
Designing Optimal Implementations
of Linear Layers (Full Version)

Ruoxin Zhao1,2, Baofeng Wu1, Rui Zhang1,2 and Qian Zhang1

1 State Key Laboratory of Information Security,
Institute of Information Engineering,

Chinese Academy of Sciences
zhaoruoxin@iie.ac.cn

2 University of Chinese Academy of Sciences

Abstract. Linear layer is a fundamental primitive for many aspects of information
technology. For information security, the performance of a linear layer depends on
two aspects: diffusion ability and implementation cost, where the latter is usually
measured by the number of XORs required to implement it. For many years, linear
layers have been implemented by computing co-ordinates of the output independently.
With this method, costs are determined only by the matrices representing linear
layers. However, we note that the implementation cost of a given linear layer depends
not only on its matrix but also on its implementation methods. So, in this paper, we
focus on another implementation method: modifying input vectors to output step
by step. This method uses fewer XORs than previous methods do and makes the
implementation cost of every linear layer same as that of its inverse. With the new
implementation method, we first clarify the measurement of implementation cost and
the optimal implementation procedure of linear layers. Here, “optimal” means using
fewest XORs. Then, to find the optimal implementation procedure of a given linear
layer, we construct a graph-theoretical model and transfer the problem to the shortest
path problem in graph theory. Next, we construct a new “double-direction” algorithm
that uses less storage and makes the search for a shortest path more efficient in a
regular graph. However, this algorithm is not practical enough for heavyweight linear
layers because of its high space/time complexity. So, we finally construct another
algorithm for finding efficient implementations of linear layers. The advantages of
this last algorithm are its low complexity and high practicality. We conduct it to the
linear layers of AES and obtain extremely efficient implementations.

Keywords: Linear Layer · XOR Count · Equivalence Relation · Regular Graph · The
Shortest Path

1 Introduction
Linear layer is a fundamental primitive for cryptography and is widely used in many
aspects of computer science, electronic engineering and telecommunication. For example,
it is used as diffusion layer in cryptography. Most modern block ciphers and hash functions
are composed by confusion layers and diffusion layers. From the viewpoint of mathematics,
confusion layers are usually nonlinear functions (S-boxes) while diffusion layers are usually
linear functions. The goal of confusion layers is to increase chaos of information. And
the goal of diffusion layers is to spread the chaos caused by confusion layers as much as
possible. The performance of a linear layer depends on two aspects: diffusion ability and
implementation efficiency. In general, these two aspects often contradict. In other words,

mailto:zhaoruoxin@iie.ac.cn

2 Designing Optimal Implementations of Linear Layers (Full Version)

the higher its diffusion ability is, the lower its implementation efficiency is. So, finding
proper tradeoffs is a challenge for designers.

Efficient hardware implementation draws more and more attention in recent years.
Implementation efficiency on hardware depends on several factors including running time,
area, and power consumption. In most cases, these factors restrict mutually. So, “optimal
implementation” has different meanings under different circumstances. For example, there
are many lightweight equipments such as a variety of sensors in internet of things (IoT).
Consequently, area of circuits naturally becomes the primary factor when designing them.

Essentially, linear layers are Fq-linear transformations over (Fq)n. We only concern
about q as powers of 2 since they are almost all the cases in computer science. According
to correspondence between linear transformations and matrices, every Fq-linear layer can
be represented by a matrix over Fq. And this representation is unique under a fixed basis
of (Fq)n. Some linear layers are just matrices over F2, such as the candidates presented
in [10, 13, 8]. They are very convenient for implementation. However, there are also
many linear layers over the extension fields of F2, such as the candidates presented in
[4, 1, 9, 12]. A typical example of this type is the linear layers used in AES. They are
(4 × 4) matrices over F28 . Note that multiplying a fixed element in F2m is actually an
F2-linear transformation over (F2)m and can be represented by an (m×m) matrix over F2.
So, an F2m -linear layer over (F2m)n is essentially an F2-linear transformation over (F2)mn
and can be represented by an (mn ×mn) matrix over F2. Hence, matrices over F2 are
generic forms for linear layers.

Because every linear layer can be represented by a matrix over F2 and every element
in F2m is represented by a bit string in computers, the number of bit-operations required
for implementing linear layers naturally becomes the measurement of implementation cost
of them. In this work, we concentrate on how to implement a given linear layer with as
few XORs as possible.

1.1 Related Work
As we mentioned above, the implementation efficiency of a linear layer is measured by
the number of XORs needed to implement it. For an invertible n× n matrix L over F2
and an input column vector X, LX is usually implemented by computing the co-ordinates
independently. For example, the first co-ordinate of LX is computed as the product of the
first row of L and X. Consequently, the number of XORs of L is naturally considered to be
the difference between the Hamming weight of L and the its order n. However, if a linear
layer L′ is an invertible n× n matrix over F2m , counting its number of XORs is a little
complicated. In [12], the authors investigated this case in details. They formally defined
the XOR counts of elements in F2m which is closely relevant to the computational pattern
over F2m , or more specifically, the basis of F2m . Then, the XOR count of L′ is the sum of
XOR counts of all entries of L′ plus mn(n− 1). In fact, according to our statement above,
L′ can be alternatively represented by an (mn×mn) matrix L′′ over F2 once we fix an
F2-basis of F2m . From this viewpoint, the XOR count of L′ defined in [12] is exactly the
number of XORs needed to implement the (mn×mn) matrix L′′, namely, the difference
between the Hamming weight of L′′ and its order mn. Later, some papers ([11, 9, 8])
about linear layers adopted the essentially same measurement of implementation cost as
in [12]. Here we point out that all those papers have identical essence: computing the
co-ordinates of outputs of a linear layer independently. Thus, the implementation cost of
linear layers in those papers is only related to their matrices over F2 once bases are fixed.

In recent years, a new notion of implementation cost of linear layers were presented
by Jean, Peyrin, and Sim ([7]). Later, Beierle, Kranz, and Leander ([1]) presented a
measurement of implementation cost of multiplication with a fixed element in finite field
F2m and constructed a series of lightweight maximum distance separable (MDS) linear
layers. In brief, their new measurement originally came from an implementation method

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 3

different from previous ones. And this new one can indeed save XORs in comparison with
previous methods.

1.2 Our Contributions
In this work, our goal is to find the optimal implementation for any given linear layer.
Here, “optimal” means using fewest XORs. To attain the goal, we investigate the relation
between implementation cost and implementation procedure. From the investigation, we
present a generic measurement for implementation cost of linear layers. After that, we
construct a graph-theoretical model and transfer the main problem to the shortest path
problem in graph theory. Then, we construct a particular algorithm that is very proper to
solve the particular shortest path problem related to linear layers. However, this algorithm
for finding optimal implementations of linear layers is not practical enough because of its
high space/time complexity. So, we construct another practical algorithm finally. This
last algorithm has very low space/time complexity although we cannot guarantee that it
necessarily gives optimal implementations of linear layers.

In Section 3, we firstly investigate the effect of different implementation procedures for
implementation cost of linear layers. Briefly, we compare two implementation strategies:
computing the co-ordinates of output vectors independently and modifying the input
vectors to output step by step (MIOSS). The former is straightforward and has been used
for years. However, the latter requires fewer XORs. Therefore, we focus on the latter one.
From the investigation, we present a reasonable measurement of implementation cost of a
linear layer L: the minimum number of additive elementary matrices in L’s factorization
of the form P1A1 · · ·PsAsPs+1 where every Pi is a permutation matrix and every Aj is an
additive elementary matrix. Then, we give some properties that make our measurement
more flexible.

In Section 4, we firstly give an equivalence relation over all invertible linear layers of
order n over F2. Based on this equivalence relation, we construct a graph whose vertices
are all the equivalence classes. Then we show finding an optimal implementation of a given
linear layer L is essentially same as finding a shortest path between the vertex containing
L and the vertex containing the identity matrix In.

In Section 5, our main goal is to solve the shortest path problem in the graph defined
in Section 4. Although there has already been “single-direction” methods (Dijkstra’s
algorithm, for example) for the shortest path problem, we abandon them and construct a
“double-direction” algorithm. That is because the graph that we are talking about is a
regular graph, and our double-direction algorithm uses less storage and makes the search
for a shortest path more efficient in a regular graph. With our algorithm, we perform
experiments to some linear layers and obtain good results.

Although the algorithm in Section 5 can give us optimal implementations, it is not
practical for large-size linear layers because of its high space/time complexity. To solve
this problem, we finally present another algorithm in Section 6. An important advantage
of this algorithm is that its space/time complexity is incredibly low. On the other hand,
we have to admit that it does not necessarily give us optimal implementations of linear
layers. As an application, we investigate the linear layers of AES with the algorithm and
get implementations much more efficient than before.

2 Preliminary
2.1 Notations
In this paper, Fq or GF (q) denotes the finite field of q elements. Mm×n(R) denotes the
set consisting of all (m× n) matrices over a ring R, IMn×n(R) denotes the set consisting

4 Designing Optimal Implementations of Linear Layers (Full Version)

of all (n× n) invertible matrices over a ring R, PMn×n(R) denotes the set consisting of
all (n× n) permutation matrices over a ring R, EEMn×n(R) denotes the set consisting of
all (n× n) exchanging elementary matrices over a ring R,MEMn×n(R) denotes the set
consisting of all (n×n) multiplicative elementary matrices over a ring R, and AEMn×n(R)
denotes the set consisting of all (n× n) additive elementary matrices over a ring R. For a
matrix A, AT denotes the transpose of A and WH(A) denotes the Hamming weight (the
number of nonzero entries) of A. Ei,j denotes the matrix whose (i, j)th entry is 1 and
other entries are 0. In denotes the (n× n) identity matrix. For a set S,]S or |S| denotes
the cardinality of S.

2.2 Some Basic Facts about Linear Algebra

In this subsection, we review some basic facts about linear algebra. For more details, refer
to [6].

To begin with, let us talk about elementary operations to matrices. For every matrix
L ∈ Mm×n(F) where F is a field, there are three types of elementary row operations
on it: row exchanging, row multiplication, and row addition. Row exchanging means
exchanging tow rows of L. Row multiplication means multiplying every entries of a row by
an invertible element of F . Row addition means adding a scalar-product of an element
in F and a row to another row. In addition to elementary row operations, there are also
three types of corresponding elementary column operations. All the elementary operations
to matrices are invertible.

Corresponding to elementary operations, there are three types of elementary matri-
ces: exchanging elementary matrices, multiplicative elementary matrices, and additive
elementary matrices. An (n× n) exchanging elementary matrix is the matrix obtained
by exchanging two rows of In. An (n× n) multiplicative elementary matrix is the matrix
obtained from In by substituting an invertible element in F for a 1 on the diagonal of
In. An (n × n) additive elementary matrix Ai,j is the matrix In + aEi,j where a ∈ F
and i 6= j. For any matrix L ∈Mm×n(F), left-multiplying L by an (m×m) elementary
matrix causes a corresponding elementary row operation to it, while right-multiplying L
by an (n × n) elementary matrix causes a corresponding elementary column operation
to it. A useful fact is that every elementary matrix is invertible. The inverse matrix of
an exchanging elementary matrix is just itself. And the inverse matrix of an additive
elementary matrix Ai,j = In + aEi,j is In − aEi,j .

Another type of matrices important for this paper is permutation matrix. An n× n
permutation matrix is the matrix obtained from In by permutes the rows of it. It is trivial
that a matrix P ∈Mn×n(F) is a permutation matrix if and only if it is invertible and its
entries are zero except n entries equal to 1. For any matrix L ∈Mm×n(F), left-multiplying
L by an (m×m) permutation matrix permutes the rows of it, while right-multiplying L
by an (n×n) permutation matrix permutes the columns of it. In this paper, we sometimes
write a permutation matrix P ∈ Mn×n(F) as a column (ρ(1), · · · , ρ(n))T , where ρ is a
permutation over the set N = {1, · · · , n} and ρ(i) is the column index of the nonzero entry
in the i-th row of P for i = 1, · · · , n. For example, we write the permutation matrix

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

 =


3
4
2
1

 =


ρ(1)
ρ(2)
ρ(3)
ρ(4)

 .

With this notation, if P = (ρ(1), · · · , ρ(n))T , then P−1 = (ρ−1(1), · · · , ρ−1(n))T is also a
permutation matrix, and the i-th row of PL is the ρ(i)-th row of L.

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 5

2.3 Some Basic Facts about Graph Theory
In this subsection, we review some basic facts about graph theory. For more details, refer
to [2, 5].

A graph G is composed of two types of objects. It has a set V of elements called
vertices (or nodes) and a set of unordered pairs of vertices called edges. We denote the
graph whose vertex set is V and edge set is E by G = (V,E). The cardinality of the vertex
set V is called the order of the graph G. If α = {x, y} is an edge of G, we say that α joins
x and y, x and y are adjacent, and x and α are incident. The degree of a vertex x is a the
number of edges that are incident with x and is denoted by deg(x). If the degree of every
vertex of the graph G is r, we say G is an r-regular graph.

In a graph G = (V,E), a sequence of m edges of the form

{x0, x1}, {x1, x2}, · · · , {xm−1, xm}

is called a walk of length m. We also denote it by x0 − x1 − · · · − xm. The walk
x0 − x1 − · · · − xm is closed (open) if x0 = xm (x0 6= xm). If a walk has distinct edges,
we call it a trail. In addition, if a trail has distinct vertices, we call it a path. A closed
path is called a cycle. The distance between two vertices x and y is the shortest length of
walks joining them and denoted by d(x, y). It is clear that a walk joining x and y of length
d(x, y) is a path. We say two vertices x and y are connected if there exists a walk joining
them. And we say a graph G is connected if every pair of vertices of G is connected.

2.4 Linear Layers
In general, an F -linear layer is an F -linear transformation over Fn for a field F . In
this paper, we merely focus on fields of characteristic 2 because they are widely used in
computer science and telecommunication.

Suppose L is an Fq-linear layer over (Fq)n, where q = 2m. According to the correspon-
dence between linear transformations and matrices, L can be uniquely represented by a
matrix inMn×n(Fq) under a given Fq-basis of (Fq)n. Let

L =


α1,1 α1,2 · · · α1,n
α2,1 α2,2 · · · α2,n
· · · · · · · · · · · ·
αn,1 αn,2 · · · αn,n

 ∈Mn×n(Fq).

Then for every input column X = (x1,x2, · · · ,xn)T ∈ (Fq)n, the output is Y = LX =
(y1,y2, · · · ,yn)T ∈ (Fq)n, where yi =

∑n
j=1 αi,jxj for i = 1, · · · , n. Note that being

multiplied by a fixed element in Fq is an F2-linear transformation over Fq and can be
uniquely represented by a matrix inMm×m(F2) under a given F2-basis of Fq. Therefore,
L is essentially an F2-linear transformation over Fmn2 and can be represented by a matrix

L =


L1,1 L1,2 · · · L1,n
L2,1 L2,2 · · · L2,n
· · · · · · · · · · · ·
Ln,1 Ln,2 · · · Ln,n

 ∈Mmn×mn(F2),

where Li,j ∈Mm×m(F2) for i, j = 1, · · · , n. From this viewpoint, every Fq-linear layer is
essentially an F2-linear transformation and can be represented by a matrix over F2. That
gives us a uniform pattern for linear layers.

3 Measurement of Implementation Costs of Linear Layers
In this section, we clarify how to measure the implementation costs of linear layers. As we
mentioned above, considering invertible linear layers over GF (2) suffices.

6 Designing Optimal Implementations of Linear Layers (Full Version)

In general, the implementation cost of a given linear layer L over GF (2) is measured
by the number of additions (XORs) required to compute the output vector LX for input
X. In [12], the authors formally presented a measurement of the number of XORs (XOR-
count) of elements in GF (2m) as well as of whole diffusion layers. Later, some papers
([11, 9, 8]) adopted that measurement. We know that multiplication with a given element
in GF (2m) can be represented by an F2-linear transformation over Fm2 , namely, a matrix L
inMm×m(F2). From this viewpoint, their measurement XOR-count is exactly WH(L)−m
since co-ordinates of output vector are computed independently. In fact, this notion has
been used for years. However, the implementation cost of a given linear layer depends not
only on the linear layer itself but also on ways by which we implement it. To show the
effect of different ways on implementation costs, let us think about Example 1.

Example 1. Suppose

L =


1 1 1 0
0 1 0 0
1 1 1 1
1 1 0 0

 ∈ IM4×4(F2)

is a linear transformation over F4
2. Then for every input vector X = (x1, x2, x3, x4)T ∈

GF (2)4, the corresponding output is

Y = LX =


x1 + x2 + x3

x2
x1 + x2 + x3 + x4

x1 + x2

 .

We may compute Y with a common method that has been used for years. That is, we
compute the co-ordinates of Y independently. In this case, it requires WH(L) − 4 = 6
additions (XORs) over GF (2). However, we can adopt another method to compute Y
– modifying the input X to the output LX step by step as Figure 1. In Figure 1, we

Figure 1: Modifying input to output step by step

Figure 2: Implementing Example 1 in one clock cycle

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 7

compute LX through a series of operations on the co-ordinates of X. These operations can
be easily implemented on programmable hardware (ASIC or FPGA, for instance). Step
(1) adds x2 to x1 and remain x2, x3, x4. So, its delay is TX . Likewise, step (2) and step
(3) costs TX delay, respectively. Note that step (2) requires only TX delay but not 2TX
delays because x1 + x2 has been already computed on preceding steps and saved in the
register. Step (4) does not cost any delay because it is merely performed by twisting wires.
Although we illustrate the procedure by four steps, it can actually be implemented in one
clock cycle as Figure 2. Regardless of 4 clock cycles or 1 clock cycle, the whole procedure
of the second method uses 3 XORs. It is quite fewer than 6 XORs of the first method.
In form of matrices, we can express the second method as LX = PA4,3A3,1A1,2X, where
each Ai,j = I4 + Ei,j and P = (ρ(1), ρ(2), ρ(3), ρ(4))T = (3, 2, 4, 1)T .

Computing every co-ordinate independently is indeed easy to implement and has been
used for years. However, it is not necessarily the optimal implementation according to
Example 1. Here, “optimal” means “using fewest XORs”. To find the optimal implementa-
tions of linear layers, we must take implementation procedures into account. Let us give a
lemma at first.

Lemma 1. Suppose L ∈ IMn×n(F2). Then there exists a series of matrices Pi ∈
PMn×n(F2) and Aj ∈ AEMn×n(F2) such that L = P1A1P2A2 · · ·PsAsPs+1.

Proof. As we know, L can be transformed to its equivalent standard form through a series
of elementary row/column operations. L’s equivalent standard form is In ∈ IMn×n(F2)
because L is invertible. According to the invertibility of elementary operations, In can be
transformed to L through a series of elementary row/column operations. So, L is equal
to the product of a series of elementary matrices. Note that multiplicative elementary
matrix over GF (2) is just In and can be omitted from the product. Besides, the product
of some exchanging elementary matrices with order n is a permutation matrix. Thus, L
is equal to the form P1A1P2A2 · · ·PsAsPs+1, where Pi ∈ PMn×n(F2) for i = 1, · · · , s,
Aj ∈ AEMn×n(F2) for j = 1, · · · , s+ 1.

In accordance with Lemma 1, for every linear layer L ∈ IMn×n(F2) and input vector
X = (x1, · · · , xn)T ∈ Fn2 , the output vector is LX = P1A1P2A2 · · ·PsAsPs+1X which
means we can get the output vector through a series of co-ordinate permutations or additive
elementary operations. On the contrary, every modification procedure from X to LX
can be expressed by the form P1A1P2A2 · · ·PsAsPs+1X as in Example 1. Note that for
implementation of P1A1P2A2 · · ·PsAsPs+1X, multiplying every Pj costs 0 XOR while
multiplying every Ai costs 1 XOR. Therefore, L’s factorization P1A1P2A2 · · ·PsAsPs+1 in
Lemma 1 shows the number of XORs used for its implementation. Now we can give the
following definition.

Definition 1. For a linear layer L ∈ IMn×n(F2), its minimum XOR-countMin−XOR−
Count(L) is the minimum number of additive elementary matrices Ai such that L can be
written as form P1A1P2A2 · · ·PsAsPs+1, where every Pi ∈ PMn×n(F2) and every Aj ∈
AEMn×n(F2). And we call an implementation procedure LX = P1A1P2A2 · · ·PrArPr+1X
containing Min − XOR − Count(L) additive elementary matrices a minimum-XOR-
implementation of L.

In addition to Definition 1, we have other ways to describe the optimal implementation
procedures of linear layers. To clarify those ways, we need the following lemma.

Lemma 2. Suppose P = (ρ(1), · · · , ρ(n))T ∈ PMn×n(F2), Ar,s ∈ AEMn×n(F2). Then
PAr,s = Aρ−1(r),ρ−1(s)P where Aρ−1(r),ρ−1(s) ∈ AEMn×n(F2).

Proof. As we mentioned before, left-multiplying P permutes the rows of Ar,s. In detail,
the i-th row of PAr,s is the ρ(i)-th row of Ar,s. So, the ρ−1(r)-th row of PAr,s is the

8 Designing Optimal Implementations of Linear Layers (Full Version)

r-th row of Ar,s, and the ρ−1(s)-th row of PAr,s is the s-th row of Ar,s. Obviously,
PAr,s will become P if we add ρ−1(s)-th row of PAr,s to ρ−1(r)-th row of it. Thus,
Aρ−1(r),ρ−1(s)PAr,s = P . Then we get PAr,s = (Aρ−1(r),ρ−1(s))−1P = Aρ−1(r),ρ−1(s)P
since (Aρ−1(r),ρ−1(s))−1 = Aρ−1(r),ρ−1(s).

Combining Lemma 1 and Lemma 2, we get the next lemma easily. We omit its proof
because it is really trivial.

Lemma 3. Every L ∈ IMn×n(F2) can be factorized to the form L =
∏s
i=1 Bi where

every Bi is either in PMn×n(F2) or in AEMn×n(F2).

We call every factorization of L as the form in Lemma 3 a P-AE factorization of it.
Obviously, the factorization form in Lemma 1 is a P-AE factorization. On the contrary,
every P-AE factorization can be written as the form in Lemma 1 since the product of
permutation matrices in PMn×n(F2) is a permutation matrix too. Therefore, the minimum
XOR count of a given linear layer L ∈ IMn×n(F2) is exactly equal to the minimum number
of additive elementary matrices in L’s P-AE factorizations. In summary of this paragraph,
we present the following theorem.

Theorem 1. For every linear layer L ∈ IMn×n(F2), Min−XOR− Count(L) is equal
to the minimum number of additive elementary matrices in L’s P-AE factorizations.

In [1], the authors measured the lowest implementation cost (it is called XOR count in
[1]) of a linear layer L ∈ IMn×n(F2) by the minimum number t such that L can be written
as L = P

∏t
i=1 Ai where P ∈ PMn×n(F2) and every Ai ∈ AEMn×n(F2). It is easy to see

that every factorization of the form L = P
∏t
i=1 Ai corresponds to a factorization of the

form in Definition 1 according to Lemma 2. So, our definition of Min-XOR-count does not
contradict theirs. We shall indicate the advantage of our definition later.

Because a linear layer is often used bidirectionally (for example encryption and decryp-
tion), we also need to consider the inverse of it.

Theorem 2. For every linear layer L ∈ IMn×n(F2), Min − XOR − Count(L−1) is
equal to Min−XOR− Count(L). Moreover, if a minimum-XOR-implementation of L is
P1A1P2A2 · · ·PrArPr+1, then P−1

r+1ArP
−1
r · · ·A1P

−1
1 is a minimum-XOR-implementation

of L−1.

Proof. For every factorization L = Q1B1 · · ·QsBsQs+1 where each Qi ∈ PMn×n(F2) and
each Bj ∈ AEMn×n(F2), we have a factorization L−1 = Q−1

s+1B
−1
s Q−1

s · · ·B−1
1 Q−1

1 . Note
that the inverse of a permutation matrix is a permutation too, and the inverse of each
additive elementary matrix Bj is just Bj itself. So, Min−XOR− Count(L−1) is equal
to Min−XOR− Count(L). And the second part of the theorem is trivial.

At the end of this section, we point out that if a linear layer L′ is a power of another
linear layer L, for example L′ = L5, then minimum-XOR-implementation of L′ is better
successive 5 times minimum-XOR-implementations of L. That is because successive 5
times minimum-XOR-implementations of L is merely an implementation procedure of L′
and it cannot perform better than minimum-XOR-implementation of L′. Consequently, if
L′ = Lr, then Min−XOR− Count(L′) ≤ rMin−XOR− Count(L).

4 A Graph-Theoretical Model
After clarifying the measurement of the lowest implementation cost of linear layers, we are
confronted by two problems:

1. How to calculate the Min-XOR-Count of a given linear layer L ∈ IMn×n(F2);

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 9

2. How to get a minimum-XOR-implementation of a given linear layer L ∈ IMn×n(F2).

Obviously, the 1st problem will be trivial provided that we solve the 2nd one. In this
section, we would like to handle the two problems by a graph-theoretical model.

First of all, we introduce a relation over IMn×n(F2). We say two matrices B,C ∈
IMn×n(F2) are row-permutation-equivalent (denoted by B ∼RP C) if there exists a
Q ∈ PMn×n(F2) such that B = QC. For every B ∈ IMn×n(F2), B ∼RP B since
B = InB. If B ∼RP C, then C ∼RP B because C = Q−1B and Q−1 ∈ PMn×n(F2) too.
If there exists Q1, Q2 ∈ PMn×n(F2) such that B = Q1C and C = Q2D, then B = Q1Q2D
and Q1Q2 ∈ PMn×n(F2). Therefore, “∼RP ” is an equivalence relation over IMn×n(F2).
For every B ∈ IMn×n(F2), let [B]RP denote the equivalence class containing B under
“∼RP ”. It is easy to see that for every B ∈ IMn×n(F2), [B]RP = {QB|Q ∈ PMn×n(F2)},
and Q1B 6= Q2B if Q1 6= Q2.

Next, we define a graph dependent on row-permutation-equivalence over IMn×n(F2).

Definition 2. For a positive integer n, let G(n) = (V,E) be a graph where the vertex
set consists of all the equivalence classes under row-permutation-equivalence relation over
IMn×n(F2). And two vertices [B]RP and [C]RP are adjacent if there exists B′ ∈ [B]RP ,
C ′ ∈ [C]RP and A ∈ AEMn×n(F2) such that B′ = AC ′.

Now let us show some useful properties of the graph in Definition 2.

Theorem 3. Let G(n) = (V,E) be the graph described in Definition 2 and [B]RP be a
vertex of G(n). Then G(n) is an (n2 − n)-regular graph, [A1B]RP 6= [A2B]RP for distinct
A1, A2 ∈ AEMn×n(F2), and [AB]RP runs all the vertices adjacent to [B]RP when A runs
over AEMn×n(F2).

Proof. If [A1B]RP = [A2B]RP , then A1B = PA2B for some P ∈ PMn×n(F2). Conse-
quently, we get A1 = PA2 by right-multiplying two sides of A1B = PA2B by B−1. We
assert that P must be In. Otherwise, some entries on the diagonal of PA2 would be 0
and PA2 cannot be equal to A1. Then A1 = A2. So, [A1B]RP 6= [A2B]RP for distinct
A1, A2 ∈ AEMn×n(F2).

On the other hand, if a vertex [C]RP is adjacent to [B]RP , there exists B′ ∈ [B]RP ,
C ′ ∈ [C]RP and A ∈ AEMn×n(F2) such that B′ = AC ′. Then AB′ = C ′ since A−1 = A.
Consequently, there exists P2 ∈ PMn×n(F2) and A′ ∈ AEMn×n(F2) such that C ′ =
AB′ = AP1B = P2A

′B according to Lemma 2. So, [C]RP = [C ′]RP = [P2A
′B]RP =

[A′B]RP . That shows [AB]RP runs all the vertices adjacent to [B]RP when A runs over
AEMn×n(F2).

In summary of two preceding paragraphs, the degree of every vertex of G(n) is the
cardinality of AEMn×n(F2), namely, n2 − n.

Finally, we present a significant theorem that explains why we set up the graph-
theoretical model.

Theorem 4. Let G(n) = (V,E) be the graph described in Definition 2 and L ∈ IMn×n(F2).
Then the minimum XOR-count of L is equal to the distance between vertices [L]RP and
[In]RP in G(n).

Proof. For every factorization of L with the form P1A1P2A2 · · ·PsAsPs+1, where every
Pi ∈ PMn×n(F2) and every Aj ∈ AEMn×n(F2), there exists a path

[L]RP = [P1A1P2A2 · · ·PsAsPs+1]RP − [P2A2 · · ·PsAsPs+1]RP
− · · · − [PsAsPs+1]RP − [Ps+1]RP = [In]RP

between [L]RP and [In]RP of length s.

10 Designing Optimal Implementations of Linear Layers (Full Version)

On the other hand, for every path

[L]RP − [Lr−1]RP − · · · − [L2]RP − [L1]RP − [In]RP

of length r, according to Theorem 3, there must be L = Qr−1Ar−1Lr−1, Lj = Qj−1Aj−1Lj−1
for j = 2, · · · , r−1, and L1 = Q0A0In for some Qi ∈ PMn×n(F2) and Ai ∈ AEMn×n(F2)
for i = 0, 1, · · · , r. Consequently, L = Qr−1Ar−1 · · ·Q1A1Q0A0 which is a factorization of
L with the form in Lemma 1.

Therefore, the minimum XOR-count of L is equal to the minimum length of paths
between [L]RP and [In]RP , namely, their distance.

From the proof of Theorem 4, we can easily see that a shortest path between [L]RP
and [In]RP indicates a minimum-XOR-implementation of L.

5 Searching for Optimal Implementations of Linear Layers
In this section, we talk about how to get a minimum-XOR-implementation of a given
linear layer L ∈ IMn×n(F2). In accordance with the preceding section, this question is
equivalent to finding a shortest path between [L]RP and [In]RP .

Let us sketch our strategy firstly. Suppose G(V,E) is a connected graph, a, b ∈ V .
To find a shortest path between a and b, we let A0 = {a}, B0 = {b} and check whether
a = b. If a = b, we do not have to do anything. If a 6= b, we construct a set A1 consisting
of the vertices of G that are adjacent to a. In other words, A1 consists of the vertices
having distance 1 from a. Then we check whether there exists x ∈ A1 such that x = b. If
there is, we get a shortest path a− b between a and b. If there is not, we construct a set
B1 consisting of the vertices of G that are adjacent to b. In other words, B1 consists of
the vertices having distance 1 from b. Then we check whether there exists x ∈ A1 and
y ∈ B1 such that x = y. If there is, we get a shortest path a − a∗1 − b between a and b
where a∗1 ∈ A1. If there is not, we proceed the procedure above: check and move forwards
one step from Ai, then check and move forwards one step from Bi. Finally, we will find
x ∈ Ak+1 and y ∈ Bk+1 (or y ∈ Bk) for some k such that x = y. As a result, we find a
shortest path

a∗0 − a∗1 − · · · − a∗k − a∗k+1 − b∗k − · · · − b∗1 − b (or a− a∗1 − · · · − a∗k − b∗k − · · · − b∗1 − b∗0)

between a and b, where a∗i ∈ Ai, b∗i ∈ Bi, every pair a∗i , a∗i+1 and every pair b∗j , b∗j+1 are
adjacent. We formally describe the above procedures in Algorithm 1 with pseudocode.

Lemma 4. Suppose G = (V,E) is a graph, a, b ∈ V . Then we get a shortest path between
a and b with Algorithm 1.

Proof. Assume there is a path a− c1− · · ·− cr−1− b shorter than the output of Algorithm
1. Then ck ∈ Ak for k = 1, · · · , d r−1

2 e, and cr−l ∈ Bl for l = 1, · · · , b r−1
2 c. Consequently,

there exists a∗k ∈ Ak, b∗l ∈ Bl such that a∗k = b∗l for some k < i or some l < j which
contradicts Algorithms 1.

Algorithm 1 is a generic method for any graph. Now we use it to handle our main
target: a minimum-XOR-implementation of a given linear layer L ∈ IMn×n(F2). For this
target, we present Algorithm 2 and omit the proof of its correctness because it directly
comes from Algorithm 1. Here, we just give an explanation of Algorithm 2 as follows.

• We choose an element in every equivalence class to represent it. For example, L∗i
represents the class [L∗i]RP . Hence, we determine [Li]RP = [Bj]RP by checking
Li ∼RP Bj .

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 11

Algorithm 1 Double-Direction Search for a Shortest Path
Require: a graph G = (V,E), a, b ∈ V .
Ensure: a shortest path between a and b.
A0 ← {a}, B0 ← {b}, i← 0, j ← 0, link ← 0;
while link = 0 do

if there exists a∗
i ∈ Ai and b∗

j ∈ Bj such that a∗
i = b∗

j then
link ← 1;
continue;

else
i← i+ 1;
construct a set Ai consisting of the vertices adjacent to some vertex in Ai−1 and not in

⋃i−1
k=0Ak;

end if
if there exists a∗

i ∈ Ai and b∗
j ∈ Bj such that a∗

i = b∗
j then

link ← 1;
continue;

else
j ← j + 1;
construct a set Bj consisting of the vertices adjacent to some vertex in Bj−1 and not in

⋃j−1
k=0 Bk;

end if
end while
return the path a∗

0 − · · · − a
∗
i − b

∗
j−1 − · · · − b

∗
0 such that every pair a∗

k, ak+1 and every pair b∗
l , b

∗
l+1

are adjacent;

• When we need to determine whether two invertible matrices Li and Bj are row-
permutation-equivalent, we check the Hamming weight of LiB−1

j since Li ∼RP Bj
if and only if WH(LiB−1

j) = n. This method can be implemented easily when B is
a product of some additive elementary matrices. More explicitly, if B = A1 · · ·As,
B−1 = As · · ·A1.

Algorithm 2 Finding a Minimum-XOR-Implementation of a Linear Layer
Require: a positive integer n, a matrix L ∈ IMn×n(F2).
Ensure: a minimum-XOR-implementation of L.
L0 ← {L}, B0 ← {In}, i← 0, j ← 0, link ← 0;
while link = 0 do

if there exists L∗
i ∈ Li and B∗

j ∈ Bj such that L∗
i ∼RP B∗

j then
link ← 1;
continue;

else
i← i+ 1;
construct a set Li consisting of the matrices having the form Ar,sLi−1 and not row-permutation-
equivalent to any matrix in

⋃i−1
k=0 Lk, where Ar,s runs over AEMn×n(F2) and Li−1 runs over

Li−1;
end if
if there exists L∗

i ∈ Li and B∗
j ∈ Bj such that L∗

i ∼RP B∗
j then

link ← 1;
continue;

else
j ← j + 1;
construct a set Bj consisting of the matrices having the form Ar,sBj−1 and not row-permutation-
equivalent to any matrix in

⋃j−1
k=0 Bk, where Ar,s runs over AEMn×n(F2) and Bj−1 runs over

Bi−1;
end if

end while
return the path L∗

0−· · ·−L
∗
i −B

∗
j−1−· · ·−B

∗
0 such that every pair L∗

k, Lk+1 and every pair B∗
l , B

∗
l+1

are adjacent;

For a given graph and two vertices of it, there has already been algorithms in literature
for finding the shortest path of them. For example, the famous Dijkstra’s algorithm ([3],
Chapter 11, page 443). Certainly, we can adopt it to solve the main problem in this paper.

12 Designing Optimal Implementations of Linear Layers (Full Version)

Table 1: Implementation Cost of Linear Layers

Linear Layer L1 L2 L3 L4 L5 L6 L7 L8 L9 L10
Min-XOR-Count 6 7 6 5 6 6 6 6 6 6
WH(Li)− n 14 14 14 13 13 14 13 13 13 13
Linear Layer L11 L12 L13 L14 L15 L16 L17 L18 L19 L20

Min-XOR-Count 6 6 6 5 6 7 6 7 6 6
WH(Li)− n 8 7 8 7 7 8 8 8 8 8

Essentially, Dijkstra’s algorithm is a single-direction search, while our algorithms are
double-direction search. Let us show what will happen if we handle our main problem with
Dijkstra’s algorithm. We use the same notations as that in Algorithm 1. We start from
vertex a to find a shortest path between a and b. By means of Dijkstra’s algorithm, we need
to construct a series of sets Ai consisting of vertices whose distance to a is i for i = 1, 2, · · · .
According to Theorem 3, |A1| = n2−n, and |Ai| = (n2−n)(n2−n− 1)i−1 for i ≥ 2 in the
worst case. If the distance between a and b is s ≥ 2, the algorithm will not terminate until
As is constructed. We see the cardinality of Ais increase too fast and will occupy too much
space. Actually, that is the reason why we abandon single-direction strategies and adopt a
double-direction strategy – moving forwards step by step from a and b alternately. With a
double-direction strategy, we can save a lot of memory space and modify the search for
the shortest path. For instance, suppose the distance between a and b is s = 2t. If we use
our method, then we need to construct Ai,Bi for i = 1, · · · , t, where |A1| = |B1| = n2 − n,
|A2| = |B2| = (n2−n)(n2−n−1),· · · ,|At| = |Bt| = (n2−n)(n2−n−1)t−1 in the worst case.
However, if we use a single-direction strategy, we have to construct Ai for i = 1, · · · , 2t,
where |A1| = n2−n, |A2| = (n2−n)(n2−n−1),· · · ,|At| = (n2−n)(n2−n−1)t−1,|At+1| =
(n2 − n)(n2 − n− 1)t,· · · ,|A2t| = (n2 − n)(n2 − n− 1)2t−1.

5.1 Experimental Results
We search the minimum XOR implementations of many linear layers and list some
of them in Appendix A. The optimal implementation procedure of each one is like
what we show in Example 1. Meanwhile, we list the minimum XOR count and the
difference between Hamming weight and the order of the linear layers in Table 1, where
the former indicates implementation cost of our strategy and the latter indicates the cost
of previous implementation methods. L1, · · · , L10 in Table 1 are matrices inM5×5(F2),
and L11, · · · , L20 are matrices inM6×6(F2). We do not choose (6× 6) matrices with large
Hamming weights because of hardware limitation of the PC we use. According to the
experimental results, we save approximately 55.2% XORs of implementing L1, · · · , L10 in
average, in comparison with the previous method (computing the co-ordinates of outputs
independently). And the corresponding percentage for implementing L11, · · · , L20 is 20.8%.

6 A More Practical Strategy for Efficient Implementations
of Linear Layers

Although we present an algorithm to search for an optimal implementation of a given linear
layer, its space/time complexity skyrockets along with the increase of order and minimum
XOR count of the given linear layer. For example, in the case when a linear layer L is in
IM8×8(F2), the time complexity of Algorithm 2 is 56r, where r = Min−XOR−Count(L).
If r = 15 (not very large), then the time complexity of searching for the minimum XOR
implementation of L will be 5615 ≈ 287.

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 13

In this section, to avoid high computational complexity of searching for optimal
implementations of linear layers, we switch to other efficient implementations of them.
Our aim is still looking for a P-AE factorization of a given linear layer M , but it is not
necessarily a minimum XOR implementation of it. The guideline is trying to reduce the
Hamming weight of the given linear layer as much as possible by an additive row/column
elementary operation on each step. Let us give Algorithm 3 first.

Algorithm 3 Finding an Efficient Implementation of a Linear Layer
Require: a positive integer n, a matrix M ∈ IMn×n(F2);
Ensure: a series of additive elementary operations and a permutation matrix;
r ← 0, RUB ←WH(M)− n;
while WH(M) > n and r ≤ RUB do

let αi denote the i-th row ofM and βi denote the i-th column ofM for i = 1, · · · , n, weightdecrease←
WH(α1)−WH(α1 + α2), AE ← (R, 2, 1);
for 1 ≤ i < j ≤ n do

compute αi + αj ;
if WH(αi)−WH(αi + αj) > weightdecrease then
weightdecrease←WH(αi)−WH(αi + αj), AE ← (R, j, i);

end if
if WH(αj)−WH(αi + αj) > weightdecrease then
weightdecrease←WH(αj)−WH(αi + αj), AE ← (R, i, j);

end if
end for
for 1 ≤ i < j ≤ n do

compute βi + βj ;
if WH(βi)−WH(βi + βj) > weightdecrease then
weightdecrease←WH(βi)−WH(βi + βj), AE ← (C, j, i);

end if
if WH(βj)−WH(βi + βj) > weightdecrease then
weightdecrease←WH(βj)−WH(βi + βj), AE ← (C, i, j);

end if
end for
if AE = (R, i, j) then

add αi to αj , output AE, r ← r + 1;
else

add βi to βj , output AE, r ← r + 1;
end if

end while
if WH(M) > n then

print “Fail.”;
else

print “Success via r steps.”, output M ;
end if

In Algorithm 3, r is a variable recording the number of additive elementary operations,
and RUB is assigned the difference between the Hamming weight of origin matrix M
and its order n. If r exceeds RUB, it is unnecessary to let the program proceed because
its output will not be better than computing co-ordinates of output of the linear layer
independently. In each while loop, Algorithm 3 looks for an additive elementary operation
that can reduce the Hamming weight of M most among all additive row and column
elementary operations. If the algorithm finally displays “Success”, then we will get a
series of additive elementary operations and a permutation matrix. In form of matrix
multiplication, we will get Rr · · ·R1MC1 · · ·Cs = P , where each Ri and each Cj are
additive elementary matrices and P is a permutation matrix. Consequently, we will obtain
a P-AE factorization M = R1 · · ·RrPCs · · ·C1.

One important advantage of Algorithm 3 is that its time/space complexity is much
lower than that of Algorithm 2. For a linear layer M ∈ IMn×n(F2), if Algorithm 3 could
succeed in k loops, then the time complexity of it is k(n2 − n). It is a piece of cake in
comparison with (n2 − n)k – the time complexity of Algorithm 2 with the same number
of loops. Therefore, Algorithm 3 is substantially more practical than Algorithm 2 is.

14 Designing Optimal Implementations of Linear Layers (Full Version)

Nevertheless, we have to admit that Algorithm 3 does not necessarily give us an optimal
implementation of the input linear layer even though it succeeds.

It is well known that implementation costs of the inverses of many linear layers are
higher than that of themselves (the linear layer of AES, for example). As we mentioned
before, besides using fewer XORs, another advantage of MIOSS is implementing every
invertible linear layer and its inverse with the same cost. This advantage is also valid
to the contents of this section. More specifically, if we get an efficient implementation
M = R1 · · ·RrPCs · · ·C1 of a given linear layer M ∈ IMn×n(F2) by Algorithm 3, then we
immediately obtain an implementation of M−1: M−1 = C1 · · ·CsP−1Rr · · ·R1. Obviously,
M−1 has the same implementation cost as M does. In fact, we recommend a better
strategy – for a given linear layer M , one can conduct Algorithm 3 to both M and M−1,
then choose a better (with a fewer number of additive elementary matrices) one from two
implementations as the final option.

6.1 A New Efficient Implementation of the Linear Layer of AES
As an application of Algorithm 3, we conduct it to the linear layer of AES and list
the results in Appendix B. The linear layer of AES consists of two phases: ShiftRows
and MixColumns. We care about nothing of ShiftRows since it is just a permutation
over co-ordinates of input vectors. MixColumn is the one we really concern about. The
Hamming weight of the matrix of encryption MixColumns is 184, and the Hamming weight
of the matrix of decryption MixColumns is 440. So, if we implement them by computing
co-ordinates of outputs independently, they will cost 152 XORs and 408 XORs, respectively.
However, with Algorithm 3, we get an efficient implementation of encryption MixColumns
and an efficient implementation of decryption MixColumns. LetMC ∈M32×32(F2) denote
the encryption MixColumns of AES and MC−1 ∈ M32×32(F2) denote the decryption
MixColumns of AES. Then

MC = A10,2A19,3A18,10A27,11A26,18A27,19A9,25A14,30A22,6A1,17A12,27A7,15A31,23
A31,7A23,32A28,4A4,12A7,8A30,23A23,27A13,28A2,18A2,27A18,3A3,4A4,5A4,20
A4,29A5,21A5,28A8,16A18,12A21,29A29,13A13,24A13,30A30,15A15,27A15,31A30,16
A16,24A30,22A32,24P −1A30,23A6,23A23,32A23,31A31,7A7,32A32,12A12,11A11,27
A27,13A11,20A20,13A13,30A13,6A32,25A26,25A27,19A26,19A26,17A26,11A18,10
A29,5A5,13A13,4A19,12A12,21A12,4A27,2A1,25A25,2A22,2A17,2A14,2A11,2A3,2
A2,10A1,10A4,28A28,30A29,22A22,30A26,21A32,17A15,16A12,30A9,17A32,8A21,6
A26,4A4,6A2,18A19,20A22,7A7,15A27,13A11,13A3,5A10,2A2,19A9,2A2,26A6,22
A29,7A30,14A24,32A16,24A8,16A1,19A17,1A20,21A21,29A13,29A5,21A19,3A25,9
A10,26A18,2,

MC−1 = A18,2A10,26A25,9A19,3A5,21A13,29A21,29A20,21A17,1A1,19A8,16A16,24A24,32
A30,14A29,7A6,22A2,26A9,2A2,19A10,2A3,5A11,13A27,13A7,15A22,7A19,20
A2,18A4,6A26,4A21,6A32,8A9,17A12,30A15,16A32,17A26,21A22,30A29,22A28,30
A4,28A1,10A2,10A3,2A11,2A14,2A17,2A22,2A25,2A1,25A27,2A12,4A12,21
A19,12A13,4A5,13A29,5A18,10A26,11A26,17A26,19A27,19A26,25A32,25A13,6
A13,30A20,13A11,20A27,13A11,27A12,11A32,12A7,32A31,7A23,31A23,32A6,23
A30,23PA32,24A30,22A16,24A30,16A15,31A15,27A30,15A13,30A13,24A29,13A21,29
A18,12A8,16A5,28A5,21A4,29A4,20A4,5A3,4A18,3A2,27A2,18A13,28A23,27
A30,23A7,8A4,12A28,4A23,32A31,7A31,23A7,15A12,27A1,17A22,6A14,30A9,25
A27,19A26,18A27,11A18,10A19,3A10,2,

where each Ai,j = I32 + Ei,j and P is a permutation matrix described in Table 2.
Both of the above two implementations use only 120 XORs, respectively. That means

we can save 21.1% XORs of encryption MixColumns and 70.6% XORs of decryption

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 15

Table 2: The Permutation P in the P-AE Factorization of MC−1

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
ρ(i) 17 26 3 29 5 22 7 8 25 10 20 27 28 30 15 16
i 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
ρ(i) 1 2 19 12 21 6 31 32 9 18 11 4 13 14 23 24
• ρ(i) is the column index of nonzero entry in i-th row of P .

MixColumns by our method, in comparison with computing co-ordinates of output inde-
pendently. Although we cannot guarantee that they are optimal implementations, it is
still an amazing result.

7 Conclusion
In this paper, we first investigate the effect of two implementation methods on imple-
mentation costs of linear layers: computing the co-ordinates of outputs independently
and modifying input vectors to outputs step by step. We focus on the latter because it
preforms better than the former. Then, we clarify the measurement of implementation
cost and optimal implementation procedures of linear layers. Next, to find an optimal
implementation procedure of a given linear layer, we construct a graph-theoretical model
and transfer the problem to the shortest path problem in graph theory. Then, we adopt
a “double-direction” algorithm that uses less storage space and makes the search for a
shortest path more efficient in our regular graph. Finally, we construct another algorithm
for finding efficient implementations of linear layers. The advantages of this last algorithm
are its low complexity and high practicality. We conduct it to the linear layers of AES and
obtain extremely efficient implementations of them. We wish our work would be beneficial
to the design of implementation of linear layers.

Acknowledgements. Ruoxin Zhao would like to thank Dr. Meicheng Liu and Dr.
Yongqiang Li for sincere discussion and constructive suggestion.

References
[1] Christof Beierle, Thorsten Kranz, and Gregor Leander. Lightweight multiplication in

GF (2n) with applications to MDS matrices. In Advances in Cryptology - CRYPTO
2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part I, pages 625–653, 2016.

[2] Béla Bollobás. Modern Graph Theory, volume 184 of Graduate Texts in Mathematics.
Springer Science+Business Media, New York City, USA, 1998.

[3] Richard A. Brualdi. Introductory Combinatorics. Pearson Education, New York City,
USA, 5th edition, 2009.

[4] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.

[5] John M. Harris, Jeffry L. Hirst, and Michael J. Mossinghoff. Combinatorics and Graph
Theory. Undergraduate Texts in Mathematics. Springer Science+Business Media,
New York City, USA, 2nd edition, 2008.

[6] Kenneth Hoffman. Linear Algebra. Prentice-Hall, Englewood Cliffs, USA, 2nd edition,
1971.

16 Designing Optimal Implementations of Linear Layers (Full Version)

[7] Jérémy Jean, Thomas Peyrin, and Siang Meng Sim. Minimal implementations of
linear and non-linear lightweight building blocks. Personal communication, 2015.

[8] Yongqiang Li and Mingsheng Wang. On the construction of lightweight circulant
involutory MDS matrices. In Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, pages
121–139, 2016.

[9] Meicheng Liu and Siang Meng Sim. Lightweight MDS generalized circulant matrices.
In Fast Software Encryption - 23rd International Conference, FSE 2016, Bochum,
Germany, March 20-23, 2016, Revised Selected Papers, pages 101–120, 2016.

[10] Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, and Pouyan Sepehrdad.
Recursive diffusion layers for block ciphers and hash functions. In Fast Software
Encryption - 19th International Workshop, FSE 2012, Washington, DC, USA, March
19-21, 2012. Revised Selected Papers, pages 385–401, 2012.

[11] Sumanta Sarkar and Siang Meng Sim. A deeper understanding of the XOR count
distribution in the context of lightweight cryptography. In Progress in Cryptology -
AFRICACRYPT 2016 - 8th International Conference on Cryptology in Africa, Fes,
Morocco, April 13-15, 2016, Proceedings, pages 167–182, 2016.

[12] Siang Meng Sim, Khoongming Khoo, Frédérique E. Oggier, and Thomas Peyrin.
Lightweight MDS involution matrices. In Fast Software Encryption - 22nd Interna-
tional Workshop, FSE 2015, Istanbul, Turkey, March 8-11, 2015, Revised Selected
Papers, pages 471–493, 2015.

[13] Shengbao Wu, Mingsheng Wang, and Wenling Wu. Recursive diffusion layers for
(lightweight) block ciphers and hash functions. In Selected Areas in Cryptography,
19th International Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012,
Revised Selected Papers, pages 355–371, 2012.

A Experimental Results
In this appendix, every Ai,j denotes In + Ei,j with a proper order n.

L1 =


1 0 1 1 1
1 1 0 1 1
0 1 1 0 1
1 1 1 1 1
1 1 0 0 1

 = A1,4A4,2A3,4


0 1 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 1 0 0
1 0 0 0 0

A4,1A1,5A5,2.

L2 =


1 1 1 0 1
0 1 1 0 1
0 1 1 1 1
1 1 0 1 1
1 0 1 1 1

 = A4,1A1,2A5,1A2,3


1 0 0 0 0
0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 1

A2,5A5,3A3,5.

L3 =


1 1 0 0 1
0 1 1 0 1
1 0 1 1 1
1 1 0 1 1
1 1 1 1 1

 = A3,5A5,3A2,5


1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0

A4,1A1,5A5,2.

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 17

L4 =


1 1 0 0 0
1 1 1 1 1
1 1 0 1 0
0 1 1 1 1
1 1 0 1 1

 = A4,2A2,5A5,3


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1

A4,2A2,1.

L5 =


1 1 1 1 0
1 1 1 0 1
1 0 1 1 0
0 1 1 1 1
0 1 1 1 0

 = A2,4A4,5A5,1


0 1 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0

A2,3A3,4A4,1.

L6 =


1 0 1 0 1
1 1 0 1 1
1 1 1 1 1
1 1 1 0 0
1 1 1 0 1

 = A4,5A2,3A3,5


1 0 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 1 0 0 0

A2,1A1,5A1,3.

L7 =


0 0 1 1 1
0 1 1 1 0
0 1 1 0 1
0 1 1 1 1
1 1 1 1 1

 = A3,1A1,4A5,4


0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
1 0 0 0 0

A5,3A3,4A4,2.

L8 =


1 1 0 1 1
1 1 1 1 1
1 1 1 1 0
1 1 0 0 1
1 0 0 1 0

 = A3,2A2,1A1,5


0 1 0 0 0
0 0 1 0 0
0 0 0 0 1
1 0 0 0 0
0 0 0 1 0

A1,2A2,5A4,1.

L9 =


1 0 1 1 1
0 0 0 1 1
0 1 1 1 0
1 1 1 1 0
1 1 1 1 1

 = A3,4A4,5A5,1


0 0 1 0 0
0 0 0 1 0
1 0 0 0 0
0 0 0 0 1
0 1 0 0 0

A3,4A4,5A3,1.

L10 =


0 1 1 1 1
1 1 1 1 1
1 1 1 1 0
1 1 0 1 0
0 0 1 1 0

 = A1,2A2,3A3,5


1 0 0 0 0
0 0 0 0 1
0 1 0 0 0
0 0 0 1 0
0 0 1 0 0

A4,2A2,1A3,4.

L11 =


0 1 1 0 0 1
0 1 0 1 1 0
0 1 0 0 1 1
0 1 0 0 1 0
1 0 0 0 0 1
0 0 1 0 0 0

 = A3,4A1,3A1,6


0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0
1 0 0 0 0 0
0 0 1 0 0 0

A4,5A1,6A5,2.

L12 =


0 1 0 0 0 0
1 1 0 0 1 0
0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 0 0 1
1 0 1 0 1 0

 = A3,1A2,1A6,2


0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0

A6,3A1,5A4,3.

18 Designing Optimal Implementations of Linear Layers (Full Version)

L13 =


0 0 1 1 0 0
1 0 1 1 0 0
0 1 0 0 0 0
1 0 1 0 0 1
0 0 1 1 0 1
0 0 0 1 1 0

 = A5,1A4,5A2,4


0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 1 0

A3,4A1,3A5,4.

L14 =


1 0 0 1 1 1
1 0 1 0 0 0
1 0 0 0 1 0
1 0 1 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0

 = A1,3A3,5A4,2


0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 0

A3,1A6,4.

L15 =


1 0 1 1 0 1
0 1 0 1 0 1
1 0 0 1 0 0
0 0 0 0 1 0
0 0 1 1 0 0
0 0 0 0 0 1

 = A1,3A2,1A1,6


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 0 0 0 1

A2,4A4,3A1,4.

L16 =


0 0 1 1 0 1
0 1 1 0 0 1
1 1 1 0 0 0
0 0 0 1 0 0
0 0 0 1 1 1
0 0 0 0 0 1

 = A1,4A2,1A1,6A3,1


0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

A5,6A5,4A1,2.

L17 =


1 1 1 0 1 0
1 1 1 0 0 0
0 1 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 1
0 0 0 1 1 0

 = A1,2A2,4A6,1


0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0

A2,4A3,2A6,2.

L18 =


0 0 1 1 0 0
0 0 0 1 0 0
1 1 1 0 0 0
0 1 1 1 1 0
1 0 1 0 0 1
1 0 0 0 0 0

 = A4,1A1,2A6,1A3,6


0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0

A6,1A5,2A1,3.

L19 =


0 0 1 1 0 1
1 0 0 1 0 0
0 1 1 0 0 0
0 0 0 0 1 0
1 1 0 1 1 0
0 0 1 0 0 1

 = A5,4A5,2A1,6


0 0 0 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 0 0 1

A3,2A1,4A6,3.

L20 =


1 1 1 1 0 0
0 0 1 0 0 0
0 0 1 0 1 1
0 0 1 1 0 1
0 1 0 0 0 0
0 0 1 1 0 0

 = A4,6A3,4A3,2


1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
0 0 0 1 0 0

A1,4A1,2A4,3.

Ruoxin Zhao, Baofeng Wu, Rui Zhang and Qian Zhang 19

B An Efficient Implementation of Linear Layers of AES
Let MC denote the matrix of encryption MixColumns of AES. Then

MC =


M(0x02) M(Ox03) M(Ox01) M(Ox01)
M(0x01) M(0x02) M(0x03) M(0x01)
M(0x01) M(0x01) M(0x02) M(0x03)
M(0x03) M(0x01) M(0x01) M(0x02)

 ∈M32×32(F2),

where

M(0x02) =



0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
1 0 0 0 1 0 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0


,M(Ox03) =



1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
1 0 0 1 1 0 0 0
1 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
1 0 0 0 0 0 1 1
1 0 0 0 0 0 0 1


,

M(0x01) =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


.

Meanwhile, the matrix of decryption MixColumns of AES

MC−1 =


M(0x0e) M(0x0b) M(0x0d) M(0x09)
M(0x09) M(0x0e) M(0x0b) M(0x0d)
M(0x0d) M(0x09) M(0x0e) M(0x0b)
M(0x0b) M(0x0d) M(0x09) M(0x0e)

 ∈M32×32(F2),

where

M(0x0e) =



0 1 1 1 0 0 0 0
1 0 1 1 1 0 0 0
0 1 0 1 1 1 0 0
0 0 1 0 1 1 1 0
0 1 1 0 0 1 1 1
0 1 0 0 0 0 1 1
0 0 1 0 0 0 0 1
1 1 1 0 0 0 0 0


,M(0x0b) =



1 1 0 1 0 0 0 0
1 1 1 0 1 0 0 0
0 1 1 1 0 1 0 0
0 0 1 1 1 0 1 0
0 1 1 0 1 1 0 1
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1
1 1 1 0 0 0 0 1


,

M(0x0d) =



1 0 1 1 0 0 0 0
1 1 0 1 1 0 0 0
0 1 1 0 1 1 0 0
0 0 1 1 0 1 1 0
0 1 1 0 1 0 1 1
0 1 0 0 0 1 0 1
0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1


,M(0x09) =



1 0 0 1 0 0 0 0
1 1 0 0 1 0 0 0
0 1 1 0 0 1 0 0
0 0 1 1 0 0 1 0
0 1 1 0 1 0 0 1
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
1 1 1 0 0 0 0 1


.

We have WH(MC) = 184 and WH(MC−1) = 440.

20 Designing Optimal Implementations of Linear Layers (Full Version)

We conduct Algorithm 3 to MC but get nothing useful. However, when we conduct
Algorithm 3 to MC−1 and set b = −1, we get a P-AE factorization of MC−1 with 120
additive elementary matrices:

MC−1 = A18,2A10,26A25,9A19,3A5,21A13,29A21,29A20,21A17,1A1,19A8,16A16,24A24,32
A30,14A29,7A6,22A2,26A9,2A2,19A10,2A3,5A11,13A27,13A7,15A22,7A19,20
A2,18A4,6A26,4A21,6A32,8A9,17A12,30A15,16A32,17A26,21A22,30A29,22A28,30
A4,28A1,10A2,10A3,2A11,2A14,2A17,2A22,2A25,2A1,25A27,2A12,4A12,21
A19,12A13,4A5,13A29,5A18,10A26,11A26,17A26,19A27,19A26,25A32,25A13,6
A13,30A20,13A11,20A27,13A11,27A12,11A32,12A7,32A31,7A23,31A23,32A6,23
A30,23PA32,24A30,22A16,24A30,16A15,31A15,27A30,15A13,30A13,24A29,13A21,29
A18,12A8,16A5,28A5,21A4,29A4,20A4,5A3,4A18,3A2,27A2,18A13,28A23,27
A30,23A7,8A4,12A28,4A23,32A31,7A31,23A7,15A12,27A1,17A22,6A14,30A9,25
A27,19A26,18A27,11A18,10A19,3A10,2,

where each Ai,j = I32 + Ei,j and P is a permutation matrix described in Table 2.
Consequently, we get a P-AE factorization ofMC with 120 additive elementary matrices

too.

MC = (MC−1)−1

= A10,2A19,3A18,10A27,11A26,18A27,19A9,25A14,30A22,6A1,17A12,27A7,15A31,23
A31,7A23,32A28,4A4,12A7,8A30,23A23,27A13,28A2,18A2,27A18,3A3,4A4,5A4,20
A4,29A5,21A5,28A8,16A18,12A21,29A29,13A13,24A13,30A30,15A15,27A15,31A30,16
A16,24A30,22A32,24P −1A30,23A6,23A23,32A23,31A31,7A7,32A32,12A12,11A11,27
A27,13A11,20A20,13A13,30A13,6A32,25A26,25A27,19A26,19A26,17A26,11A18,10
A29,5A5,13A13,4A19,12A12,21A12,4A27,2A1,25A25,2A22,2A17,2A14,2A11,2A3,2
A2,10A1,10A4,28A28,30A29,22A22,30A26,21A32,17A15,16A12,30A9,17A32,8A21,6
A26,4A4,6A2,18A19,20A22,7A7,15A27,13A11,13A3,5A10,2A2,19A9,2A2,26A6,22
A29,7A30,14A24,32A16,24A8,16A1,19A17,1A20,21A21,29A13,29A5,21A19,3A25,9
A10,26A18,2.

	Introduction
	Related Work
	Our Contributions

	Preliminary
	Notations
	Some Basic Facts about Linear Algebra
	Some Basic Facts about Graph Theory
	Linear Layers

	Measurement of Implementation Costs of Linear Layers
	A Graph-Theoretical Model
	Searching for Optimal Implementations of Linear Layers
	Experimental Results

	A More Practical Strategy for Efficient Implementations of Linear Layers
	A New Efficient Implementation of the Linear Layer of AES

	Conclusion
	Experimental Results
	An Efficient Implementation of Linear Layers of AES

