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Abstract. In this paper we study public key encryption schemes of indistinguishabil-
ity security against receiver selective opening (IND-RSO) attacks, where the attacker
can corrupt some receivers and get the corresponding secret keys in the multi-party
setting. Concretely:

– We present a general construction of RSO security against chosen ciphertext
attacks (RSO-CCA) by combining any RSO secure scheme against chosen plain-
text attacks (RSO-CPA) with any regular CCA secure scheme, along with an
appropriate non-interactive zero-knowledge proof.

– We show that the leakage-resistant construction given by Hazay et al. in Euro-
crypt 2013 from weak hash proof system (wHPS) is RSO-CPA secure.

– We further show that the CCA secure construction given by Cramer and Shoup
in Eurocrypt 2002 based on the universal HPS is RSO-CCA secure, hence obtain
a more efficient paradigm for RSO-CCA security.

Keywords: receiver selective opening, chosen ciphertext security, hash proof system

1 Introduction

Indistinguishability against chosen plaintext and chosen ciphertext attacks (IND-CPA, IND-
CCA) are widely accepted security notions for public key encryption (PKE). However, in
the multi-party situation, when attacks such as selective opening [7, 11] are possible, the
above security requirements are not enough.

Generally, in selective opening attacks the adversary may corrupt a fraction of parties and
get the plaintext messages together with internal randomness for encryption or decryption,
while it is hoped that messages for uncorrupted parties remain protected. The notion of
selective opening attacks is considered in two settings: sender selective opening (SSO), where
part of senders are corrupted and messages together with randomness for encryption are
revealed; and receiver selective opening (RSO), where part of receivers are corrupted and
messages together with secret keys for decryption are revealed [8].

Formal study of selective opening in PKE scenario was initiated by Bellare, Hofheinz and
Yilek [4, 5] in 2009. They gave rigorous definitions with two styles: indistinguishability-based
(IND) and simulation-based (SIM). Considering that in the selective opening scenario, part
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of random coins or secret keys are opened, whether the ciphertext is consistant with the
plaintext can be checked. In security proof this restricts the way how the target ciphertext
generated, thus whether the ordinary IND security implies SO security and relations of SO
security of different styles attracts much attention [1, 3, 21–23, 12, 30].

Earlier constructions of SO security either depended on erasures, updating secret keys,
with long secret keys or were in the random oracle model [7, 8, 29]. As to the result in
the random oracle model, Heuer et al. [17] proved that the practical schemes RSA-OAEP
and DHIES were SIM-SSO-CCA secure. Next we review constructions that are stateless,
non-interactive and without erasures in the standard model.

For constructions secure in the SSO setting a lot of works have been done in recent
years [4, 19, 28, 13, 27, 18, 17, 26]. Up to now constructions secure in the RSO setting [8, 23]
are relatively less, and these constructions are only RSO-CPA secure. In this paper we will
focus on the constructions that are secure against RSO of the indistinguishability style and
CCA attacks simultaneously.

1.1 Our Contribution

In this paper we show the existence of IND-RSO-CCA secure schemes by giving a con-
struction from a variant of the Noar-Yung paradigm [6]. The construction is a combination
of any IND-RSO-CPA secure scheme, any IND-CCA secure scheme and an appropriate
non-interactive zero-knowledge proof (NIZK). And we prove that the leakage-resistant con-
struction from weak hash proof systems (wHPS) in [20] is actually IND-RSO-CPA secure.
For more efficient constructions, we prove that the Cramer-Shoup paradigm [9, 10] from
universal HPS is IND-RSO-CCA secure. In the following we outline the main idea of the
construction.

To modify an IND-RSO-CPA secure scheme to be IND-RSO-CCA secure, one should
handle decryption queries appropriately. We observe that when applying the Noar-Yung
paradigm (or its variant), it is possible to keep secret keys unchanged by taking only the
first copy of the secret key of the IND-RSO-CPA secure scheme as the secret key for the
whole encryption scheme. Our first construction, which is constructed from an IND-RSO-
CPA secure scheme, an IND-CCA secure scheme, an appropriate NIZK and a one-time
signature, is inspired by the paradigm to achieving key-dependent message security against
chosen ciphertext attacks (KDM-CCA) [6]. The proof sketch is shown in Fig. 5.

Besides, we prove the IND-RSO-CPA security for the leakage-resistant construction from
wHPS given by Hazay et al. [20]. Since wHPS can be constructed from any CPA secure
scheme, our result shows that IND-RSO-CPA secure PKE can be built from any IND-CPA
secure PKE. Considering that IND-CCA secure PKE can be get from any IND-CPA secure
PKE and an appropriate NIZK, we get that IND-RSO-CCA security can be built from any
IND-CPA, an appropriate NIZK and a one-time signature. Generally speaking, a wHPS
is a key encapsulation mechanism (KEM) along with a fake encapsulation algorithm. The
fake encapsulation algorithm can generate a fake ciphertext, which is indistinguishable from
the real ciphertext even given the secret key and is non-committing to any message when
given the public key. In fact, the construction from wHPS, which adds to the encryption
and decryption algorithm a bitwise XOR with the message, is IND-RSO-CPA secure. The
security proof is straightforward, since when the adversary gets fake ciphertexts, messages
are completely hidden, while fake ciphertexts are indistinguishable from real ciphertexts.
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Although the framework we give above implies the existence of IND-RSO-CCA secure
PKE, the use of NIZK makes it less efficient. In the final part, we prove that the construction
from universal hash proof system (HPS) [9], which is more efficient, is IND-RSO-CCA
secure. Here we give a general explaination. Hazay et al. demonstrated that smooth HPS
implies tNCER, which leads to IND-RSO-CPA security [21]. Although the CCA construction
from universal HPS adds elements in secret key for ciphertext verification compared with
construction for CPA security, this does not affect the non-committing property, for the
simulator is able to open messages along with secret keys which it holds.

One may notice that constructions in this paper can only achieve single-message security,
while a more reliable requirement for practice is security for multi-message. In Appendix
A we give a reduction from multi-message security to single-message case through a hybrid
argument. The reduction leads to a security loss related to the number of messages. We
leave constructions that are secure for multi-messages with a tight reduction as an open
problem.

Organization. The rest of our paper is organized as follows: in section 2 we give definitions
and preliminaries; in section 3 we give a variant of the Noar-Yung paradigm to build IND-
RSO-CCA secure encryption and prove that the leakage-resistant construction given by
Hazay et al. from wHPS is IND-RSO-CPA secure; in section 4 we prove that the construction
in [9] is IND-RSO-CCA secure.

2 Preliminaries and Definitions

2.1 Preliminaries

Notations. In this paper we use PPT to represent probabilistic polynomial time for short.
Let [n] be the set of {1, 2, ..., n}. a← A is to denote choosing a random element from A when
A is a set, and to denote picking a uniformly distributed randomness, running A with the
randomness and assigning the output to a when A is a PPT algorithm. we use the lower case
boldface to denote vectors. Enc(pk,m) := (Enc(pk1,m1), ..., Enc(pkn,mn)) when pk,m
are vectors of dimension n. The statistical distance of two distributions X ,Y is defined as
SD(X ,Y) := 1

2Σx|Pr[X = x]− Pr[Y = x]|.

Besides efficiently samplable, the message space is required to be efficiently conditional
resamplable to accompany the security definition we will give later.

Definition 1 (Efficiently Conditional Resamplable [4]). Let dist be a joint distribu-
tion over Mn, where M is the message space, then dist is efficiently conditional resamplable
if there is a PPT algorithm Redist such that for any I ⊂ [n] and any mI := (mi)i∈I ,
where m = (mi)i∈[n] is sampled from dist, the output m′ ← Redist(mI) satisfies that m′ is
distributed according to dist and m′i = mi for i ∈ I.

2.2 Security Definitions

Public Key Encryption (PKE). A PKE scheme supported ciphertexts with labels con-
sists of the following algorithms:
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Keygen: the key generation algorithm takes as input a security parameter 1λ and outputs
a public key pk and a secret key sk. Keygen(1λ)→ (pk, sk).

Enc: the encryption algorithm takes as input the public key pk, a message m in the message
space M, a label l and outputs a ciphertext c. Enc(pk,m, l)→ c.

Dec: the decryption algorithm takes the secret key sk, a ciphertext c and a label l as input
and outputs a message m or ⊥. Dec(sk, c, l)→ m or ⊥.

Correctness. A PKE scheme satisfies correctness, if for all (pk, sk)← Keygen(1λ),m ∈M,
Dec(sk,Enc(pk,m, l), l) = m.

Clearly, an ordinary PKE scheme can be seen as a PKE scheme with empty label spaces.

Security. Here we give the definition of indistinguishability based security against receiver
selective opening chosen ciphertext attacks (IND-RSO-CCA) as in [21] and IND-CCA se-
curity definition for ciphertexts with labels in Fig. 1. As in [4, 19], we require the message
space be efficiently conditional resamplable. The security experiment proceeds as follows:

Experiment. Expind-rso-cca(A):

b← {0, 1}
(pk, sk) := (pki, ski)i∈[n] ← Setup(1λ)

(dist, Redist, state1)← ADec(·,·)(pk)
m0 ← dist
c∗ ← Enc(pk,m0)
(I, state2)← ADec(·,·)(c∗, state1)
m1 ← Redist(m0I)
b′ ← ADec(·,·)(skI ,mb, state2)
Return 1 if b′ = b and 0 else.

Experiment. Expind-cca(A):

b← {0, 1}
(pk, sk)← Setup(1λ)
(m0,m1, l

∗, state1)← ADec(·,·)(pk)
c∗ ← Enc(pk,mb, l

∗)
b′ ← ADec(·,·)(c∗, state1)
Return 1 if b′ = b and 0 else .

Fig. 1. The IND-RSO-CCA and IND-CCA experiment

Note that in Expind-rso-cca(A), the decryption query is of the form (c, j) satisfying that
c 6= c∗j , and is answered by Dec(skj , c). And after the adversary gets skI , it is required that

j /∈ I. The advantage is defined as AdvIND-RSO-CCA

A =
∣∣∣2 Pr[Expind-rso-cca(A) = 1]− 1

∣∣∣.
And in Expind-cca(A), the decryption query is of the form (c, l) such that (c, l) 6= (c∗, l∗),
where l is a label, and the query is answered by Dec(sk, c, l). The advantage is defined as

AdvIND-CCA

A =
∣∣∣2 Pr[Expind-cca(A) = 1] − 1

∣∣∣. When omitting the decryption oracle, the

above experiment gives a definition of IND-RSO-CPA and IND-CPA security respectively.

Definition 2 (IND-RSO-CCA/CPA Security). A PKE scheme is IND-RSO-CCA se-
cure if for any PPT adversary A, AdvIND-RSO-CCA

A is negligible in λ. And it is IND-RSO-CPA
secure if for any PPT adversary A, AdvIND-RSO-CPA

A is negligible in λ. IND-CCA/CPA security
are defined similarly.

Notation. Here we use the security definition that the corruption is one-shot, there is also
a slightly stronger definition which allows for promoting corruption queries i ∈ I adaptively
[1]. A more general definition is to allow the adversary A to submit encryption queries
multi-times for each key, in appendix A we give a formal proof that the general definition
is equivalent to the definition with single-time encryption query, with a reduction loss that
is linear to the number of query times.
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One-time Signature. A signature scheme consists of three PPT algorithms as follows:

Sig.Kg: the key generation algorithm takes as input a security parameter 1λ and outputs
a verification key vk and a signing key sigk. Sig.Kg(1λ)→ (vk, sigk).

Sign: the signing algorithm takes as input the signing key sigk, a message m, and outputs
a signature σ. Sign(sigk,m)→ σ.

V er: the verification algorithm takes the verification key vk, a message m and a signature
σ as input and outputs a decision bit of 1 or 0. V er(vk,m, σ)→ 1 or 0.

Correctness. A signature scheme satisfies correctness, if for all (vk, sigk)← Sign.Kg(1λ),m ∈
M, V er(vk,m, Sign(sigk,m)) = 1.

Security. Here we give the security notion of strong existential unforgeability under one-
time chosen message attack in the following experiment between a challenger C and a PPT
adversary A:

Experiment. Expuf-ot
sig (A):

(vk, sigk)← Sig.kg(1λ)
(m, st)← A(vk)
σ ← Sign(sigk,m)
(m′, σ′)← A(st, σ)
if (m′, σ′) 6= (m,σ) and V er(vk,m′, σ′) = 1, outputs 1, and 0 else

Fig. 2. One-time Unforgeable for Signatures

Definition 3 (One-time Unforgeable Security). A signature scheme is strongly ex-
istential unforgeable under one-time chosen message attack if for any PPT adversary A,

AdvotsA := Pr[Exp
uf-ot
sig (A) = 1] is negligible in λ.

2.3 Non-interactive Zero-Knowledge Proofs

Let R be a binary relation that is efficiently computable. Let L := {x : ∃w, s.t. (x,w) ∈ R}.
A non-interactive zero-knowledge (NIZK) proof system for R consists of three PPT algo-
rithms (CRSGen, P, V ) as follows: CRSGen generates a common reference string (CRS),
CRSGen → C; for (x,w) ∈ R, the prover generates a proof, p ← P (C, x, w); a verifier V
outputs 1 if it accepts the proof and 0 otherwise, V (C, x, p)→ {0, 1}.

Definition 4 (NIZK[14, 2]). (CRSGen, P, V ) is an NIZK proof system for R if it satisfies
the following properties:

Completeness: For all C← CRSGen, all (x,w) ∈ R, and p← P (C, x, w), V (C, x, p) = 1.
Computational Soundness: For any PPT A, Advcs

nizk,A = Pr[A(C) → (x, p) ∧ x /∈ L ∧
V (C, x, p) = 1] is negligible, where C← CRSGen is given to A.

Computational Zero-knowledge: There exists a simulator S such that for any PPT

adversary A, Advczk
nizk,A = |Pr[Expreal(A) = 1] − Pr[Expsim(A) = 1]| is negligible,

where Expreal(A) and Expsim(A) are defined in Fig. 3, in which ε denotes an empty
string and E denotes an empty set.
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Experiment. Expreal(A):

C← CRSGen, st = ε, P = E
for i = 1, ..., n
A(C, st,P)→ (xi, wi, sti)
P (C, xi, wi)→ pi
st← sti, P← P ∪ pi
end for
b← A(st,P)
outputs b

Experiment. Expsim(A):

(C, t)← S, st = ε, P = E
for i = 1, ..., n
A(C, st,P)→ (xi, wi, sti)
S(t, xi)→ pi
st← sti, P← P ∪ pi
end for
b← A(st,P)
outputs b

Fig. 3. Computational Zero-knowledge

Loosely speaking, CZK means that with the help of the secret information t generated
with C, the simulator S can produce a proof that is indistinguishable from the real proof
without the witness for x ∈ L. For the construction in this paper, although only one message
is encrypted for each public key, there are multi public keys, the one-time definition of
computational zero-knowledge given by Blum et al. [2] is not enough.

3 An IND-RSO-CCA Secure Construction

In this section, we give an IND-RSO-CCA secure construction analogous to that in [6]
with the following building blocks: a PKE E1 with IND-RSO-CPA security, a regular CCA
secure PKE E2 that supports ciphertexts with labels, an NIZK proof system for the language
consisting of the set of all pairs that encrypt the same message using E1 and E2, and a strong
existential unforgeable one-time signature scheme. Then we prove that the construction from
wHPS [20] is IND-RSO-CPA secure.

3.1 Preliminaries for Section 3

Tweaked Non-committing Encryption for Receivers (tNCER). In [21], Hazay et al.
defined tNCER and proved that a tNCER is IND-RSO-CPA secure. A tweaked PKE (tPKE)
consists of five algorithms (tKeygen, tEnc, tEnc∗, tDec, tOpen), where (tKeygen, tEnc, tDec)
form a regular PKE and the algorithms (tEnc∗, tOpen) are as follows:

tEnc∗: the PPT tweaked encryption algorithm takes as input the public key pk, the secret
key sk and a message m, and outputs a fake ciphertext c∗. tEnc∗(pk, sk,m)→ c∗.

tOpen: the open algorithm (possibly inefficient) takes as input the public key pk, a fake
ciphertext c∗ and a message m in the message space M, and outputs a secret key sk∗ ←
tOpen(pk, c∗,m), satisfying that tDec(sk∗, c∗) = m.

Security. A tPKE is a tweaked NCER if real and fake ciphertexts are indistinguishable,
and fake ciphertexts are non-committing, which means that fake ciphertexts hide messages
completely.

Definition 5. (tNCER) A tPKE is a tweaked NCER if:
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Experiment. Exp
ind-tcipher
tpke

(A):

b← {0, 1}
(pk, sk)← tKeygen(1λ)
(m, st)← A(pk)
c0 ← tEnc(pk,m)
c1 ← tEnc∗(pk, sk,m)
b′ ← A(sk, cb, st)
if b = b′, outputs 1, else outputs 0

Experiment. Expind-tncer
tpke (A):

b← {0, 1}
(pk, sk0)← tKeygen(1λ)
(m, st)← A(pk)
c0 ← tEnc∗(pk, sk0,m)
m′ ← M
c1 ← tEnc∗(pk, sk0,m

′)
sk1 ← tOpen(pk, c1,m)
b′ ← A(skb, cb, st)
if b = b′, outputs 1, else outputs 0

Fig. 4. tweaked NCER

– for any PPT adversary A, Advind-tcipher
tpke,A

:= |2 Pr[Exp
ind-tcipher
tpke

(A) = 1] − 1| is neg-

ligible.

– for any unbounded adversary A, Advind-tncer
tpke,A := |2 Pr[Expind-tncer

tpke (A) = 1] − 1| is

negligible.

Weak Hash Proof System (wHPS) Weak hash proof system, which can be seen as a
generalization of HPS, was proposed by Hazay et al. to provide leakage resistant security
from CPA secure schemes [20]. Here we give a brief review. A wHPS is an ordinary KEM
in addition with a fake encryption algorithm Enc∗ as follows:

Keygen: The key generation algorithm takes as input the security parameter 1λ and outputs
a pair of public key and secret key. (pk, sk)← Keygen(1λ).

Enc: The encapsulation algorithm takes as input pk, outputs a valid ciphertext and a session
key. (c,K)← Enc(pk).

Enc∗: The fake encapsulation algorithm takes as input pk, outputs an invalid ciphertext.
c∗ ← Enc∗(pk).

Dec: The decapsulation algorithm takes as input sk and a ciphertext c, outputs a session
key. K ← Dec(sk, c).

It should satisfy correctness, indistinguishability and smoothness properties.

Correctness. For all (pk, sk)← Keygen(1λ), (c,K)← Enc(pk), Dec(sk, c) = K.

Indistinguishability. Given (pk, sk) ← Keygen(1λ), any PPT adversary A cannot dis-
tinguish a valid ciphertext from an invalid ciphertext. That is, for any PPT adversary
A, AdvCI

A,wHPS
is negligible, where

AdvCI

A,wHPS = |Pr[A(pk, sk, c|(c,K)← Enc(pk)) = 1]

−Pr[A(pk, sk, c∗|c∗ ← Enc∗(pk)) = 1]|.

Smoothness. For any invalid ciphertext c∗, the decapsulation of c∗ is distributed as ran-
domly chosen K. That is, the distribution of (pk, c∗,K∗) and (pk, c∗,K) are identical,
where K∗ = Dec(sk, c∗) and K is chosen randomly from the session key space.



8 D.Jia et al.

3.2 Construction

Let E1 := (Keygen1, Enc1, Dec1) be IND-RSO-CPA secure, and E2 := (Keygen2, Enc2,
Dec2) be IND-CCA secure and supports ciphertext with labels, S := (Sig.Kg, Sign, V er) be
strong existential unforgeable under one-time chosen message attack, Leq := {(c1, c2, l)|∃m,
r1, r2, s.t.c1 = Enc1(pk1,m; r1), c2 = Enc2(pk2,m, l; r2)}. Let P := (CRSGen, P, V ) be an
NIZK proof for Leq. The scheme is described as follows:

Keygen: Generate (pki, ski)← Keygeni(1
λ) for i = 1, 2, run CRSGen to get the common

reference string C of the NIZK P. Set pk := (pk1, pk2,C), sk := sk1.
Enc: Generate (vk, sigk)← Sig.Kg(1λ), randomly choose r1, r2 and compute

c1 = Enc1(pk1,m; r1), c2 = Enc2(pk2,m, vk; r2), p ← P (C, (c1, c2, vk), (m, r1, r2)), σ =
Sign(Sigk, c1‖c2‖p). The ciphertext c = (vk, c1, c2, p, σ).

Dec: Verifies whether V (C, c1‖c2‖vk, p) = 1 and V er(vk, c1‖c2‖p, σ) = 1, if both equations
hold, output m = Dec1(sk, c1), otherwise reject.

Correctness of the decryption algorithm is trivially follows from the completeness of NIZK,
correctness of the signature scheme and correctness of the IND-RSO-CPA scheme.

Theorem 1. Let E1 be IND-RSO-CPA secure, E2 be IND-CCA secure that supports ci-
phertext with labels, S be existential unforgeable under one-time chosen message attack, P
be an NIZK proof for Leq, then the scheme constructed above is IND-RSO-CCA secure.
Concretely,

AdvIND-RSO-CCA

pke ≤ 2q(Advcs

nizk + nAdvuf-ot

sig ) + 2nAdvcca

pke + 2Advczk

nizk +AdvIND-RSO-CPA

pke

Proof. The proof is through a sequence of games depicted in Fig. 5, where the boxed item
is the change from the former game.

Game Enc Dec Open Remarks

0 m0,m0,real p sk1 m0, skI

1 m0,m0,real p sk2 m0, skI soundness of P

2 m0,m0, fake p sk2 m0, skI NIZK of P

3 m0,m0,fake p sk2, reject vk∗ m0, skI unforgeable Signature S

4 m0, mR ,fake p sk2,reject vk∗ m0, skI cca security of E2

5 m0,mR,fake p sk2,reject vk∗ m1, skI rso-cpa security of E1

6 m0, m0 ,fake p sk2,reject vk∗ m1, skI cca security of E2

7 m0,m0,fake p sk2, no reject vk∗ m1, skI unforgeable Signature S

8 m0,m0, real p sk2, m1, skI NIZK of P

9 m0,m0,real p sk1 m1, skI soundness of P

Fig. 5. Game transform for RSO-CCA security from RSO-CPA security

Next we give the formal description of the games. Let Wi denote the event that the
adversary outputs 1 in Gamei.

Game0: the real security game when b = 0, that is, in the corruption phase, the challenger
responds with (skI ,m0), where m0 are messages corresponding to the given ciphertexts.
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Game1: the same as Game0, except that when responding to a decryption query (c, j),
the challenger computes m = Dec2(sk2j , c2) instead of m = Dec1(sk1j , c1). From the
soundness property of P, one can get that Pr[W1]− Pr[W0] is negligible.

Game2: the same as Game1, except that C is generated by a simulator S and when re-
sponding to the encryption query dist, the challenger produce simulated proofs p ←
S(t, (c1, c2, vk)) instead of a real p. From the zero-knowledge property of P, one can get
that Pr[W2]− Pr[W1] is negligible.

Game3: the same as Game2, except that when responding to a decryption oracle (c, j),
where c = (vk, c1, c2, p, σ), the challenger checks whether vk = vk∗j , if the equation
holds, then it just rejects. From the existential unforgeable property of S, one can get
that Pr[W3]− Pr[W2] is negligible.

Game4: the same as Game3 except that when responding to the encryption query dist,
the challenger samples m0 ← dist, and random mR from the message space, generates
(vk, sigk)← Sig.Kgn(1λ), computes c∗1 = Enc1(pk1,m0), c∗2 = Enc2(pk2,mR,vk

∗),
and other parts of the ciphertext vector as in Game3. From the CCA security of E2,
by a hybrid argument one can get that Pr[W4] − Pr[W3] is negligible. Note that since
vk 6= vk∗j , decryption queries can be answered with the decryption oracle of E2.

Game5: the same as Game4, except that in the corruption phase, the adversary resamples
m1 ← Redist(m0I) and responds with (skI ,m1). From the RSO-CPA security of E1,
one can get that Pr[W5]− Pr[W4] is negligible.

Game6: the same as Game5, except that when responding to the encryption query dist, the
challenger computes c2 = Enc2(pk2,m0,vk

∗), with the real sampled message vector
instead of randomly chosen one. From the CCA security of E2, one can get that Pr[W6]−
Pr[W5] is negligible.

Game7: the same as Game6, except that when responding to a decryption query (c, j), the
challenger no longer rejects when vk = vk∗j . From the existential unforgeable property
of S, one can get that Pr[W7]− Pr[W6] is negligible.

Game8: the same as Game7, except that C is normally generated and when responding to
the encryption query dist, the challenger produce real proofs p. From the zero-knowledge
property of P, one can get that Pr[W8]− Pr[W7] is negligible.

Game9: the same as Game8, except that when responding to a decryption query (c, j), the
challenger computes m = Dec1(sk1j , c1) as in the original security definition. Note that
this game is the real security game when b = 1. From the soundness property of P, one
can get that Pr[W9]− Pr[W8] is negligible.

It is not difficult to prove the following lemmata and we put the concrete proof in
Appendix B.

Lemma 1. |Pr[W1]− Pr[W0]| ≤ qAdvcsnizk, |Pr[W9]− Pr[W8]| ≤ qAdvcsnizk.

Lemma 2. |Pr[W2]− Pr[W1]| ≤ qAdvczknizk, |Pr[W8]− Pr[W7]| ≤ qAdvczknizk.

Lemma 3. |Pr[W3]− Pr[W2]| ≤ nqAdvuf−otsig , |Pr[W7]− Pr[W6]| ≤ nqAdvuf−otsig .

Lemma 4. |Pr[W4]− Pr[W3]| ≤ nAdvccapke, |Pr[W6]− Pr[W5]| ≤ nAdvccapke.

Lemma 5. |Pr[W5]− Pr[W4]| ≤ Advind−rso−cpapke .

Combining the above game sequences, we get that Pr[W9]− Pr[W0] is negligible.
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Similar as that in [6], when we use an NIZK proof that provides unbounded simulation
soundness, the IND-CCA scheme use in the construction can be replaced with a scheme of
IND-CPA security.

3.3 IND-RSO-CPA Secure PKE from wHPS

Up to now there are instantiations of RSO-CPA secure PKE [21], CCA secure scheme with
labeled ciphertext [6], NIZK for equal message relations [16, 6], one-time signatures [15].
Here we prove that the leakage-resistant construction from wHPS [20] is IND-RSO-CPA
secure. Since in [20] Hazay et al. showed that wHPS can be realized from CPA secure PKE
schemes, our result implies that IND-RSO-CPA secure PKE can be constructed from any
IND-CPA PKE.

In [21] they showed that if a tPKE is a tNCER, then it is IND-RSO-CPA secure.

Lemma 6 ([21]). For any PPT adversary A attacking tPKE in the IND-RSO-CPA scheme,

there exists a PPT adversary B and an unbounded adversary C, such that Adv
ind-rso-cpa
tpke

(A)

≤ 2n(Adv
ind-tcipher
tpke

(B) +Advind-tncer
tpke (C)).

Construction. Next we show that the PKE constructed from wHPS [20] is a tNCER. The
scheme is described as follows.

tKeygen(1λ) : The key generation algorithm is the generation algorithm of wHPS. (pk, sk)
← wHPS.Keygen(1λ).

tEnc(pk,m) : c = (c1, c2), where (c1,K) ← wHPS.Enc(pk), c2 = K + m, here we assume
that the encrypted messages are in an additive group.

tDec(sk, c) : K ← wHPS.Dec(sk, c1),m← c2 −K.

tEnc∗(pk, sk,m) : c∗ = (c∗1, c
∗
2), c∗1 ← wHPS.Enc∗(pk),K∗ ← wHPS.Dec(sk, c∗1), c∗2 =

K∗ +m.

tOpen(pk, c∗,m) : Parse c∗ as c∗ = (c∗1, c
∗
2), compute K∗ = c∗2 −m, find an sk∗ such that

wHPS.Dec(sk∗, c∗) = m.

Correctness can be easily verified from the correctness property of wHPS. It is obvious
that the decryption of a fake ciphertext c∗ outputs the encrypted message m. Since c∗1 is an
output of wHPS.Enc∗(pk), from the smooth property of wHPS, (pk, c∗1, wHPS.Dec(sk, c

∗
1))

is distributed as (pk, c∗1,K) for randomly chosen K. Hence for a given K∗, there exists a sk∗

corrsponding to pk such that wHPS.Dec(sk∗, c∗1) = K∗, an unbounded algorithm can find
it. The ciphertext indistinguishability of tPKE easily follows from the indistinguishability of
wHPS. And the non-committing property for fake ciphertexts follows from the smoothness
property of wHPS.

Remarks. Note that since wHPS inherits the smoothness property of HPS, it can be used
to replace HPS in most CPA constructions. However, in the scenario where CCA security
is required, wHPS is unsuitable, since smoothness is a average-case property while CCA
requires a worst-case security, which is captured by the universal property.
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4 IND-RSO-CCA Secure PKE from Universal HPS

The construction of the above section implies the existence of IND-RSO-CCA secure scheme.
However, due to the employment of NIZK (pairing), the construction is less efficient, and
the ciphertext is not compact. In this section we prove that the compact and efficient CCA
secure scheme in [9] based on HPS is IND-RSO-CCA secure.

4.1 Universal Hash Proof System

Projective Hash Family. Firstly we recall the concept of hash proof system (HPS) in-
troduced by Cramer and Shoup [9]. A projective hash family consists of (Λ,SK,X ,L,W,
Y,PK, µ), where X ,Y,L,W,SK, PK are sets and L ⊂ X is a language, Let Λ be a fam-
ily of hash functions indexed by sk ∈ SK mapping from X to Y. Let µ be a polynomial
time function mapping from SK to PK. A hash family H = (Λ,SK,X ,L,W, Y,PK, µ) is
projective if for all sk ∈ SK, the action of Λsk on L is determined by µ(sk).

Definition 6 (ε-smoothness [9]). The projective hash family is ε-smooth if for randomly
chosen sk ← SK, X ← X\L, pk = µ(sk), given pk,X, the distribution of Y = Λsk(X) and
randomly chosen Ỹ ∈ Y are statistically indistinguishable,

SD((pk,X, Y ), (pk,X, Ỹ )) ≤ ε.

In this work we give a definition of ι-related ε-smooth property of hash family to prove
the IND-RSO-CCA security of the constructed scheme.

Definition 7 (ι-related ε-smoothness). The projective hash family is ι-related ε-smooth
if for ι randomly chosen sk = (sk1, ..., skι) ← SKι, X = (X1, ..., Xι) ← (aL)ι, a ← X\L,
compute pk = (µ(sk1), ..., µ(skι)), Y = (Λsk1(X1), ..., Λskι(Xι)), for randomly chosen Ỹ ∈
Yι,

SD((pk,X,Y), (pk,X, Ỹ)) ≤ ε.

ι-related ε-smoothness property can be easily deduced from the ordinary smoothness
property of hash family with a hybrid proof argument.

SD((pk,X,Y), (pk,X, Ỹ))

≤
∑
κ

SD((pk,X, (Λsk1(X1), ..., Λskκ−1
(Xκ−1), Ỹκ, ..., Ỹι),

(pk,X, (Λsk1(X1), ..., Λskκ(Xκ), Ỹκ+1, ..., Ỹι))

=
∑
κ

SD((pkκ, Xκ, Λskκ(Xκ)), (pkκ, Xκ, Ỹκ)) (1)

≤ ιSD((pk,X,Λsk(X)), (pk,X, Ỹ ))

Equation 1 holds for the reason that the key pairs are independently randomly generated.

As in [9], we introduce a finite set E to extend the sets X and L. An extended projective
hash family H = (Λ,SK,X × E ,L × E ,W, Y,PK, µ) is universal2 if for any X1, X2 ∈
X\L, E1, E2 ∈ E , (X1, E1) 6= (X2, E2), even given µ(sk) and Λsk(X1, E1), the output of
Λsk(X2, E2) is uniformly distributed.
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Definition 8 (universal2 [9, 24]). The extended projective hash family is universal2 if for
all pk ∈ PK, X1, X2 ∈ X\L, E1, E2 ∈ E , (X1, E1) 6= (X2, E2), for all Y1, Y2 ∈ Y,

Pr[Λsk(X2, E2) = Y2|µ(sk) = pk, Λsk(X1, E1) = Y1] =
1

|Y|
.

Subset Membership Problem (SMP). An SMP specifies an instance ensembles {In}n
such that for each n, In specifies a distribution over instance Γ = (X ,L,W,R), where

– X ,L,W are non-empty sets and L ⊂ X .
– R ⊂ X×W is a binary relation such that x ∈ L iff there exists a w satisfying (x,w) ∈ R.

We assume that there are efficient algorithms to sample instances from In, elements from
X , X\L and elements L from L together with its witness w ∈ W. Also we require that X ,Y
being abelian groups (with computational symbol “+”) and L being subgroup of X .

Definition 9 (Subset Membership (SM) Problem [9]). The SMP is to distinguish a
randomly chosen Z0 ∈ L from a randomly chosen Z1 ∈ X\L. Concretely, the advantage of
an adversary A in breaking SMP is defined as:

AdvSM

A = |Pr[A(Γ,Z0) = 1]− Pr[A(Γ,Z1) = 1]| ,

where the probability is taken over the randomness of choosing instance Γ and elements
Z0, Z1, the internal randomness of A. We say that the SM problem is hard if for every PPT
A, AdvSM

A is negligible.

Hash Proof System (HPS). An HPS associates each SM instance Γ with a projective
hash family H = (Λ,SK,X ,L,W,Y,PK, µ). In addition, it provides efficient algorithm to
choose sk ∈ SK and X ∈ X uniformly at random, PPT algorithm to compute µ(sk), and
PPT algorithms (Priv, Pub) to compute Λsk(L) for L ∈ L with witness w :

Λsk(L) = Priv(sk, L) = Pub(µ(sk), L, w).

HPS with Trapdoor. Following [24, 25], we also require that the SM problem can be efficiently
solved with a master trapdoor, which will be used not in the actual scheme but in the security
proof. In fact, all known hash proof systems have such a trapdoor.

4.2 Construction

Let H1 = (Λ1,SK1,X ,L,W,Y1,PK1, µ1) be a smooth projective hash proof system, H2 =
(Λ2,SK2,X × Y1,L × Y1,W,Y2,PK2, µ2) be an extended universal2 projective hash proof
system. Public parameters are set as pp = (H1,H2).

Keygen(pp) : The key generation algorithm chooses random secret key sk1 ← SK1, sk2 ←
SK2 and computes the public key as pk = (pk1 = µ1(sk1), pk2 = µ2(sk2)).
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Enc(pk,m) : The encryption algorithm samples random L ∈ L with witness w, and com-
putes the ciphertext c = (c0, c1, c2) as:

c0 = L, Y1 = Pub(pk1, L, w), c1 = Y1 +m, c2 = Pub(pk2, L, c1, w).

Dec(sk, c) : The decryption algorithm first verifies whether c2 = Priv(sk2, c0, c1), if the
equation does not hold, it just rejects, else it computes the message as:

Y1 = Priv(sk1, c0),m = c1 − Y1.

Correctness can be easily verified from the projective property of the HPS.

4.3 Security Proof

The proof intuition is as follows: since the simulator holds secret keys, secret key opening
is easy to realize. As in [9], the universal2 property guaranties that decryption answers leak
no information of secret keys. Since public/secret key pairs are chosen independently, the
openness of some secret keys and decryption answers has no influence on secret keys un-
opened. Furthermore, related smoothness property of HPS assures that messages unopened
are completely hidden. Note that in the reduction, encryption answers can be transformed
to be invalid in one shot from the self-reducibility property of the group structure, hence we
get a tighter reduction than that from tNCER.

Theorem 2. If H1 is a ε1-smooth projective HPS with the corresponding SM problem hard,
H2 is an extended universal2 projective hash proof system with the same corresponding SM
problem hard, then our PKE scheme is IND-RSO-CCA secure. Concretely,

AdvIND-RSO-CCA

A ≤ AdvSM,HPS

B + q(
1

(|X | − |L|) · |Y1|
+

1

|Y2|
) + nε1.

where q is the number of decryption queries, n is the number of key pairs.

Proof. A ciphertext c is invalid if c0 /∈ L. The master trapdoor mt is used to solve the SM
problem.

To prove the security of our scheme, we define a sequence of games whereby any PPT
adversary can not tell the difference between consecutive games.

Game0: the real security game. The challenger C selects n random secret keys (ski1, ski2)i∈[n],
computes pk = (pki = (µ1(ski1), µ2(ski2)))i∈[n] and sends pk to the adversary A. In the
encryption query phase, for all i ∈ [n], the challenger C selects c∗i0 ∈ L with witness w∗i ,
computes Y ∗i1 = Pub1(pki1, c

∗
i0, w

∗
i ), c∗i1 = Y ∗i1 + m0i, c

∗
i2 = Pub2(pki2, c

∗
i0, c

∗
i1, w

∗
i ) and

responds with c∗ = (c∗i0, c
∗
i1, c

∗
i2)i∈[n] to the adversary. In the decryption query phase,

the challenger C answers decryption queries with the corresponding secret keys. In the
open phase, the challenger randomly selects a bit b, sends the secret keys skI related to
I and the message vector mb to the adversary A. Finally A outputs its guess b′.

Game1: the same as Game0 except that the challenge ciphertexts are generated using the
secret keys. That is Y ∗i1 = Priv1(ski1, c

∗
i0), c∗i2 = Priv2(ski2, c

∗
i0, c

∗
i1).

Game2: the same as Game1 except that the challenge ciphertexts are invalid. Concretely,
{c∗i0}i∈[n] are chosen uniformly from a random coset of L, that is aL, a← X\L.
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Game3: the same as Game2 except that the decryption oracle rejects all queries (c, j) that
satisfy c0 /∈ L. This can be achieved with the help of the master trapdoor mt.

Let AdviA denote A’s advantage in Gamei for i = 0, 1, 2, 3.

It is clear to see Adv0A = Adv1A from the projective property of HPS.

Lemma 7. Suppose that there exists a PPT adversary A such that Adv1A−Adv2A = ε, then
there exists a PPT adversary B with advantage ε in solving the SM problem.

Proof. B receives D = (Γ,Z) and its task is to decide whether Z ∈ L or not. B picks n
random secret keys (ski1, ski2) ∈ SK1 × SK2, computes pki1 = µ1(ski1), pki2 = µ2(ski2)
and sends pk to A.

Whenever A submits (ĉ, j), B simply runs the decryption algorithm with the secret
key skj . When A submits a distribution dist, B samples m0 ← dist, randomly choos-
es n elements in L, X̄∗i ← L and computes X∗i = Z + X̄∗i , it sets c∗i0 = X∗i , Y

∗
i1 =

Priv1(ski1, c
∗
i0), c∗i1 = Y ∗i1 +m0i, c

∗
i2 = Priv2(ski2, c

∗
i0, c

∗
i1) and responds with c∗ = (c∗i0, c

∗
i1,

c∗i2)i∈[n]. When A submits a corruption query with I, B samples m1 ← Redist(m0I), picks
a random bit b and responds with (skI ,mb). When A outputs its guess b′, B outputs 1 if
b = b′ and 0 otherwise.

Note that when Z ∈ L, (c∗i0)i∈[n] are randomly distributed in L, then the above game
perfectly simulates Game1; when Z ∈ X\L, (c∗i0)i∈[n] are randomly distributed in the coset
ZL, then the above game perfectly simulates Game2.

Lemma 8. Adv2A − Adv3A ≤ ε if the projective HPS H2 satisfies the universal2 property,
where ε = q( 1

(|X |−|L|)·|Y1| + 1
|Y2| ).

Proof. Let E be the event that a query (ĉ, j) is rejected in Game3 but not rejected in
Game2. Then we have |Adv2A −Adv3A| ≤ qPr[E]. Consider the following cases:

Case 1: (ĉ0, ĉ1) = (c∗j0, c
∗
j1).

– when such a query is proposed before challenge phase, the adversary has no informa-
tion about the challenge ciphertexts, then the equation holds with the probability

1
(|X |−|L|)·|Y1| , which is negligible.

– when such a query is proposed after challenge phase, it must holds that ĉ2 6= c∗j2 =
Priv2(skj2, ĉ0, ĉ1), then such a query will be certainly rejected in Game2, too.

Case 2: Case 1 does not happen, but there exists some i 6= j satisfies that (ĉ0, ĉ1) =
(c∗i0, c

∗
i1). In fact this will give no extra help to the adversary since ski and skj are chosen

independently. Anyone can choose such key pairs and generate ciphertext ĉ2 from (ĉ0, ĉ1)
with the chosen secret key. So the only information the adversary gets about skj is pkj
and c∗j , then from the universal2 property of H2, Pr[ĉ2 = Priv2(skj2, ĉ0, ĉ1)] ≤ 1

|Y2| .

Case 3: For all i ∈ [n], it holds that (ĉ0, ĉ1) 6= (c∗i0, c
∗
i1). The analysis of this case is the

same with that of Case 2 and the upper bound probability is identical, too.

Lemma 9. Adv3A ≤ nε1, if the underlying projective HPS H1 is ε1-smooth.
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Proof. Since the key pairs are generated independently, the opened secret keys skI leak no
information about skJ , where J = [n]\I.

In Game3, all decryption queries (ĉ, j) such that ĉ0 /∈ L are rejected. For queries satisfies
that ĉ0 ∈ L, the computation result of Y1 and ĉ2 are completely determined by the public
key pkj , so decryption answers will leak no information about skj other than pkj .

So here the adversary gets pkJ , c
∗
J with c∗J0 ∈ (aL)|J| for some random a /∈ L, from the ε1

smoothness property of H1, the distribution of YJ1 is nε1 close to the uniform distribution

of Y |J|1 . And when YJ1 is uniformly distributed, obviously the adversary has no advantage.

Instantiations. The instantiations are the same as that in [9] from the DDH,DCR and
QR assumptions.
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A: Single-time Security Implies Multi-time Security

In this section, we will show that IND-RSO-CCA (CPA) security for single-message vector
implies IND-RSO-CCA (CPA) for multi-message vector with a hybrid argument similar as
that for ordinary IND-CCA (CPA) security.
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Experiment. Expind-mrso-cca(A):

b← {0, 1}, state = ε
(pk, sk) := (pki, ski)i∈[n] ← Setup(1λ)
for k = 1, ..., l
(distk, Redistk, statek)← ADec(·,·)(pk, state)
m0k ← distk
c∗k ← Enc(pk,m0k)
state← statek
end for
(I, state)← ADec(·,·)(c∗, state)
m1k ← Redistk(m0kI)
b′ ← ADec(·,·)(skI , {mbk}k=1,...,l, state)
Return 1 if b′ = b and else 0.

Fig. 6. IND-mRSO-CCA security

The security experiment for multi-message security is defined as in Fig. 6. The advantage

is defined as AdvIND-mRSO-CCA

A =
∣∣∣2 Pr[Expind-mrso-cca(A) = 1]− 1

∣∣∣.
Definition 10 (IND-mRSO-CCA). A PKE scheme is IND-RSO-CCA secure for multi-
messages if for any PPT adversary A, AdvIND-mRSO-CCA

A is negligible in λ.

Theorem 3. A PKE scheme is IND-RSO-CCA (CPA) secure for multi-message vectors if
and only if it is IND-RSO-CCA (CPA) secure for single-message vector.

Proof. It is clear that single-time security can be implied by multi-time security as a special
case.

To prove the opposite direction, we define a sequence of games that any PPT adversary
cannot tell the difference between two adjacent games. Here we discuss the CPA case,
situations in the CCA case are similar.

Gamek: the same as that in the definition except that for 0 ≤ k ≤ l, in the corruption phase,
the challenger responds to the adversary with (skI = {ski}i∈I , {mj

1}j≤k, {m
j
0}j>k).

Let AdvkA the probability that A outputs 1 in Gamek for k = 0, ..., l.

Lemma 10. If there exists a PPT adversary A to distinguish Gamek from Gamek+1, then
there exists a PPT B to break the IND-RSO-CPA security for single-message vector. In
concrete, Advk+1

A −AdvkA ≤ AdvsIND-RSO-CPA

B .

Proof. B proceeds as follows, on receiving pk, it sends pk = (pk1, ..., pkn) to A.

When A submits a message sampler distj , B responds with cj∗ as follows.

– for j 6= k + 1, it samples mj
0 ← distj , generates cj∗ ← Enc(pk,mj

0).
– for j = k+1, it sends distj to its challenger and gets c∗ as response, it sets c(k+1)∗ = c∗.
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When A submits a corruption query with I, B sends the same I to its challenger and
gets (skI ,mb) as response, then it sets mk+1 = mb and samples mj

1 ← Redistj(mj
0I) for

j < k, and responds to A with (skI , {mj
1}j≤k,mk+1, {mj

0}j>k+1).

When A outputs its guess b′, B outputs the same bit b′.

Note that when b = 0, that is, mk+1 = mk+1
0 , then the above game is identical to

that of Gamek; when b = 1,mk+1 = mk+1
1 , then the above game is identical to that of

Gamek+1, hence Advk+1
A −AdvkA = Pr[b′ = 1|b = 1]−Pr[b′ = 1|b = 0] = 2(Pr[b′ = b]− 1

2 ) =
AdvsIND-RSO-CPA

B .

It is clear that Game0 is the IND-RSO-CPA security experiment for multi-message vector
when b = 0, while Gamel is the IND-RSO-CPA security experiment for multi-message vector
when b = 1. Then we have:

AdvmIND-RSO-CPA

A = (AdvlA −Adv0A) ≤ lAdvsIND-RSO-CPA

B .

B: Security Proofs for Lemmata of Theorem 1

Proof of Lemma 1. |Pr[W1]− Pr[W0]| ≤ qAdvcsnizk, |Pr[W9]− Pr[W8]| ≤ qAdvcsnizk.

Proof. Let E1 denote the event that in Game0 the PPT adversary promotes a decryption
query with (vk, c1, c2, p, σ) such thatDec2(sk2, c2) 6= Dec(sk1, c1) and V (C, c1‖c2‖vk, p) = 1.
Clearly, there is |Pr[W1]− Pr[W0]| ≤ qPr[E1].

Next we prove that Pr[E1] ≤ Advcsnizk. Let B be an algorithm that receives a common
reference string C as input and its task is to output ((c1, c2, vk), p) such that Dec2(sk2, c2) 6=
Dec(sk1, c1) and V (C, c1‖c2‖vk, p) = 1. Then B generates key pairs, sends (pk1, pk2,C) to A,
and interacts with A as in Game0. When event E1 happens, B responds with ((c1, c2, vk), p).

|Pr[W9]− Pr[W8]| ≤ qAdvcsnizk can be proved similarly.

Proof of Lemma 2.|Pr[W2]− Pr[W1]| ≤ qAdvczknizk, |Pr[W8]− Pr[W7]| ≤ qAdvczknizk.

Proof. Let B be an algorithm that receives a common reference string C as input and can
promote n queries (c1i, c2i, vki), (mi, r1i, r2i) and receives a proof pi, its task is to decide
whether it is in a real world or a simulated world. On receiving C, B generates key pairs,
sends (pk1, pk2,C) to A, and interacts with A as in Game1. When A promotes a distribution,
B picks m0 ← dist, picks random r1, r2, generates (vk, sigk) ← Sig.kg(1λ)n, computes
c1 = Enc1(pk1,m0; r1), c2 = Enc2(pk2,m0,vk; r2), sends (c1i, c2i, vki), (mi, r1i, r2i)i∈[n]
to its challenger and receives proofs (pi)i∈[n], then it generates signatures (σi)i∈[n] and sends
c∗ to A.

Finally, B outputs A’s output b′.

Note that when B is in the real world of its computational zero-knowledge game, A
proceeds in Game2; when B is in the simulated world of its computational zero-knowledge
game, A proceeds in Game3.

|Pr[W8]− Pr[W7]| ≤ Advczknizk can be proved similarly.
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Proof of Lemma 3. |Pr[W3]− Pr[W2]| ≤ nqAdvuf−otsig , |Pr[W7]− Pr[W6]| ≤ nqAdvuf−otsig .

Proof. Define E3 to be the event that in Game3, the adversary promotes a decryption
query satisfies that vk = vk∗z for some z and V er(vk, c1‖c2‖p, σ) = 1. Clearly, there is
|Pr[W3]− Pr[W2]| ≤ qPr[E3].

Next we prove that Pr[E3] ≤ nAdvuf−otsig . Let B be an algorithm that receives a vk as
input, then B generates key pairs, sends (pk1,pk2,C) to A, and interacts with A as in
Game3. When A promotes a distribution dist, B picks m0 ← dist, picks random r1, r2, it
picks a random j ∈ [n], sets vkj = vk and generates (vki, sigki) ← Sig.kg(1λ) for i 6= j,
computes c1 = Enc1(pk1,m0; r1), c2 = Enc2(pk2,m0; r2) and the simulated proof pj ,
sends (c1j , c2j , pj) to its challenger and receives a signature σj , then it generates signatures
(σi)i 6=j and sends c∗ to A.

Since j is randomly chosen, the probability that j = z is exactly 1
n , when event E3

happens and j = z, B can promotes (c1‖c2‖p, σ) as a success forge.

|Pr[W7]− Pr[W6]| ≤ qnAdvuf−otsig can be proved similarly.

Proof of Lemma 4. |Pr[W4]− Pr[W3]| ≤ nAdvccapke, |Pr[W6]− Pr[W5]| ≤ nAdvccapke.

Proof. To prove that |Pr[W4] − Pr[W3]| ≤ nAdvccapke, we define a sequence of intermediate
games {Hi}i=0,...,n. Let Hi be the same as Game Hi−1, except that the i-th ciphertext
is change to be the encryption of a random message. H0 is Game3. Next we prove that
|Pr[b′ = b in Hj ]− Pr[b′ = b in Hj−1]| ≤ Advccapke.

Let B be an IND-CCA adversary, on receiving pk, it sets pk2j = pk and generates
{pk1i}i∈[n] and {pk2i}i∈[n],i6=j normally, generates a simulated CRS C for NIZK, sends
(pk1,pk2,C) to A.

– When A makes decryption queries with ((vk, c1, c2, p, σ), i), if i 6= j, B answers decryp-
tion queries with sk2i; if i = j, B verifies the signature and NIZK, if both equations
hold, it transmits (c2, vk) to its decryption oracle and sends the answer to A.

– When A promotes a distribution, B picks m0 ← dist and random {mRi}i=1,...,j , picks
random r1, r2, and generates (vki, sigki) ← Sig.kg(1λ), it sends (m0j ,mRj , vkj) to
its challenger and sets the answer as c2j , then it computes c1i = Enc1(pk1i,m0i; r1i)
and c2i = Enc2(pk2i,mRi; r2i) for i < j, c2i = Enc2(pk2i,m0i; r2i) for i > j and the
simulated proof pi, signature σi, sends c∗ to A.

– When A’s output b′ = b, B outputs 1 and 0 else.

Note that when c2j is an encryption of m0j , the above game simulates Game Hj−1 perfectly;
when c2j is an encryption of mRj , the above game simulates Game Hj perfectly.

Proof of Lemma 5. |Pr[W5]− Pr[W4]| ≤ Advind−rso−cpapke .

Proof. Let B be an IND-RSO-CPA adversary, on receiving pk, it sets pk1i = pki and
generates {pk2i}i∈[n] normally, generates a simulated CRS C for NIZK, sends (pk1,pk2,C)
to A.

– WhenAmakes decryption queries with ((vk, c1, c2, p, σ), i), B answers decryption queries
with sk2i.
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– When A promotes a distribution (dist, Redist), B transmits (dist, Redist) to its encryp-
tion oracle and sets the answer as c1, then it picks random mR and random r2, and
generates (vki, sigki) ← Sig.kg(1λ), computes c2i = Enc2(pk2i,mRi, vki; r2i) and the
simulated proof pi, signatures σi, sends c∗ to A.

– When A makes the reveal query with I, B transmits the same I to its challenger and
sends the answer (mb, skI) to A.

– Finally B sets A’s answer as its output.

Note that when b = 0, the above game simulates Game4 perfectly; when b = 1, the above
game simulates Game5 perfectly.


