was
associated with a 30% reduction in health center visits for
malaria (19).

All analyses were made according to the intention-to-treat prin-
ciple. Frequencies of outcomes between treatment and control
groups were compared by using the chi-square test (20). Differ-
ences in medians between treatment and control groups were
compared by using the Wilcoxon rank-sum test (20). The analy-
sis of repeated-measures data used mixed-models regression (21).
Differences in the hours to reduction in fever were compared by
using the log-rank test for homogeneity for Kaplan-Meier sur-
vival curves (22). In a subgroup analysis for the detection of effect
modifiers, we used binomial regression with the log link func-
tion and simultaneously controlled for the study site (23). We used
SAS software, version 7.0 (SAS Institute Inc, Cary, NC) for sta-
tistical analysis.

Ethical approval of the study was obtained from the institu-
tional review boards at each site and at the Harvard School of Pub-
lic Health. Written, informed consent was obtained from the par-
ent or guardian of each subject. A data safety monitoring board
consisting of 2 experts in infectious diseases and a biostatistician
not otherwise involved in the trial performed a review of serious
adverse events midway through the study.
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808 THE ZAP STUDY GROUP

FIGURE 1. Study profile.

TABLE 1
Baseline characteristics of subjects1

Zinc group Placebo group
(n = 542) (n = 545)

Population characteristics
Age (mo) 26.4 ± 15.92 27.0 ± 15.9
Mother’s school attendance (y) 5.7 ± 3.6 5.7 ± 3.6
Male (%) 52 52
Breast-feeding (%) 41 39
Use of bed nets (%) 22 24
Antimalarial use in previous 7 d (%) 37 33

Nutritional status
Weight-for-age (z score) �1.08 ± 1.1 �1.16 ± 1.2
Height-for-age (z score) �1.43 ± 1.5 �1.53 ± 1.5
Weight-for-height (z score) �0.16 ± 1.2 �0.21 ± 1.3
Midupper arm circumference (cm) 15.0 ± 1.4 14.9 ± 1.4

Clinical data
Axillary temperature (ºC) 38.7 ± 0.9 38.6 ± 0.9
Splenomegaly (%) 4 3

Laboratory data
Parasitemia (/�L)3 19283 17448

(1500–435920) (225–430000)
Hemoglobin (g/L) 92 ± 16 93 ± 16
Plasma zinc

(�mol/L) 8.5 ± 3.9 8.3 ± 3.3
(�g/dL) 55.9 ± 25.7 54.5 ± 21.6

1 There were no significant differences between the groups.
2 x– ± SD.
3 Geometric x–; range in parentheses.

TABLE 2
Summary of severe adverse events1

Zinc group Placebo group
Adverse event (n = 542) (n = 545)

Cerebral malaria (n) 1 1
Severe anemia (n) 17 9
Febrile convulsion (n) 1 2
Death (n) 2 2
Total (n) 21 14

1 There were no significant differences between the groups.

RESULTS

A total of 5930 persons were screened at the 5 study sites, and
1087 subjects were enrolled (Figure 1). The distribution of
enrollees was 77 children in Ecuador, 214 in Ghana, 260 in Tan-
zania, 276 in Uganda, and 260 in Zambia. The most common rea-
sons for ineligibility included the absence of fever at the time of
health center presentation and the presence of severe anemia, mal-
nutrition, or infection with Plasmodium vivax. The ratio of
screened to enrolled patients was not equal at the sites. The
African sites screened �2 patients for each patient enrolled,
whereas the site in Ecuador screened an average of �35 patients
for each patient enrolled. This imbalance in the rate of ineligibil-
ity stemmed primarily from the need to exclude patients who did
not have malaria as a cause of their fever; moreover, of those in
Ecuador who did have malaria, about one-third had P. vivax, but
this Plasmodium species was rarely encountered in the African
sites. The baseline characteristics of the treatment (zinc) and con-
trol (placebo) groups were not significantly different (Table 1).

Zinc or placebo treatment

Overall, 98.3% of the planned doses of zinc or placebo were
given to the children. The percentage of children who did not
take the planned dose did not differ significantly between the
zinc and placebo groups. The amount of vomiting during the
course of hospitalization did not differ significantly between the
2 groups (12.7% in the zinc group and 12.1% in the placebo
group, P = 0.76).

Severe adverse events occurred in 35 subjects (Table 2). These
included 2 episodes of cerebral malaria, 26 episodes of severe
anemia requiring transfusion, 3 episodes of febrile convulsions,
and 4 deaths. The incidence of severe adverse events did not dif-
fer significantly between the 2 groups. The data safety monitoring
board reviewed the severe adverse events and concluded that these
were unlikely to be related to the study intervention.

Primary and secondary outcomes

Because there was no significant interaction between the effect
of the supplements (zinc or placebo) and the sites (African sites
or Ecuador) on the primary outcomes, all analyses include the
data pooled from the 5 participating study sites. The Kaplan-
Meier survival curves for time to resolution of fever are shown in
Figure 2. The median time to reduction of fever did not differ
significantly between the groups (24.2 compared with 24.0 h,
P = 0.37). Of the 965 subjects whose fever resolved during the
first 72 h, 638 received paracetamol, whereas 327 did not. There
was no significant difference between the zinc and placebo groups
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FIGURE 2. Time to resolution of fever in the zinc (—) and placebo
(—�—) groups. The median time to resolution of fever was not signifi-
cantly different between the groups.

TABLE 4
Plasma zinc concentrations at baseline and 72 h1

Plasma zinc concentration

Study group Baseline 72 h

Zinc group
(�mol/L) 8.54 ± 3.93 10.95 ± 3.632

(�g/dL) 55.9 ± 25.7 71.6 ± 23.72

Placebo group
(�mol/L) 8.34 ± 3.25 10.16 ± 3.252

(�g/dL) 54.5 ± 21.3 66.5 ± 21.32

1 x– ± SD. The data were analyzed with repeated measures with the use
of mixed models with an interaction for treatment and time. There was a
significant interaction between group and time, P = 0.038.

2 Significantly different from baseline, P < 0.001.

TABLE 3
Percentage of aparasitemic children and mean change in hemoglobin
concentration in the zinc and placebo groups1

Variables Zinc group Placebo group

Aparasitemic subjects (%)
72 h 20.2 [100 of 496] 21.5 [108 of 502]
7 d 50.9 [258 of 507] 54.7 [280 of 512]
14 d 54.6 [265 of 485] 53.6 [261 of 487]
28 d 59.9 [277 of 462] 55.6 [263 of 473]

Change in hemoglobin 
from day 0 (g/L)
7 d �4.9 ± 17.2 [502] �4.8 ± 18.4 [519]
14 d 3.4 ± 17.9 [476] 2.6 ± 17.4 [477]
28 d 9.3 ± 18.8 [454] 7.5 ± 18.9 [463]

1 x– ± SD; n in brackets. There were no significant differences between
the groups.

in the number of children who received paracetamol. Of the chil-
dren receiving paracetamol, 259 did not receive a dose before the
resolution of fever, whereas 379 were given paracetamol at some
point before the resolution of fever. Because fever resolution was
defined as axillary temperature < 37.5 �C for 12 consecutive
hours, it was possible for study subjects to meet the definition of
fever resolution and then have a recurrence of fever. Of the 259
subjects who received their first dose of paracetamol after fever
resolution, 258 had a temperature ≥ 37.5 �C after fever resolution.
However, in 97% (368 of 379) of the children, the fever did not
resolve for at least 13 h after they were last given paracetamol.
Thus, paracetamol use was unlikely to have had any effect on the
duration of fever.

The proportion of children whose parasitemia value was
reduced ≥ 75% in the first 72 h in the zinc group was 73.4% (398
of 542) and that in the placebo group was 77.6% (423 of 545)
(�2 = 2.57, P = 0.11). There also was no significant difference
between the groups in the percentage of children who required
second-line antimalarial therapy during the period of hospitaliza-
tion (zinc group: 12.6%; placebo group: 12.3%).

There were no significant differences in secondary outcomes
between the 2 groups, except for the change in plasma zinc con-
centration between 0 and 72 h. An analysis of data from the
African sites alone (ie, excluding the data from Ecuador) revealed
no significant difference between the zinc and placebo groups in
any of the secondary outcomes. With antimalarial treatment, about
one-fifth of the children in both groups were aparasitemic at 72 h

(Table 3). The proportion of children in both groups who were
aparasitemic had increased to nearly 60% by day 28. More than
19% (207 of 1087) of the children received second-line anti-
malarials between days 7 and 28.

At 72 h, plasma zinc concentrations had increased in both
groups (Table 4). Although there was no significant difference in
baseline plasma zinc concentrations between the groups (Table 1),
the children who received zinc supplements had significantly
larger increases in zinc concentrations between baseline and 72 h
than did the children who received placebo [0.59 ± 0.28 �mol/L
(3.8 ± 1.8 �g/dL), P = 0.038].

The primary outcome of the reduction of parasitemia by 75% at
72 h was modeled by using binomial regression (22). No signifi-
cant differences in outcomes between the groups were found after
controlling for age group, weight-for-age z score, maternal edu-
cation, breast-feeding, use of bed nets, prior chloroquine use, sec-
ond-line antimalarial use, baseline plasma zinc concentration, and
study location. The presence of effect modifiers was tested by
using binomial regression in which study location was controlled
for. No difference in treatment effect was found with any of the
categories of effect modifiers that were tested (sex, baseline
plasma zinc, baseline hemoglobin, weight-for-age z score,
height-for-age z score, weight-for-height z score, and baseline par-
asitemia).

DISCUSSION

We found that zinc as an adjuvant to the treatment of uncom-
plicated P. falciparum malaria in children aged 6–60 mo had no
effect on the duration of fever or on the reduction of parasitemia
at 72 h. In addition, there was no apparent effect of the interven-
tion on hematologic or parasitologic measures during the 4 wk of
follow-up.

The 2 previous studies that showed a beneficial effect of zinc in
malaria were community-based prevention trials (12, 13). The
first, a placebo-controlled study in which preschool children in
rural Gambia received zinc supplements twice weekly for 1.25 y
(12), showed a trend toward a reduction in the number of clinic
visits for malaria (P = 0.09). The small sample size of that study
most likely did not provide adequate power to allow the detection
of an effect of zinc supplementation on the rates of clinic visits
for malaria. In addition, the twice-weekly dosing interval may
have been responsible for the failure of the zinc supplement to
significantly increase zinc concentrations in plasma or hair
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relative to those found in the placebo group. In a more recent,
larger supplementation trial in preschool children in Papua New
Guinea (13) in which zinc was administered daily for 46 wk, there
was a significant reduction in episodes of P. falciparum malaria.
The greatest effect of the zinc intervention was observed in chil-
dren with P. falciparum episodes accompanied by para-
sitemia ≥ 100 000 parasites/�L. However, in contrast to these 2
studies, a recent study in Burkina Faso found that 6 mo of zinc
supplementation had no effect on the incidence of symptomatic
falciparum malaria, severity of malaria episodes, or other malari-
ometric indexes (24).

The lack of efficacy of zinc in our trial may be due to a num-
ber of factors. First, the duration of the supplementation in this
study was purposefully short. The intervention was designed to be
administered in conjunction with antimalarial therapy in a way
that would be practical in the developing world. Previous studies
examining the therapeutic role of zinc in acute infections have also
taken this approach (10, 11, 25). The beneficial role of zinc in the
treatment of diarrhea may be due to a direct effect of zinc on intes-
tinal function by virtue of improved absorption of water and elec-
trolytes (26, 27), early regeneration of the epithelial lining (28, 29),
and improved production of brush border digestive enzymes (30, 31).
In contrast, for zinc to have a beneficial effect on malaria, there
may need to be improvements in the functioning of the immune
system. It is not known how long it takes zinc supplementation to
lead to a resolution of abnormalities of immune function when it
is used to treat zinc deficiency. Three days of zinc supplementa-
tion may have been insufficient to allow for the improvement of
immune function in children with underlying zinc deficiency,
whereas longer periods of supplementation clearly do lead to bet-
ter immune function (5, 7, 8). The duration of zinc supplementa-
tion may explain the difference between our results and those of
the studies of zinc that found this micronutrient to be beneficial in
the prevention of malaria (12, 13).

Second, treatment with zinc would be unlikely to be beneficial
if the study subjects had normal zinc nutritional status. The study
participants, however, resided in areas where there is a high risk
of zinc deficiency because of cereal-based diets, which are rela-
tively low in zinc and high in phytates (32, 33). Accurate assess-
ment of zinc status is difficult and optimally should involve the
use of multiple measures (34). However, many of the more sophis-
ticated measures of zinc status such as platelet, lymphocyte, or tis-
sue zinc concentrations are not practical for large field studies in
developing countries. In addition, these measures have not been
validated as markers of zinc status. Although plasma zinc con-
centrations are commonly used as a surrogate marker of zinc sta-
tus in many clinical trials, plasma zinc represents < 0.2% of total
body zinc stores, and there is a poor correlation between plasma
zinc concentrations and body stores (35). In addition, it is recog-
nized that acute infections and febrile illnesses decrease plasma
zinc concentrations, although the extent and timing of this
decrease are unclear (36). The magnitude of the decrease in
plasma zinc concentrations in persons with acute infections has
been shown in animal models to be a function of the stage, dura-
tion, and severity of the infection (37–39). Although some com-
munity-based studies found minimal to no suppression of plasma
zinc concentrations in infected children compared with that in
uninfected children (40–42), it is possible that the severity of ill-
ness in these studies was not great enough to cause a significant
decrease in plasma zinc. The baseline plasma zinc concentrations
in our study cohort were initially very low, but they increased as

the acute episode of malaria resolved. This suggests that the
plasma zinc concentration had been depressed as part of the acute
phase response. However, even after resolution of fever, the
plasma zinc concentrations remained relatively low, with a mean
concentration of < 10 �mol/L at 72 h in the placebo group. This
suggests that, in our study population, there may have been a com-
bination of low plasma zinc concentration in response to the acute
infection and an underlying zinc deficiency. Because the children
who were treated with zinc had significantly higher plasma con-
centrations at 72 h, it appears that there was good bioavailability
of the supplement. However, the absolute magnitude of the dif-
ferences in plasma zinc between the zinc and placebo groups was
relatively small (0.7 �mol/L, or 5.1 �g/dL). The physiologic or
clinical significance of this relatively small difference is unclear.

Third, the dose of zinc used may not have been adequate.
Higher zinc doses may conceivably have had a stronger effect, but
we felt that a dose that was 4 times the US recommended dietary
allowance (43) was a reasonable one. The mean daily dose, based
on the mean baseline weights of the children who received zinc,
was 2.5 mg/kg for children aged 6–11 mo and 3.4 mg/kg for those
aged 12–60 mo. This amount of zinc was well tolerated, resulted
in a significantly higher final plasma zinc concentration than did
placebo, and was not associated with any serious adverse events
in our study. High-dose zinc (6.0 mg · kg�1 · d�1) has been associ-
ated with increased mortality in severely malnourished children
(44). In addition, high doses of zinc have been associated with the
impairment of immune responses in healthy adults (45).

Fourth, the use of paracetamol may have masked a potential
effect of zinc on parasitemia. A randomized trial in Gabon of chil-
dren who were being treated for P. falciparum malaria found that
a significantly greater amount of time was needed for parasite
clearance in children treated with paracetamol than in those
treated with mechanical antipyresis alone (46). Although the
results of that study suggest that the approach used to manage
fever in children with malaria may have an influence on the dura-
tion of parasitemia, it is unlikely that the use of paracetamol in
our study interfered with a potential effect of zinc, because the
proportion of children treated with paracetamol in the placebo and
zinc groups was similar, and fever was not resolved in most of the
children for > 12 h after receipt of paracetamol.

Unlike the situation at the site in Ecuador, where many children
were excluded from participation because of the absence of
malaria or the presence of P. vivax, the ineligibility rate for the
African sites was < 50%. The aim of this study was to evaluate the
intervention in a population that would be representative of those
children presenting to urban or rural health care centers with
acute, uncomplicated falciparum malaria. The final cohort of chil-
dren fit this description. Because of the decision to focus only on
malaria due to P. falciparum (which is the major source of mor-
bidity and mortality worldwide), the results of this study cannot be
generalized to areas where other species of Plasmodium are com-
monly encountered. However, the findings of this study can be
applied to many developing countries where P. falciparum is
endemic, because the study’s multicenter design with site-by-site
differences in the extent of underlying immunity to malaria and
in the intensity of malaria transmission allows a high degree of
generalizability. Moreover, the large sample size reduced the
chance of a type 2 error. Multiple measures of quality control, ade-
quate blinding and randomization, and excellent intrasite agree-
ment in reading blood smears all ensured the internal validity of
the trial.
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In conclusion, in this large randomized trial, we found no evi-
dence that supplemental zinc, given as an adjuvant to standard
chemotherapy, was helpful in the treatment of acute malaria in
young children. However, because there may be benefits of zinc
supplementation in the prevention of malaria morbidity (12, 13),
additional community-based studies are needed to clarify the pro-
phylactic role of this essential micronutrient in countries with
endemic malaria.
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