Evaluating Entropy for TRNGs: Fast, Robust and
Provably Secure

—— Abstract

Estimating entropy for true random number generators is a task of critical importance, be-
cause feeding cryptographic applications with insufficient entropy leads to poor security. This is
a challenging task as the entropy needs to be estimated at high accuracy, high confidence level
and with possibly minimal number of samples (ideally no more than needed for extraction),

In this paper we analyze the performance of a simple collision-counting estimator, and show
that it is much better than min-entropy estimators or Shannon-entropy estimators studied before
in this context, and moreover that it is robust against changes in the source distribution (due
environmental conditions or adversarial influences). More precisely, we show an estimator which
for n samples, and confidence 1 — e:

(a) Extremely efficient: reads the stream in one-pass and uses constant memory (forward-only
mode)

(b) Accurate: estimates the amount of extractable bits with a relative error O(n~2 log(1/e)),
when the source outputs are i.i.d.

(c) Robust: keeps the same error when the source outputs are independent but the distribution
changes up to t = O(n%) times during runtime

We demonstrate that the estimator is accurate enough to adjust post-processing components

dynamically, estimating entropy on the fly instead investigating it off-line.

1 Introduction

1.1 Estimating Entropy for True Random Number Generators

True Random Number Generators are devices that utilize some underlying physical process
to generate bits that are statistically indistinguishable! from uniform (called truly random).
Examples of such processes are radio noise [Haa], radiation [Wal], thermal noise | | or
noise from sensors in mobile devices [ ,BS]. A typical TRNG consists of an en-
tropy source, harvesting mechanism and a post-processing? component which reduces bias
and correlations present in raw data [ , ]. In reality, outputs of available sources
are somewhat unpredictable but biased, therefore the output quality depends critically on
adjusting the post-processing part to the source. Basically, post-processing functions give
provable guarantees on the output quality when fed with inputs of sufficiently high en-
tropy (well known examples are universal hash functions [ ] or the von Neumann
extractor | ). Therefore, to achieve the required quality we need to estimate the en-
tropy in the source. This requirement is not only a matter of provable security, but a serious
practical concern as low entropy may lead to attacks on real-world applications | ].
Recent examples are bugs in the Linux Random Number Generator on Debian distribu-
tions [ ] on Android distributions [ ]. For this reason, entropy evaluation is
considered a necessary part of the developing designing process and is strongly recommended
by standards | ]

! Which means closeness in the variational distance (distance e smaller than 2780 for practical applica-
tions)
2 Sometimes called also the conditioning component [ ], or an extractor in the theoretical literature.
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To formulate the problem more precisely, we assume without losing generality that the
entropy source output is already digitized and forms a sequence of symbols X7, ..., X,, over
a finite alphabet X (for example X may be the set of 10-bit strings), which are produced
by repeating the generating procedure in consecutive time intervals. Keeping in mind that
there are many entropy notions and not all of them are suitable for cryptographic purposes
(such as generating random numbers) we can state the following problem

Problem: How to estimate the (cryptographically relevant) entropy of a stochastic
process X1, Xo,..., X, over an alphabet X7

The right entropy notion here is not the popular Shannon entropy, but the more conservative
entropy notion called min-entropy. The theory of randomness extraction characterizes min-
entropy as the measure of the amount of almost uniform bits that can be extracted (using
best post-processing functions) from a given distribution [ , ]. More specifically,
the min-entropy is the negative logarithm of the likelihood of the most heavy element: if
every outcome appears with probability at most 27% then we say that the distribution has
k-bits of min-entropy.

Estimating the min-entropy of a TRNG source is also recommended by standards | ]
Once we know how much entropy we have collected, we can tune the parameters of an ap-
propriate extractor (post-processing) function and produce an almost biased string. The
task of estimating entropy is independent on a specific post-processing function. Different
post-processing functions yield only different trade-offs between the input entropy and the
output length and quality (also in memory and time resources consumed). However, estim-
ating entropy is a non-trivial problem because one needs to find a right balance between the
accuracy, sample complexity and the source model.

1.2 Related Works

Standards like the most recent NIST recommendation [ ] suggest to approximate the
min-entropy based on empirical frequencies plugged into the entropy formula and many
independent samples. This approach is applied in works with focus on provable secur-
ity | , , ]. We note that this process requires a large amount of extra
memory, namely one needs to compute the frequencies of all elements € X. This costs
Q(]X|) bits of memory, actually more if we want an entropy estimate with a small relative

error 0. For this we need to keep the frequencies with a precision up to which means

0
X1
Q(]X|log (%)) bits. For 30-bit blocks this is more than 4GB of memory.

In general, the “plug-in” estimator is not memory-efficient on small mobile or embedded
devices | ]. The authors of the referenced work proposed to construct an estimator for
Shannon entropy instead of min-entropy, which basically just quickly reads the stream and
operates within a constant amount of memory. However, this is not provably secure unless
for stateless sources (producing i.i.d. symbols) as shown by a result called the Asymptotic
Equipartition Property [ , ]. The price is a wide error margin for which the best
known bound is only O(|X]) [ ], which is more than 1000 bits for a source with only
10-bit outputs blocks.

1.3 Our Contributions

We present a simple estimator based on a new idea of collisions counting which operates
in constant memory. Technically speaking, we estimate not the min-entropy but a slightly
weaker notion called collision entropy, which turns out to be close enough. Using the so



called entropy smoothing we can go back from collision entropy to min-entropy losing only
log(1/e) bits where € is the chosen security parameter, typically e = 2789, Moreover, for most

popular post-processing functions based on universal hashing | , | our estimate
can be applied with no loss as if it was min-entropy, because universal hash functions work
with collision entropy | ]. The pseudocode is given in Algorithm 1.

Algorithm 1: Collision Entropy Estimator
Data: i.i.d. samples x1,...,z, from X € {0,1}™
Result: An estimation of Hy(X)

1 P+0

2 fori=2,...,ndo
3 if Ti = Ti—1 then
4 L | P« P+1

(9]

H « —log, (%)

6 return H

For this estimator, we prove the following key features:

(a) convergence bounds: we give clear error bounds on the estimator convergence, depend-
ing on the chosen security level (output indsitinguishability) and the number of samples.
Namely, for n samples at confidence 1 — e we estimate the entropy per bit with a relative

error § = O <\/ Xlong(l/e)) for n = Q(]X|log(1/€)). Moreover, the alphabet size |X|

can be replaced by 272 where Hs is the collision entropy rate (collision entropy per
block) of the source. For more details, see Theorem 1.
(b) provable security: using the estimate together with universal hash functions we extract

all the entropy but O (\/ n2H2 5) bits (the result being at most O(e)-far from the uniform

distribution). For more details, see Corollary 1.
(c) efficiency: by definition, the estimator works in one pass and constant memory, being
extremely efficient for long streams of data. This way we improve previous heuristic

on on-line entropy estimation | ] with an estimator even more efficient and, in
addition, provably secure.
(d) robustness in changing environments: we prove the convergence relaxing the i.i.d as-

sumption. Namely, we require consecutive outputs to be independent but allow the
source to “switch” its internal state ¢ times, changing the output distribution (¢t < n).
This result has two consequences: first, the estimator is robust against environmental
changes (accidental or adversarial); second, it allows for checking entropy in production
environments (online) where distributions may be different than estimated in labor-
atories. The importance of these features were discussed in CHES papers | ]
and [ ]. As for further applications, in Section 5 we show how to adapt our tech-
nique to estimate entropy of a source consisting of a few independent sources.

1.4 Source Model

The source must have a certain structure to allow for estimating entropy from samples with
high accuracy and confidence (because we are interested in provable security) but on the
other hand the model should be possibly general to cover a possibly large range of real-
world applications. From a theoretical perspective, the most general approach is to model
entropy sources by Markov chains of finite order | , ]. This is, however, extremely
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Estimator Source Model Robustness Adaptive | Prov. Sec.
[ ] small family of sources | entropy-preserving switching No Yes
[ ] independent binary changing bias Yes Yes
[ ] ii.d symbols fixed distribution Yes No
this paper independent symbols on-line distribution changes Yes Yes

Table 1 Our estimator compared to related works.

inefficient in terms of the complexity /accuracy trade-off | ]. In this work we adopt
the common modeling approach, which assumes that the source outputs are i.i.d. | ,
, , ]. Our model is substantially stronger: we assume that the source

distribution changes at most ¢ times at arbitrarily chosen moments. That is

X1, Xs,..., X, are independent

The number of indexes = 1,...,ns such that X; ;é X;41 is at most ¢
This model captures scenarios where environmental conditions change and influence the
source during entropy harvesting.

1.5 Convergence Bounds

In the literature, estimating entropy is typically not given a rigorous treatment. The newest
NIST recommendation | ] suggest to take n > 10° for empirical evaluations, which
should be big enough to ensure convergences. Other works | | also evaluate entropy
over huge data sets, like “overnight” samples. On the other hand our bounds show that, at
least under our (relaxed) i.i.d. assumption, this number can be much smaller. In fact, we
are able to estimate entropy in production environments, when we don’t have much more
data except what is roughly necessary for extraction. This way we can make the statistical
error small enough to not to affect provable security level we want to achieve (e.g. € = 2789).

1.6 Efficiency and Provable Security

The work | ] discusses an on-line entropy estimation technique for TRNGs by ap-
proximating the source Shannon Entropy, under the i.i.d. assumption. This is however not
secure, as in this setting Shannon Entropy can be converted to min-entropy only with a
huge entropy loss O(|X]y/nlog(1/e)) | ]. Also, no convergence result for the entropy
estimator itself was given. Comparing to this work, we lose at most log(1/e) bits when
converting to min-entropy (see Corollary 1) and provide a clear convergence bound with a
loss at most O(4/|X|nlog(1/e€)) for confidence 1 — €. Also, we use less memory as | ]
need a sliding window with a size that affects the estimator convergence.

1.7 Robustness in Changing Environments

In real world, devices that generate random numbers operate under varying environmental
conditions and can be indirectly affected by a number of processes. The output distribution
in the production environment may be different than during the testing stage. Examples
may be temperature or voltage changes | ], or even different way the user is interacting
with the device - for example, the quality of accelerometer-based TRNG depends on the
“shaking pattern” [ ]. The issue becomes even more serious, where environmental
parameters can be manipulated by a malicious adversary [ ]. There are two ways to
handle this issue: (a) trying to investigate all relevant factors during off-line tests, an provide



a lower bound | ] or (b) developing a design robust against changes in the entropy
rate | ) , ]. The second way seems to be more promising (and also more
challenging) as addressing all factors that can influence the source is binded to a particular
hardware and thus not a generic approach. Moreover, the approach (a) is a passive way
of solving the issue whereas (b) can be used to actively monitor the device behavior in
production environments. More concretely, detecting a decrease in the entropy rate may
be a trigger raising an attack alarm | ]. Lastly, we may want to use the robustness
to handle multiple sources which contribute synchronously but independently to outputs
blocks (for example, readings from all accelerometer axes). A short example is discussed
in Section 5.

1.8 Out techniques

Our approach is based on using large deviation inequalities and some Jensen inequalities.

1.9 Organization

In Section 2 we provide necessary definitions and useful inequalities. The convergence of
the entropy estimator is discussed in Section 3. Some further applications are explained in
Section 4 and Section 5.

2 Preliminaries

2.1 Information-theoretic divergence measures

» Definition 1 (Variational (Statistical) Distance). We say that discrete random variables
X, and X5, taking values in the same space, have the statistical distance at least € if their
probability mass functions are at most e-away in terms of the ¢; norm, that is

S Py, (@) - Py, ()| <.

x

2.2 Entropy Notions

» Definition 2 (Min-Entropy). The min-entropy of a random variable X is defined as
H. (X) = max, log ﬁ.

» Definition 3 (Co|||5|on Entropy) The collision-entropy of a random variable X is defined
as HQ(X):—log( )

» Definition 4 (Shannon-Entropy). The Shannon-entropy of a random variable X is defined
as H(X) = - Px(z)logPx(z).

» Definition 5 (Smooth Min-Entropy). We say that X has k-bits of e-smooth min-entropy
if X is e-close to Y such that Hy, (Y) > k.

» Lemma 1 (From collision to smooth min-entropy | ). Suppose that Ha(X) > k. Then
HS (X) = k —log(1/e).
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2.3 Randomness Extractors

Extractors are functions which process weak sources into distributions that are close (in
the information-theoretic sense) to the uniform distribution. In general, they need some
amount of auxiliary randomness called seed. The seed is passed as an extra argument in the
definition.

» Definition 6 (Seeded extractors). A deterministic function Ext : {0,1}" x {0,1}¢ — {0, 1}*
is a (k, €)-extractor for X if we have

SD (Ext(X,Uy),Uqg; U, Uy) < €

» Remark (Relaxing min-entropy for seeded extractors). The min-entropy required in the
source can be relaxed at least in two ways:

(a) X needs to be only close to a distribution with entropy &
(b) The entropy notion can be collision entropy, instead of much more restrictive min-
entropy.

» Lemma 2 (A necessary conditions for extracting). Suppose that Ext on input X outputs
a distribution which is e-close Let Ext be any function such that SD (Ext(X,S); Ui|S) < e.
Then X 1is e-close to a distribution of min-entropy at least k.

» Definition 7. A family H of functions from n to m is called universal, if for a random
member H € H and every different z,y € {0,1}" we have

» Lemma 3 (Universal families are good extractors). Suppose that Ha(X) > k + 2log(1/€).
Let H be a universal family of functions from n to m bits. For any x € {0,1}"™ and h € H
define

Ext(z, h) = h(z)

Then we have
SD (Ext(X, H),S; Uk, S) < ¢

where H is a random element of H.

2.4 Useful inequalities

» Lemma 4 (Jensen's Inequality). Let I be an interval and f: I — R be a convex function.
Then we have

Zaif(ui) > f (Z Oli%’)
i=1 i=1

for any numbers uq, ..., u, € I and non-negative weights ay, ..., o, that sum up to 1.

» Lemma 5 (Multiplicative Chernoff Bound []). Let X1,..., X, be independent binary random

D X
n

variables. Define p = . Then we have

Pr[p < (1 - 0)Ep] < exp (—npd?/2)

for any positive number §.



3 Main Result

» Theorem 1 (The estimator convergence). Let X1, ..., X, be independent random variables
over a finite domain X. Suppose that the distribution of X; changes at most t times when i
goes from 1 to n. Then for any € the output H of Algorithm 1 run over Xi,...,X, and the
collision entropy of Hy = %Hg(Xl, .o, X)) satisfy

Hy(X1,...,X,) > (H-96)-n.

with the relative error § smaller than any of the two bounds below

5 [2H ~41;L>g(2/e) N oH -41:L)g(2/e) N 2:&; 1) W

2H2 . 41og(2/€) = 2M2 . (t+1) 2)
n nln2

5=

» Corollary 1 (Provable security with any min-entropy extractor). Let Ext be any (k,¢) ex-
tractor from X" to {0,1}*. Then the output of Ext on Xi,...,X, is O(¢)-close to the
uniform distribution on {0,1}¢, provided that

k> nH — (nd +log(1/e)).

were H and § are as in Theorem 1. Moreover, for universal hash functions it’s enough to
assume

k}nﬁfné.

Proof. The proof follows immediately from the extractor definition and the conversion
between smooth min-entropy and collision entropy (Lemma 1). For the extractor built
on universal hash functions we simply use the fact that if they the assumption about k bits
of min-entropy on input can be relaxed to k bits of collision entropy. <

» Remark. This corollary shows that our estimator can be coupled with any min-entropy
extractor (post-processing function). The entropy loss is due to estimation statistical error
plus up to log(1/e) bits for conversion (not needed for universal hash functions). Note
that typically we have n > log(1/e¢) and therefore log(1/€) < nd. Thus the entropy loss
in Corollary 1 equals O(dn)

Proof of Theorem 1. Suppose that X;,...,X,, are independent, and for some ¢t € [0,T]
there are numbers n; satisfying

1:n0<n1<n2...<nt+1:n+1 (3)
such that for every j =0...,t we have
V’L'E{n]’,...7nj+1—1} Xziyvj

This corresponds to the scenario where the distribution of the source is switched at mo-
ments nq,...,n. Let p7 | be the collision probability estimate for samples X; where i =
Ty ooy Mjgp1 — 1. That is

an<i<nj+1 Lix;=x;_1}

Y
Peol = nj+1—n;—1

y  Mjp1 — Ny > 1 (4)
O7 Nj41 — Ny = 1
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Note that
E {ﬁgol} = pzon (5)

where pgon = CP(Y;). Let pcoi be the collision probability estimate, computed by the

algorithm, over samples X1, ..., X,. In other words
n—1
o Zi:l 1{Xi:Xi+1}
Pcol = (6)
n—1

Skipping in Equation (6) these indexes ¢ for which i = n; — 1 for some j, and using Equa-
tion (5) we obtain

nj+1—1

Z E [I{Xi:Xiﬂﬂ

1=nj

1
n—1

E [ﬁcoll] =

t mjy1—2

1
n—1 Z Z E [1{X1:X7:+1}]

=0 i=n;

t
1 .
=— D (e —n; = 1) ply (7)
)

V

Note that thre random variables Z; = 1(x,—x,,,} are not independent, so we cannot ap-
ply the Chernoff Bound directly. However, we can take advantage of the fact that the
subsequences with odd and even indexes are independent. Define

i<n—1,7=1 mod 2}
) <n

j<n—-1, =0 mod 2}

The estimate in Equation (6) can be expressed as a combination of estimates over the set
I, and I, as follows

R L . ||
_ . . 8
pcol—n_l P1 n—1 D2 ()
where
Zie[- Z;
ﬁi = - y ] = 132
|Ij‘

By the Chernoff Bound applied separately to p; and po, we conclude that every of the
following inequalities

Bip) < + | PCIOE R
E [5a] < s + 21n(2|/;1)E [P2]

holds with probability 1 — 5. By the union bound, they are satisfied simultaneously with

probability at least 1 — e. Multiplying these inequalities by the weights % for j = 1,2



respectively, and using Equation (8) we obtain

|11] | 12|

Bpe = ~ - B[pi] + — 2= - E[po]
< ml g M(ﬂlm P08 | A 21n<2|/1e2>|w2]>

~ (VoRE/IILER] + 2/ LER))
gpcoll"_ (9)

n—1

with probability 1 — e. In order to simplify the rest of the proof, we use the following
convention: from now all the inequalities hold with probability 1 — € unless stated otherwise.
From Equation (9), by applying the inequality \/a + vb < \/2(a + b) (which follows by the
Jensen inequality) and Equation (8), we conclude that

\/4 111(2/6)(’)1 — ]-)E[ﬁcoll]
n—1

T/ ] (10

Eﬁcol < ﬁcoll +

= ﬁcoll +

To make the right-hand side independent of the unknown parameter Ep.,; we rewrite Equa-
tion (10) as

o 2/6 (2/5)
( E Pcol — > 1

which implies

N . n(2/e) In(2/e
Epcol < (\/pcoll / + \/ / )
n—
R 21n 2/e 2 n(2/e)\ >
— o+ 220209 4 12/9)° , (12/9)

dpeonIn(2/e)  41n(2/¢)
1 T o1 (11)

< pcoll +

where the last line follows by the elementary inequality va +b < v/a + vb. Now, from
Equation (11) and Equation (7) it follows that

t
; . APeon In(2/€ 41n(2/€
—nj — 1) ploy < Peonl + CO;LI (1/ ) + n( /1)

7=0

or, equivalently, that

t t

(nj+1 - nj)pgoll < (n - 1)ﬁ:oll + \/4(77’ - 1)]30011 111(2/6) + 4111(2/6) + Zpgou
j=0

o

<.

Bounding pzon by 1 on the right-hand side and dividing both sides by n we obtain

! n]+1 -1, A(n — DpeonIn(2/c) | 4In(2/e) +1+1
Z coll < Deoll + n2 n

j=0

. 4PconIn(2/€ 4In(2/e) +t+1
<pcoll+ D lln( /)+ (/7)1 (12)
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with probability 1 — e. To derive a bound in terms of entropies, we rewrite the right-hand
side in a relative-error form

t

(n ; . 41n(2/¢€) 4ln26+t+1
Z J+1 pC011<p0011 <1+ </ (/A) >

NPcoll NPcoll

j=0

This inequality can be rewritten, by taking the logarithm of both sides, as

t
Nig1 —N5) .
—log ZLnj)pf:on = —logpeon — log
=0

<1+ 4In(2/e) | 4In(2/e) 1+ 1)

NPeoll NPcoll

The right-hand side can be bounded in a simper way by the elementary inequality log(1+u) <

s valid for all u > —1. This gives us (with probability 1 — )

t

(nj+1 —nj) R
—log Z %pion > —log peonl —
=0

dlog(2/e)  4log(2/e) + 5

nﬁcoll nﬁcoll

(13)

Consider now the left-hand side. By applying the Jensen Inequality to the convex function

u — —logu, arguments u; = p! | and weights a; = 2+ we obtain
i n +1 — t (n it1—n ) .
A J J
Z ( log (pcoll)) > —log Z n Peol
7=0 Jj=0

dlog(2/e) 4log(2/e) + 5

nﬁcoll nﬁcoll

= —log peonn — (14)

Since X, ...,X,, are independent, we have

cp(xl,...,xn):ﬁcp(ox

t mj41—1

=1] I] crxy)

j=0 i=n;

and therefore the collision entropy per bit equals

t
1 P(X,..., X
_logCP(Xy, .., ”):E Nyl 71 ( logpcoll)
n

n :
Jj=0

which combined with Equation (14) finishes the proof. To obtain the second bound on 4,
we simply skip the step just after Equation (10) and proceed with the unknown parameter
Eﬁcoll- <



4 Application to On-line Estimation

Consider a source which outputs 10-bit samples. Suppose that the entropy rate is r = 1—20.
Suppose we want to generate a key of length ¢ = 256 which is at most e = 27 12-far from
the uniform distribution. If we use universal hashing then we need ¢ + 2log(1/€) entropy
bits, that is 480 entropy bits. This, we need at least 240 samples.

Suppose we have collected n = 240 samples. Taking the error into account, we cocnlude
that we can generate £ = 120 bits with security e = 279, Thus, the quality goes down by a

factor of 2, at the price of having provable security.

5 Application to Mixed Sources

Imagine a stream of data, where a few different independent sources contributes to every
consecutive block. For example in | ] the authors consider using an iPhone accelero-
meter as a source, which outputs readings from three axes X,Y and Z. The corresponding
random process may be described as

Vlvvv27'"7vv3n :X17Y17217X27}/27227'"aX’annvZn

It can be seen that if in our collision counting estimator we compare V; = V;_3 instead of
V; = V;_1 then we get a collision-entropy estimator with the same convergence bounds (up
to a constant factor). Indeed, the random variables Z; = 1(y,—y,_,} are all independent,
and thus the estimator doesn’t depend on the order. We can now imagine that the order is
slightly different

Vor s Vogs ooy Vg, = X1, X0, .., X, Y1, Yo, ..., Y0, 21, 20, ..., 2,y

» ¥ O03n

which corresponds to ¢t = 2 switches (the distribution changes two times). Therefore, out
bounds apply.

6 Conclusion

We have shown that the simple collision-counting entropy estimator is (almost) as good
as estimating min-entropy in terms of accuracy, but it is very efficient and robust against
changing the source distribution. The assumption that consecutive outputs are independent
is not that restrictive as it has been confirmed empirically and argued theoretically for many
sources.
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A Inefficiency of Plugin Estimators

Let X be an m-bit distribution. Suppose that we want to estimate Px from i.i.d samples
X1,...,X,, and use this estimate in the entropy formula. Let X be the random variable
corresponding to the empirical distribution of n samples, that is

N 1 &
Ve: Pr[X =z = - Z 1ix,=a)-
i=1

We want to use the estimate

H,.(X) ~ H,(X).


http://eprint.iacr.org/
http://eprint.iacr.org/

Consider the case when X is uniform. Suppose that we want the absolute error to be at
most v, that is

[Hee () — Hoo (%)

<7

According to the min-entropy definition, this means that
‘m + max log (Px(m))’ <.

which is equivalent to
m—y < mgxlog (Pg(z)) < —m+17.

In particular,
Ve: Pg(z) <2717 =27.Px(x).

This means that we need to estimate the probability mass function Px (x) up to a relative
error 6 = 27 — 1. According to the Chernoff Bound, with fixed z and n samples we get the
error probability exp(—3Px (2)§?) < exp(—3-n27™42) for some c¢. Thus, to get the error

term below €, we need 6 = O ( 2m log(l/e)/3n). Even for a pretty weak bound 7 =1 (an
error of 1 bit) we need § = 1 which means n > 2™ log(1/€)/3 samples.
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