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Abstract. In this work we provide the �rst practical instantiation of
ring-LWE-based public-key encryption that is protected against active
attacks (i.e., adaptive chosen-ciphertext attacks) and equipped with coun-
termeasures against side-channel attacks (masking and hiding). We pro-
pose a novel provably �rst-order secure masking scheme that outper-
forms previous work and we combine this masking approach with blind-
ing and shu�ing techniques to further thwart higher-order attacks. Our
work shows that extremely fast and secured implementations of post-
quantum public-key encryption are possible on constrained devices and
we give evidence that ring-LWE-based schemes are highly suitable for
implementations on smart cards due to the large amount of linear oper-
ations. Even with conservative parameter choices (n = 1024, q = 12289)
for ring-LWE encryption we obtain 243 bits of quantum security based
on a recently established model. Our implementation requires 1,222,054
cycles for encryption and 2,372,242 cycles for decryption with masking
and hiding countermeasures on a Cortex-M4F. Furthermore, the �rst-
order security of our masked implementation is practically veri�ed using
the non-speci�c t-test evaluation methodology.

1 Introduction

Public-key encryption (PKE) is a fundamental asymmetric cryptographic primi-
tive and plays an extremely important role in numerous applications and security
protocols, where a prominent example is email encryption or key-transport for
key-exchange. However, in case one of the numerous attempts and approaches
to build a su�ciently large quantum computer turns out to be successful, Shor's
algorithm [58] could be used to break RSA and ECC-based PKEs in polynomial
time. This would be especially devastating as it would also jeopardize the secu-
rity of RSA-encrypted ciphertexts that are sent today, in case they are stored and
decrypted by a malicious entity when quantum computers become accessible1.

1 Note that this scenario is quite likely for encrypted emails as users (or their providers)
might keep them encrypted for a long time on a server over which they do not have
control.



Concerns over quantum computers have recently been fueled by an announce-
ment of NIST to start the standardization process for post-quantum cryptogra-
phy [14, 43] and by the statement of NSA's Information Assurance Directorate
(IAD) to "initiate a transition to quantum resistant algorithms in the not too
distant future" for Suite B cryptography [42].

Possible candidates to replace RSA and ECC-based public key encryption
are cryptosystems based on the hardness of certain lattice problems � the most
prominent example is NTRUEncrypt, which was proposed by Ho�stein, Pipher,
and Silverman [31] more than 18 years ago. However, recently cryptosystems
and various instantiations based on ideal lattices or more speci�cally the ring-
learning with errors (ring-LWE) problem also gained popularity as a research
topic. This happened presumably due to their simplicity, high e�ciency, and
scalability (see [10,11,17,54]), as well as because of theoretical foundations and
security reductions (see [37, 44]). A practical advantage of ring-LWE-based en-
cryption over NTRU is fast key generation and relatively easy constant-time
implementation, which is useful when constructing schemes for ephemeral key
exchange (e.g., NewHope [1] and BNCS [13]).

However, there are several challenges that have to be solved before ring-LWE-
based encryption can be considered as a serious replacement of RSA or ECC for
public-key encryption and (authenticated) key exchange. The most pressing, and
often overlooked issues are encryption errors (i.e., correctness), security against
adaptive chosen-ciphertext attacks (CCA2), and the protection against side-
channel attacks. In this context, a basic semantically secure encryption scheme
with parameters leading to a negligible amount of decryption errors is a require-
ment to achieve CCA2-security as discussed by Dwork, Naor, and Reingold [22]
when applying CCA2-transformations. This issue was also shown by practical
attacks on NTRU [32]. Moreover, CCA2-security is a condition for most real
world usage scenarios and has to be in place before side-channel protection can
be considered. Otherwise, an attacker with physical access to a decryption oracle
containing a secret key could simply create malformed ciphertexts to reveal a
secret key, without the need to perform a side-channel attack at all2. The im-
portance of CCA2-security is also re�ected in the current NIST draft submission
requirements for post-quantum public-key encryption and key-exchange [43] that
explicitly ask for CCA2-security.

Contribution. In this work we address the aforementioned issues with prac-
tical usage of ring-LWE PKE schemes as post-quantum alternative to RSA and
ECC. We provide a parametrization of ring-LWE that achieves negligible de-
cryption errors and security against chosen-ciphertext attacks using the con-
version described by Peikert [44] that is basically the well-established Fujisaki-
Okamoto [26] transformation. For parameter selection we follow the conservative
approach of [1] and show that it is still possible to achieve long-term security.
Moreover, we show how the CCA2-conversion interacts with an enhanced mask-
ing scheme for protection against di�erential power analysis (DPA). Our imple-

2 Note that a chosen-ciphertext attack on CPA-secure ring-LWE encryption [36,37] is
trivial; see [25].
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mentation and measurements were carried out on a Cortex-M4F, which is similar
to some extend to architectures of popular smart cards3. In the end we provide
the �rst implementation of ring-LWE encryption with enhanced side-channel
countermeasures (provably secure masking combined with hiding) that could be
run on an embedded microcontroller and that does not su�er the aforementioned
limitations of previous schemes (i.e., decryption errors and no CCA2-conversion).
Our implementation achieves 781,423 cycles for key generation, 1,222,054 cy-
cles for encryption, 2,372,242 cycles for decryption with masking and hiding
countermeasures for a conservative parameter choice with dimension n = 1024,
modulus q = 12289, and noise std. deviation ς =

√
11/2. The supposed secu-

rity level against currently known quantum adversaries in the model of [1] is
243-bits. It o�ers protection against timing side-channels and even after 100,000
traces no �rst order leakage was detectable by the non-speci�c t-test [27]. In a
fair comparison, our masking scheme outperforms previous masking approaches
for ring-LWE by at least a factor of 1.4.

2 Preliminaries

In this section we cover preliminaries on ring-LWE-based public-key encryption,
discuss previous attempts to mask ring-LWE-based PKE schemes, and cover
related work on protected NTRU implementations.

2.1 Notation

Unless explicitly stated we denote addition (resp. substraction) modulo q with
+ (resp. −). We denote multiplication by · and point-wise multiplication by ◦.
We use ⊕ as operator for addition modulo 2. Polynomials are labeled by bold
lower case letters.

2.2 Ring-LWE Encryption

The plain ring-LWE-based public-key encryption scheme we are using was pre-
viously proposed in [36, 38, 39] and key generation is described in Algorithm 1,
encryption in Algorithm 2, and decryption in Algorithm 3. All elements are
polynomials over Rq = Zq[x]/〈xn + 1〉 where we always assume implicit reduc-
tion modulo q and reduction modulo xn + 1 where the authors make explicit
use of the number theoretic transform4. The application of NTT techniques to
RLWE.CPA has been previously described in [47,54] and the same approach (be-
sides others) was used for e�ciency optimization of the NewHope key exchange
scheme in [1].

3 See http://www.arm.com/products/processors/securcore/sc300.php.
4 The NTT basically allows to e�ciently compute a polynomial multiplication a ·b as
a · b = INTT(NTT(a)◦NTT(b)).
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Algorithm 1: RLWE.CPA Key Generation

1: RLWE.CPAgen
NTT()

2: r̃1 ← NTT(SampleNoisePoly())
3: r̃2 ← NTT(SampleNoisePoly())
4: ã← NTT(SampleUniformPoly())
5: p̃ = r̃1 − ã◦r̃2
6: return (pk, sk) = ((p̃, ã), r̃2)
7: end

Algorithm 2: RLWE.CPA Encryp-
tion

1: RLWE.CPAenc
NTT(ã, p̃,m ∈ {0, 1}n; seed)

2: InitPRNG(seed)
3: ẽ1 = NTT(SampleNoisePoly())
4: ẽ2 = NTT(SampleNoisePoly())
5: c̃1 = ã◦ẽ1 + ẽ2

6: h̃2 = p̃◦ẽ1

7: e3 ← SampleNoisePoly()
8: c2 = INTT(h̃2)+e3+LWEEncode(µ)
9: return c = (c̃1, c2)
10: end

Algorithm 3: RLWE.CPA De-
cryption

1: RLWE.CPAdec
NTT(r̃2, c = [c̃1, c2])

2: return
LWEDecode(INTT(c̃1◦r̃2) + c2).

3: end

E�cient algorithms for the computation of the NTT exist when 1 ≡ q
mod 2n for q being a prime and n being a power-of-two. The NTT is espe-
cially helpful when coe�cients are �xed or needed twice as it is then possible
to directly store them in NTT representation to save subsequent transforma-
tions. By SampleNoisePoly we denote a function that samples a polynomial in
Rq with coe�cients coming from a noise distribution. In earlier works [28,36] this
distribution was usually a (high-precision) discrete Gaussian distribution with
parameter σ. However, newer results show that security can also be achieved
with distributions that are close to a discrete Gaussian (e.g, the binomial dis-
tribution [1] or some �xed distribution [12]). A uniformly random polynomial is
sampled by SampleUniformPoly() and we decided to include a in the public key
for simpli�cation (see [1,12] for a discussion of on-the-�y generation or choice of
a as global constant). Note that RLWE.CPA requires (as a minimum) a simple
message encoding (LWEEncode and LWEDecode) to allow the extraction of the
message from remaining noise (i.e., e∗ = e1r1 + e2r2 + e3) during decryption.
Therefore, Lindner and Peikert [36] proposed threshold encoding functions for
individual coe�cients which we implicitly also apply to polynomials. For a bit
of the message m ∈ {0, 1} they de�ne

LWEEncode(m) = m ·
⌊q
2

⌋
4



and the decoding of a corresponding coe�cient α ∈ Zq as

LWEDecode(α) =

{
return 1 i� α ∈

[
−
⌊
q
4

⌋
,
⌊
q
4

⌋)
return 0 otherwise.

}
Thus the error tolerance is t =

⌊
q
4

⌋
and decryption correctness is obtained as long

as e∗i ∈ [−t, t) for each coe�cient e∗i of e
∗. For more information on parameters

we refer to Table 1 and the discussion in Section 3.1.

2.3 Related Work on Masked ring-LWE

Masking schemes for the ring-LWE encryption scheme have already been inves-
tigated by Reparaz et al. in [51, 52] and subsequently in [49]. However, both
approaches su�er from drawbacks that make them di�cult to apply in practical
applications. The main idea of [51,52] is to split the secret key r2 into two shares
and to compute the multiplication r2 · c1 separately on both shares and add c2
to one of the shares. The authors construct a masked decoder that takes both
shares as input and checks whether certain pre-de�ned rules are satis�ed or not.
Note that for half of all inputs no rule applies and thus, the value cannot be
decoded immediately. This problem is solved by adding a certain δ to the shares
and restarting the decoding process. The decoding process can be re-started up
to 16 times until it eventually fails to decode. Thus, the decoding failure rate
rises. This is highly undesirable for our application, since a negligible failure
probability is required for the CCA2-conversions.

In their follow-up work [49], a di�erent masking scheme is applied. The au-
thors exploit that the ring-LWE decryption is almost additively homomorphic.
Instead of dividing the secret key into two shares, they split the ciphertext into
two shares and compute decrypt(c1+c′1, c2+c′2) to receive (m⊕m′) as output.
Notice that this procedure includes an additional encryption of m′ during the
decryption. Unfortunately, the addition of two ciphertexts implies that also the
including error vectors are added and this again raises the failure probability of
the scheme and lowers performance.

In both masking schemes, the output of the decryption is split into two parts,
(m ⊕m′) and m′. In Appendix B of [53] the authors state that they were able
to simulate a DPA attack targeting the pre-decoded value α. As the output of
the decryption is m = LWEDecode(α), we expect a DPA attack on m to be
feasible as well. Thus, the shares of m must not be combined on the device that
performs the decryption. Transmitting the message in two shares could lead to
compatibility issues as the receiver of the decrypted message has to be aware
of the masking scheme. Another more severe issue is that the simulated attack
on α from [53] requires an attacker to be able to choose arbitrary ciphertexts.
Such an attacker is even able to �nd the secret key without DPA as ring-LWE
itself does not provide CCA2-security (see [25]) but only security against chosen
plaintext attacks (CPA). Thus, we draw two conclusions for the implementation
of practically secure ring-LWE encryption:
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� Assuming a CPA-only attacker, the DPA attack on ring-LWE without masked
decoding is not feasible and thus no masked decoder is required.

� Assuming a CCA2 attacker, a CCA2-conversion has to be applied to ring-
LWE. Otherwise, an attacker would be able to break the system without
performing a DPA and thus rendering any side-channel countermeasures
useless. The message m must not be stored unmasked in this setting.

2.4 Related Work on NTRU

In this section we review works on implementation attacks on NTRU. This is
relevant as NTRU and ring-LWE have a similar structure (especially from the
perspective of an implementer). Thus, (older) works on protecting NTRU are a
natural reference for countermeasure to protect ideal (or even standard) lattice-
based scheme that should not get overlooked.

In [3] a hardware implementation of NTRU and a �rst study regarding DPA
attacks is provided. The attack allows to recover secret coe�cients one-by-one
using a Hamming distance model and Pearson's correlation coe�cient. In [62]
a correlation power analysis of an NTRU implementation equipped with the
blinding countermeasures proposed in [41] is attacked. These countermeasures
are addition of a random integer before convolution that can easily be removed,
blinding using a random value, and randomization of the order of which coef-
�cients are processed. As additional countermeasures in [62] random delays are
proposed, masking, as well as dummy operations. A �rst order collision attack
on NTRU is given in [63] and as countermeasure, besides random delays, a math-
ematical randomization is proposed where two inputs a and b to a convolution
are randomly rotated as a′ = a · xi and b′ = b · xn−i for a random i so that the
result a′ · b′ = a · xi · b · xn−i = ab. The same countermeasure has recently also
been proposed by Saarinen in [56] for lattice-based signatures with the obser-
vation that the shifting can be integrated into the NTT. Additionally, Saarinen
proposes the multiplication with random constants that could also be integrated
into the NTT computation. Timing attacks on NTRU have been investigated
in [59]. Fault attacks are given in [34] and countermeasures against fault attacks
are given in [35], mainly using spatial and temporal duplication.

3 CCA2-Conversion and Masking

In this section we describe our approach for parameter selection, how we deal
with decryption errors, and how we apply the generic Fujisaki-Okamoto [26] (FO)
CCA2-transformation to the concrete parametrized ring-LWE-based encryption
scheme. Moreover, we describe side-channel countermeasures and analyze fault
resistance.

3.1 Parameter Selection

For parameter selection we roughly follow the conservative approach from [1].
The scheme should provide long-term security and withstand possible dimension-
halving attacks. Moving to larger dimensions also simpli�es the security analysis
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Table 1: Security levels and failure probability of previously proposed ring-LWE-
based public-key encryption or key-exchange schemes. The security level was
computed based on the model in [1]. Note that C-Sec = classical bit-level security
and Q-Sec = known quantum bit-level security.

Set Parameter (n, q, ς) C-Sec Q-Sec Failure

RLWE.CPA [28] (256, 7681,≈ 4.5) 64 58 ≈ 2−11

RLWE.CPA [28] (512, 12289,≈ 4.9) 144 131 ≈ 2−10

BCNS [13] (1024, 232 − 1,≈ 3.2) 86 78 2−217

NewHope [1] (1024, 12289,≈ 2.8) 282 256 2−60

This work (1024, 12289,≈ 2.3) 268 243 2−128

as attacks that might work in lower dimensions do not have to be considered
anymore. Moreover, our goal is to transfer a 256-bit symmetric key to account
for quantum acceleration of brute-force attacks [29]. With n = 1024 we have
four coe�cients to encode one bit of a 256-bit message (similar as in NewHope
and exactly as described in [47]) and can thus tolerate noise levels 4 · q4 = q.
However, to obtain a decryption error probability lower than 2−128 for the basic
CPA-secure scheme we have to lower the parameter of the binomial distribu-
tion used in [1] to k = 11 (contrary to k = 16 in NewHope). This way the
noise has a standard deviation of ς =

√
11/2 ≈ 2.3452. This slightly lowers the

security level but still gives us more than 128-bits of security against a known-
quantum adversary. Our �nal parameter set is compared with previous proposals
in Table 1 (see Table 5 and Appendix A for more details and the parameters
used for the scripts). However, the bit security level compared to NewHope is
only slightly smaller and the security is still better than BCNS or previously
proposed RLWE.CPA parameters. It is also worth mentioning that the security
estimation in [1] uses several worst-case estimations/simpli�cations so that the
concrete security of the instances might be higher (i.e., there is currently no
known algorithm that breaks, e.g., BCNS with 286 steps). We would also like
to note that we do not cut any bits of the second component of the ciphertext
as described in [47]. This way we can sustain a larger error than NewHope (it
has tolerance of 3q

4 ) but at the cost of a larger ciphertext.

3.2 CCA2 Conversion for RLWE.CPA

In this work we use the second Fujisaki-Okamoto [26] transformation to achieve
security against adaptive chosen ciphertext attacks (CCA2). For this transfor-
mation, Peikert came to the conclusion [44] that it is the best choice to convert
a passively secure encryption scheme into an actively secure one (in the random
oracle model; CCA2 due to security against adaptive attacks). For this transfor-
mation, two random oracles G : {0, 1}L → {0, 1}l and H : {0, 1}L+l → {0, 1}λ
are required. The parameter L determines the size of message to be encrypted, l
the length of the input to ring-LWE encryption, and λ the length of the seed for
the PRNG. In our implementation, the parameters L, l, and λ are set to 256.
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We de�ne RLWE.CCAenc
NTTand RLWE.CCAdec

NTTas follows:

� RLWE.CCAenc
NTT(ã, p̃,M): let (c1, c2)= RLWE.CPAenc

NTT(ã, p̃, ν;H(ν||M)) where
ν is a nonce ∈ {0, 1}L and H(ν||M) seeds the PRNG of RLWE.CPAenc

NTTand
c3=G(ν)⊕M and output (c1, c2, c3).

� RLWE.CCAdec
NTT(r̃2, ã, p̃, c1, c2, c3): compute ν = RLWE.CPAdec

NTT(r̃2, c1, c2) and

M = G(ν)⊕c3, and check whether (c1, c2)
?
= RLWE.CPAenc

NTT(ã, p̃, ν;H(ν||M)).
If so, output M , otherwise output fail.

Using this transformation and our chosen parameters we obtain a theoretical
public-key size of |(a,p)| = 2ndlog2(q)e = 2 · 1024 · 14 = 28672 bits (3584
bytes) and a theoretical ciphertext size of |(c1, c2, c3)| = 2ndlog2(q)e + 256 =
28928 bits (3616 bytes). The secret key is |r2| = ndlog2(q)e = 14336 bits (1792
bytes). Note that it would be possible to generate the secret key or a from a
seed of 256-bits (or to choose a as a global constant; see [1] for a discussion).
Additionally, the secret key r2 could be encoded as it is not distributed uniformly
but roughly follows a discrete Gaussian (see [46, 56]). However, for simplicity,
comparability, and maintainability, we leave these state-of-the art optimizations
as future work. To obtain negligible error we replace the encoding and decoding
functions (LWEEncode and LWEDecode) with variants that encode one message
bit into four coe�cients [47] (as mentioned earlier). The encoding function used
in RLWE.CPAenc

NTTis de�ned as

Encode(m) =

n−1∑
i=0

m[bi/4c] · q · xi

(wherem[i] denotes the i-th bit ofm). The decoding function Decode(α1, α2, α3, α4)
used in RLWE.CPAdec

NTTthat takes four coe�cients α1, α2, α3, α4 ∈ [−bq/2c, bq/2c]
as input (that carry one bit of the message) is de�ned as

Decode(α1, α2, α3, α4) =

{
return 0 i� |α1|+ |α2|+ |α3|+ |α4| < q
return 1 otherwise.

}

3.3 Masked CCA2-Secure ring-LWE Decryption

To achieve side-channel resistance, it is necessary to mask all vulnerable mod-
ules of the CCA2-secure decryption. As depicted in Figure 2, these modules
are RLWE.CPAdec

NTT, G, H, and RLWE.CPAenc
NTT. Note that it is not su�cient to

only protect RLWE.CPAdec
NTT, because in a chosen-ciphertext setting an adversary

can target the unmasked output of RLWE.CPAdec
NTT(see Appendix B of [53]) to

recover the secret key. Therefore, all modules that receive the masked output
of RLWE.CPAdec

NTTas input need to be masked as well. Relying on the preimage
resistance of G, we do not need to mask c3 ⊕G.

In the following, we analyze the �rst-order security of each module separately
in the common probing model [33]. To this end, we show that an attacker, which
can probe one intermediate variable of the computation, cannot derive any secret
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information. This notion is equivalent to showing that each intermediate variable
follows a distribution independent of any sensitive variable. For one probe it is
indeed su�cient to analyze each module separately, if the input and output
distributions between the modules are consistent. Therefore, 1-probing security
with correct input distributions for each module implies 1-probing security of
the complete masked CCA2-secure decryption. However, for more probes (i.e.,
2-probing security) this approach would not cover every possible attack vector
and more sophisticated analysis techniques need to be utilized.
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Fig. 3: Our masking scheme for the ring-LWE decryption.
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Ring-LWE Decryption. As mentioned in Section 2.3, the masking schemes
of the ring-LWE decryption from [51, 52] and [49] su�er from a higher failure
probability and slower performance. Therefore, we present a new approach which
avoids the aforementioned problems and still provides side-channel protection.
Figure 3 shows the basic structure of our masked ring-LWE decryption. For
the initial multiplications, additions, and INTTs we rely on a simple sharing of
r2 = r′2 + r′′2 similar to [51,52]. Given the linearity of the operations, it is easily
possible to perform these computations on each share separately. However, this
approach does not work for the �nal Decode. In [51,52], the authors proposed to
use a rather complex masked decoder instead. To increase e�ciency, we avoid a
speci�c masked decoder and remask the intermediate values. To this end, �rst a

random bitstring m′
$← {0, 1}256 is sampled and encoded. The encoded bitstring

is added to the �rst share, before adding the result to the second share. Then
Decode is performed once on this new share to compute m′′ with m′′⊕m′ = m.
With this approach, we can avoid the costly masked decoder and the additional
error of the scheme from [49].

Correctness. To show the correctness of this scheme, we �rst denote the outputs
of the INTT operations as α′ and α′′ with α = α′+α′′. Showing that this relation
holds is trivial, since the INTT is linear and the scheme is identical to [51, 52]
up to this point. Nevertheless, α′ and α′′ are computed as

α′ = INTT(r̃′2◦c̃1 + c̃2)

α′′ = INTT(r̃′′2◦c̃1)

and the unshared output α is de�ned as

α = INTT(r̃2◦c̃1 + c̃2)

= INTT((r̃′2 + r̃′′2)◦c̃1 + c̃2)

= INTT(r̃′2◦c̃1 + r̃′′2◦c̃1 + c̃2)

= INTT(r̃′2◦c̃1 + c̃2) + INTT(r̃′′2◦c̃1)
= α′ + α′′.

Next, we show that m = m′ ⊕m′′. To this end, we use that Decode is linear
when the ring-LWE Gaussian noise term r2e2+r1e1+e3 is less than q for every
four coe�cients. The noise term is denoted in the following example as noise.
Then the following relation holds

Decode(Encode(x) + Encode(y) + noise)

= Decode(Encode(x))⊕ Decode(Encode(y) + noise))

= x⊕ y

where noise is small enough to not cause a decoding error. This property is not
satis�ed for the outputs of the INTTs α′ and α′′ as the uniform masking results
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in too much additional noise. Therefore, we remask to reduce the noise level and
compute the output of RLWE.CPAdec

NTTas

Decode(α′ + Encode(m′) + α′′)

= Decode(α+ Encode(m′))

= Decode(α)⊕ Decode(Encode(m′))

= m⊕m′ = m′′

with α = Encode(m) + noise. Thus the decrypted ciphertext is Boolean-masked
by the random bitstring m′.

Security Analysis. The masked ring-LWE decryption as described above does
indeed compute the correct results. However, in its current form it does not
provide SCA security. This is due to the rounding applied on the ciphertext.
In particular, the intermediate value α + Encode(m′) mod q leaks information
about the sensitive variable α even though m′ is a fresh random mask. The issue
becomes clear by closer inspection of the distribution of α which is the encoded
message m. For simplicity we assume in the following example that α and m
are only one coe�cient meaning that m is a uniformly distributed bit. Thus, α
follows one of two distributions depending on the value of m.

α ∼ N (0, σ) , if m = 0,

α ∼ N
(⌊q

2

⌋
, σ
)
, if m = 1,

where σ denotes the standard deviation of the noise terms r2e2 + r1e1 + e3.
Since m is only one bit, it is su�cient to mask m (and thus α) with one fresh
random bit m′. If we randomly switch the distribution of α between the two
cases, an adversary that can probe the masked α will not be able to distinguish
between m = 0 and m = 1. However, due to rounding the mean of α for m = 1
is
⌊
q
2

⌋
instead of exactly q

2 . Therefore, to switch from 0→ 1 it is required to add⌊
q
2

⌋
to α, while in the case 0 → 1

⌊
q
2

⌋
+ 1 are required to reach a mean of 0.

This asymmetry makes it impossible to mask α with addition modulo q, since
depending on the secret value m a di�erent term needs to be added to α. To
solve this issue, we reduce the modulus of two operations (i.e., α′ + Encode(m′)
and (α′+Encode(m′))+α′′) to q−1. Now, the switch for both cases requires the
addition of

⌊
q
2

⌋
enabling us to use our remasking scheme securely. It should be

noted, that this approach introduces an additional error. However, as there are
only two additions performed mod (q−1) the error is at most 2 for one coe�cient,
resp. 8 for four coe�cients. Since our decoding is capable of correcting an error
up to q per four coe�cients this is negligible. The �nal version of the masked
ring-LWE decryption algorithm is shown in Algorithm 4.

In [44], Peikert deals di�erently with the odd modulus (as the context is
di�erent as well). His solution is to multiply the input by two and subtract a
random bit mod 2q to ensure that the result is not biased. This leads to the
following distributions of α
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α ∼ N (2q − 0.5, σ) , if m = 0,

α ∼ N (q − 1.5, σ) , if m = 1,

In this case, the same argumentation as above holds and thus we cannot
apply this approach.

Algorithm 4: Masked ring-LWE Decryption

Input : r̃′2, r̃
′′
2 , c̃1, c̃2,m

′

Output: m′′

1: α′ ← r̃′2◦c̃1
2: α′ ← α′ + c̃2
3: α′ ← INTT(α′)
4: α′′ ← r̃′′2◦c̃1
5: α′′ ← INTT(α′′)
6: t← Encode(m′)
7: α′ ← α′ + t mod (q − 1)
8: α′′ ← α′ + α′′ mod (q − 1)
9: m′′ ← Decode(α′′)

Lemma 1. When r̃′2 and m′ are uniformly and independently distributed in

Rq and {0, 1}n/4, all intermediate variables in Algorithm 4 have a distribution

independent of the sensitive variables r2 and m.

Proof. For the proof, we analyze the distributions of the variables of each line
from Algorithm 4 and show that their distributions are independent of the sen-
sitive variables r2 and m.

� Lines 1,2,4 : r̃2 is masked by r̃′2. Therefore, r̃
′
2 and r̃′′2 follow each a uniform

distribution in Rq which is independent of r̃2 and each result of these lines
cannot reveal any information about r̃2. In fact, since c̃1 and c̃2 are part
of the ciphertext, an adversary can simulate the intermediate values per-
fectly without knowledge of any sensitive variable. Indeed, c̃2 depends on r̃2
but according to the ring-LWE assumption an attacker does not gain any
information about r̃2 by observing c̃2.

� Lines 3,5 : The result of an INTT of a variable which is independent of
any sensitive variable is still independent of any sensitive variable. In other
words, the attacker can perfectly simulate this variable with only c̃1 and c̃2.

� Line 6 :m′ is a uniform random variable. Therefore, the encoding of it can be
perfectly simulated without additional knowledge and its distribution does
not leak any sensitive information.

� Line 7 (INTT(r̃′2◦c̃1+ c̃2)+Encode(m′) mod (q−1)): r̃′2 andm′ are indepen-
dent random variables and c̃1 and c̃2 are part of the ciphertext. Therefore,
the result can be simulated and does not leak sensitive information.
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� Line 8 (INTT(r̃2◦c̃1 + c̃2) + Encode(m′) mod (q − 1)): Here the �rst term
(INTT(r̃2◦c̃1 + c̃2)) can be written as Encode(m) +N (0, σ). Therefore, the
complete equation is simpli�ed to Encode(m) + Encode(m′) +N (0, σ) mod
(q − 1). Since the added noise is independent of the sensitive variable m,
we can further reduce the equation to Encode(m)+Encode(m′) mod (q− 1).
The result of this addition is equally likely 0 or b q2c and does not depend on
leaked information about m (resp. r̃2), since it is perfectly masked by m′.
As mentioned before, this would not hold for an odd modulus, e.g., q.

� Line 9 : The input to Decode is masked and therefore the output does not
leak information.

As shown above, the distribution of every intermediate variable of Algo-
rithm 4 is independent of the sensitive variables r̃2 and m. Therefore, it is not
possible for an attacker, which can probe one value, to derive sensitive infor-
mation. The output shares m′ and m′′ with m = m′ ⊕m′′ are both uniformly
distributed in {0, 1}n/4.

G and H (SHAKE). We choose to instantiate G and H with the commonly-
used extendable-output function SHAKE that is based on the Keccak algo-
rithm [7] and apply the masking scheme presented in [8]. Therefore, we do not
include the security analysis of this module and instead refer the reader to the
original publications.

Ring-LWE Encryption. While in the original Ring-LWE encryption scheme
only one encoded value is added to the ciphertext polynomial c2, our masking
scheme requires the addition of two shares during the re-encryption.

c2 = p · e1 + e3 + Encode(m′) + Encode(m′′)

Correctness. In this equation, m′ ⊕m′′ = m. Since our modulus q is odd and
therefore 2b q2c 6= q, we have to adjust this operation so that the correct result is
computed, i.e., the result of the re-encryption has to be exactly the same as the
result of the original encryption. The naive approach would be to multiply the
intermediate result of c2 (without the message) by 2, encode the shares of m as
{0, q}, perform the two additions modulo 2q, and divide the result by 2. While
this approach indeed yields the correct result, it introduces an easily detectable
side-channel leakage as the last bit of the intermediate results before the division
is always set to 1 if and only if the unshared message bit is 1, i.e. q has been
added exactly one time. Similarly, the last bit is always set to 0 if and only if
the unshared message bit is 0. Similarly as in the decryption, we cannot apply
the technique described in [44] as adding a random bit yields a di�erent result
if the value that bit is added to is odd. In the CCA2 setting, we must ensure
that both, the original encryption and the re-encryption output exactly the same
result and thus even a single bit error is not tolerable.

We therefore propose a di�erent approach to securely compute this addition.
The computation only outputs a false result in case both shares, m′ and m′′,
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have the value 1. In this case, the floor operation cuts o� 1
2 two times and thus

the result is o� by one. To get the correct result, we have to add m′ AND m′′.
Obviously, we cannot compute this multiplication of the shares directly without
leakage. Thus we split the shares into subshares.

m′ = m′1 +m′2

m′′ = m′′1 +m′′2

Notice that for this calculation m′ and m′′ are implicitly treated as polyno-
mials in Rq and not as bit vectors. For simplicity we assume in this description
that one bit is encoded into one coe�cient but this approach trivially general-
izes to multi-coe�cient encodings as well. As a consequence of the splitting into
shares, we have to compute (m′1 +m′2)◦(m′′1 +m′′2) instead of m′ AND m′′. To
obtain the correct result, we compute:

cpre2 = ((((p · e1 + e3) +m′1m
′′
1) +m′1m

′′
2) +m′2m

′′
1) +m′2m

′′
2

c2 = cpre2 + Encode(m′) + Encode(m′′)

Note that the terms p · e1 + e3 provide the randomness to secure the masked
AND computation akin to Trichina's masked AND [61]. Therefore, the order of op-
erations in the computation of cpre2 is important for the security. Our complete
masked re-encryption is shown in Algorithm 5. It should be noted that an at-
tacker with knowledge of p·e1+e3+Encode(m) is able to conduct a side-channel
attack on the intermediate value p ·e1+e3 to recover Encode(m). However, this
approach is only applicable for valid ciphertexts, i.e., the input (c1, c2) of the
CCA2-secure decryption has been generated using the CCA2-secure encryption.
Otherwise, m ist anders also original m For valid ciphertexts, this attack does
not pose a threat to the secret key r2 since m can be known by the attacker,
i.e., the attacker uses the public key to generate valid ciphertexts.

Lemma 2. When each coe�cient of e1, e3 is independent of the others and fol-

lows a Gaussian distribution ∼ N (0, ς), m′ is uniformly distributed in {0, 1}n/4,
m′1 and m′2 are uniformly and independently distributed in Rnq , and all these

masks are independent from each other, all intermediate variables in Algorithm 5

have a distribution independent of the sensitive variable m.

Proof. For the proof, we analyze the distributions of the variables of each line
from Algorithm 5 and show that they are independent of the sensitive variable
m.

� Lines 1,2 : The terms are completely independent of m.
� Lines 3,4 : m′1 (resp. m

′′
1) are new random masks that are used to mask the

shares of m. Since only one share of m is involved in each line, the result is
still independent of m.

� Lines 5,6,7,8 : Both terms of each line are uniformly and independently dis-
tributed in Rq. Therefore, the multiplication of these terms does not create
a new dependency on m and the results can be easily simulated.
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Algorithm 5: Masked Ring-LWE Encryption

Input : p, e1, e3,m
′,m′′,m′1,m

′′
1

Output: c2
1: c2 ← p · e1

2: c2 ← c2 + e3

3: m′2 ← m′ −m′1
4: m′′2 ← m′′ −m′′1
5: t11 ←m′1◦m′′1
6: t12 ←m′1◦m′′2
7: t21 ←m′2◦m′′1
8: t22 ←m′2◦m′′2
9: c2 ← c2 + t11
10: c2 ← c2 + t12
11: c2 ← c2 + t21
12: c2 ← c2 + t22
13: `′ ← Encode(m′)
14: `′′ ← Encode(m′′)
15: c2 ← c2 + `′

16: c2 ← c2 + `′′

� Lines 9,10,11,12 : The �nal result can be written as p · e1 + e3 +m′ ·m′′ in
which the distribution of the term m′ ·m′′ depends on m. However, we rely
on the security of ring-LWE encryption (i.e., m cannot be recovered from
p ·e1+e3+Encode(m)) to mask it. In particular, p ·e1+e3 provides enough
randomness to hide m′ ·m′′. The security properties of Lines 9-11 are similar
given that they only include parts of the total product (m′1+m

′
2)·(m′′1+m′′2).

� Lines 13,14 : Each of the shares m′, m′′ is uniform distributed in {0, 1}n/4
and independent of m. Therefore, the encoding can be simulated by an ad-
versary without knowledge of a sensitive variable.

� Lines 15,16 : The �nal result p · e1 + e3 +Encode(m) does not leak informa-
tion about m based on the security properties of the ring-LWE encryption.
Furthermore, m′ ·m′′+Encode(m′) does not leak more information about m
than Encode(m). Thus, the intermediate result of Line 15 also does not leak
information about m.

As shown above, the distribution of every intermediate variable of Algo-
rithm 5 is independent of the sensitive variables r2 and m. Therefore, it is not
possible for an attacker, who can probe one value, to derive sensitive information.

3.4 Hiding

To increase the level of noise and make higher-order attacks harder, we do
not only rely masking to thwart side-channel analysis but also include hiding
schemes. We therefore applied the aforementioned blinding technique from [56]
to our implementation by multiplying the coe�cients of c̃1 by a random value
a ∈ [0, q− 1] and the coe�cients of r̃2 by a di�erent random value b ∈ [0, q− 1].
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The coe�cients of c̃2 are multiplied by ab mod q as they get added to the prod-
uct (a · c̃1) · (b · r̃2). The mask is then removed by multiplying all coe�cients
by (ab)−1 mod q. Due to the linearity of the NTT it is possible to remove the
mask after the result has been transformed back to the time domain. To intro-
duce even more noise we used shu�ing to execute linear operations during the
decryption in a randomized order. To achieve this we shu�ed the list of coef-
�cients by using the Fisher-Yates algorithm [24]. A similar countermeasure has
been implemented by Pessl [45] to avoid cache-timing attacks. For every run of
the decryption, the list of coe�cients gets shu�ed again.

3.5 Fault Resistance

Fault injection is an additional physical threat for embedded systems. Previous
publications have analysed the vulnerability of lattice-based signature schemes
against fault attacks [9,23] and found several attacks. In the following, we present
the � to our knowledge � �rst vulnerability analysis of ring-LWE.

In our analysis, we assume that the adversary targets the secret key r2 dur-
ing the CCA2-secure decryption. Without CCA2-security, a fault attack is not
necessary to recover the secret key as described before. Given that the CCA2-
conversion includes a validity check at the end, it inherently includes resistance
against certain faults. In particular, any fault injected in the ring-LWE decryp-
tion that changes the output of the ring-LWE decryption module will be detected
by the re-encryption at the end5. Therefore, to perform any type of fault attack,
it is required to inject another fault into the input of H (to change the seed) or
the ring-LWE encryption with the goal of passing the validity check. Depend-
ing on the capabilities of the fault attacker, this approach can be very complex.
Therefore, in most cases it is easier to directly inject the fault in the validity
check itself, e.g., by skipping instructions.

Furthermore, due to the construction of our scheme the attacker does not
have direct access to the output of the ring-LWE decryption module. Instead
the output is de�ned as

out = c3 ⊕G(m)

= (M ⊕G(m))⊕G(m) =M

whereM is the message andm the output of the ring-LWE decryption. Assuming
that the attacker knows M and G(m), the faulty output is

outF = c3 ⊕G(mF )

and therefore the only novel information the attack can access is G(mF ). Based
on the pre-image resistance of G, it is not easily possible to compute mF from
G(mF ) for arbitrary mF . This poses another di�culty for the fault attacker, as

5 There are no two distinct outputs of the decryption that can be valid at the same
time
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it is necessary to skip the computation of G to perform attacks that target the
output of the decryption assuming mF is uniformly distributed in {0, 1}n/4.

However, it is possible to overcome this limitation. A much simpler attack
relies on the basic vulnerability of ring-LWE decryption to chosen ciphertexts.
By skipping the validity check at the end, the attacker e�ectively removes the
CCA2-security. Meaning an attacker can send chosen ciphertexts and receive the
output

out = c3 ⊕G(mC)

where mC denotes the output of the decryption for the chosen ciphertext. Even
though, we noted above that G provides pre-image resistance, this does not
apply when mC has only a very limited value space. Then it is possible to
compute G(mC) for all possible mC and use out to check for the correct one.
For our implementation, an attacker can target each coe�cient of the secret key
polynomial separately by choosing c̃1 as a polynomial with all coe�cients but
one set to zero. Therefore, an attacker needs to compute only q di�erent values
for mC . Overall, this attack only requires the injection of one fault at the end
to skip the validity check of the CCA2-conversion.

To sum up, our implementation provides basic resistance against simple faults
in the ring-LWE decryption. However, if the attacker can skip the validity check,
it becomes very easy to extract the secret key. Therefore, to increase the resis-
tance against physical attacks, additional countermeasures need to be included
to protect this �nal check.

3.6 Higher-Order Masking

As mentioned before, it is not su�cient to analyze the security against d probes
for each modules separately to show the security of the full decryption. Never-
theless, we now brie�y discuss the possible extension of our masked modules to
higher-orders.

For the �rst part of RLWE.CPAdec
NTT, each share is processed separately and

therefore extending the security to more probes is trivial. A designer only needs
to increase the number of shares and process them similar to α′′. However, the
addition of the shares in the second part requires special care, e.g., order of op-
eration, to obtain higher-order security. Nevertheless, both extensions especially
the �rst half are very e�cient due to the linear increase with the order in the
number of operations.

For G and H we refer to [8] for a discussion of higher-order resistance. We
want to note that for this module the e�ciency strongly depends on the chosen
function. Keccak is e�cient for �rst-order security. However, for higher orders
a di�erent function might be better suited.

The module RLWE.CPAenc
NTTrequires additional care. With two probes, it is

easily possible to probe p · e1 + e3 and the �nal result p · e1 + e3 + Encode(m)
to derive the sensitive value Encode(m). Thus, our current approach cannot
be simply adapted to higher orders. Nevertheless, the inclusion of additional
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randomness should enable higher-order masked encryption rather easily which
we leave as part of future work.

Maintaining an additional share means that we need extra temporary storage
for one polynomial that stores the third share of the key (2048 bytes) and one
additional Keccak state (200 bytes). Our target platform provides 192 kbytes
of RAM and therefore we expect that a higher-order masking scheme still �ts
onto the microcontroller.

4 Implementation

To evaluate the performance of the CCA2-conversion and our masking scheme,
we implemented the constructions on an ARM Cortex-M4F. Our evaluation
platform is an STM32F4 DISCOVERY board with 1 Mbyte of �ash memory,
192 Kbyte of RAM, a �oating-point unit (FPU), and a true random number
generator (TRNG). To make sure our implementations has a constant or secret-
independent running time, we implemented critical components in assembly lan-
guage. Furthermore, to prevent cache timing attacks we disabled the cache of
the on-board �ash memory by setting the DCEN bit of the FLASH_ACR register to
zero.

We use SHAKE-128 as instantiation for both hash functions H and G.
SHAKE-128 is standardized in FIPS-202 [18] and an extendable-output func-
tion that is based on the Keccak algorithm [7]. As the hashing plays a minor
role in terms of performance, we selected the readable Keccak implementa-
tion by Saarinen [55] as basis for our implementation as it allowed us to easily
implement side-channel countermeasures.

There are a lot of algorithms that sample Gaussian distributed values from
uniformly distributed ones. But most of them do not have a constant running
time. For instance, the Bernoulli approach from [19] leaks timing information and
is thus irrelevant for our implementation. Therefore, we decided to implement
the binomial sampler from [1] with k = 11 as it is simple and has a constant
execution time. It basically counts the Hamming weight of two 11-bit vectors.
We realize the computation of the Hamming weight via look-up tables. To this
end, we store a table with 64 entries that stores the Hamming weight of all 6-bit
values. By looking up the upper �ve bit and the lower six bit of the 11-bit vector,
we can compute the Hamming weight in a fast and e�cient way. Using only one
table look-up for the entire bit vector would require 211 = 2048 table entries
what we decided would be excessive for a microcontroller application.

To sample the necessary randomness, we implemented a pseudo-random num-
ber generator (PRNG) that gets initialized by 256 bits. For encryption we gen-
erate a secret seed from the on-board TRNG and then use a PRNG to generate
Gaussian noise. As we have to perform a re-encryption during the decryption
that must sample the exact same values, we cannot use the TRNG for this pur-
pose but have to initialize the PRNG with the same seed. As our evaluation
board does not feature a crypto-coprocessor, we use a software implementation
of the ChaCha8 stream cipher by Daniel J. Bernstein as PRNG [6].
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For the implementation of polynomial arithmetic we need fast and constant-
time modular reduction to rule out SPA and remote timing attacks. As a con-
sequence, the implementation of the NTT and especially the three-instruction
modular reduction from [16] is not suitable. It uses the DIV instruction, which
has a data-dependent variable execution time that can reach from 2 to 12 clock
cycles.

Therefore, we implemented a Barrett reduction [5] using the FPU of the
Cortex-M4F. Instead of using the DIV instruction, we perform a �oating-point
multiplication of the input by 1/q to �nd the number of necessary subtractions of
q. As the �oating-point multiplication takes only one clock cycle, this reduction
technique is timing-independent and takes 6 clock cycles, of which 4 are only
used for the transition between integer and �oating point representation. The
downside of this approach is that the result might not be fully reduced as the
�oating point representation is limited to a certain precision. However, this does
not pose a problem as we are placing 14-bit numbers in 32-bit registers and
subsequent reductions can easily handle numbers that are greater than q. De
Clercq et al. [16] also present an optimized implementation of the NTT. They
implement the NTT in assembly and also proposed an optimized memory access
scheme. Their idea is to store two coe�cients in one data word and being able to
load/store both coe�cients with the same instruction. Alkim et al. implemented
the NTT as well as reported in [2]. By combining a Montgomery reduction with
Barrett reduction, their NTT is considerably faster than the one from [16] and
most importantly also has a constant execution time. We therefore embedded
the NTT from [2] into our implementation.

For our constant-time implementation of the decoder, we need to compute
the absolute of a coe�cient as the input is some x ∈ [−q/2, q/2]. We realize
this computation by �rst extracting the sign of the coe�cient using the SXTH

instruction that outputs 0 for positive values and −1 for negative ones. Then
we multiply this value by 2 and add 1 to get −1 for negative values and 1 for
positive ones. Notice that the last two steps can be executed in a single cycle
using the MLA instruction. We then multiply the value with its sign to get the
absolute value in 3 clock cycles. After that we sum up four coe�cients and check
whether the result is greater or equal to q or not and return the single bit output
of this function.

For our implementation of the blinding countermeasure, we need to compute
the inverse of the product of the blinding values (ab)−1 mod q. To realize this
inversion e�ciently, we used an addition chain to compute (ab)q−2 mod q what
equals (ab)−1 mod q according to Fermats little theorem. To shu�e the list of
indices of the polynomials and therefore change the order of the computations
according to the Fisher-Yares algorithm [24], we run a loop with n steps and in
each step, we exchange the index at the position of the loop counter with a ran-
dom one. We apply this shu�ing to all point-wise multiplications and additions
since a side-channel attack will most likely target these operations for an attack.
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5 Side-Channel Evaluation

Even though we provide proofs for most of our modules against one probe,
practical �rst-order side-channel security is not automatically implied by that.
Implementation errors can still negatively a�ect the resistance due to e�ects that
are not included in the model [4]. Therefore, to completely evaluate the security
of our masked implementation, we performed several side-channel experiments.
Since our aim is to show �rst-order resistance, we rely on the commonly-used
t-test leakage detection methodology initially proposed in [15,27]. In particular,
we perform the non-speci�c �xed vs. random t-test. To this end, we take two
types of measurements. One with �xed input and one with random input. The
t-statistic t is computed as

t =
µF − µR√
σ2
F

nF
+

σ2
R

nR

where µF , σ
2
F , and nF (resp. µR, σ

2
R, and nR) denote the mean, variance, and

number of measurements set with �xed input (resp. random input). If the value
exceeds the threshold |t| > 4.5, the test has detected leakage. In the follow-
ing, we performed the test at �rst and second order. For bivariate second-order
evaluation, we relied on the optimal centered product [48,60] as the combination
function and tested every possible combination of all sample points of the traces.
For more information, we refer the interested reader to further literature related
to this side-channel evaluation methodology [57].

We use a PicoScope 5203 with a sample rate of 125 MS/s to measure the
power consumption over the STM32F4 Discovery board. To increase the qual-
ity of the measurements, we reduce the internal clock to 12 MHz and remove
some capacities. The communication with the board is done over USART as
the on-board USB interface causes additional noise in the power traces. Since
the whole masked decryption requires an extremely high number of clock cy-
cles, we cannot easily perform a bivariate evaluation with our proposed method.
Instead, we split the practical evaluation into the modules similar to the theo-
retical evaluation of Section 3.3. For �rst-order evaluation this does not a�ect
the evaluation coverage, since each sample is considered separately. However, for
the bivariate second-order test we do not cover the scenario of two probes in dif-
ferent modules. Nevertheless, our goal is to show the existence of second-order
leakage to verify our measurement setup and we already found this for every
module separately. Therefore, it is not necessary to further consider the special
case of two probes in two di�erent modules. For each module we took 100,000
measurements and performed the aforementioned tests. To further speed up the
second-order evaluation, we adjusted the module to only process a small num-
ber of coe�cients. This helps to limit the total number of sample points. We
measured the computation of the butter�y during the NTT for two coe�cients,
the addition of the two shares during the masked re-encryption as described in
3.3 for one coe�cient, the remasking and decoding as described in Section 3.3
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for four coe�cients (that encode one bit), the masked χ-step of Keccak for �ve
bytes, and point-wise multiplication and addition for two coe�cients.

Figure 4 depicts the results for each module. The lower (resp. upper) curve
shows the maximum absolute value of the �rst-order (resp. second-order) test
as a function of the total number of measurements considered in the evaluation.
It is noticeable that there is indeed no �rst-order leakage up to 100,000 traces.
There is also no obvious increase of the t-values. Thus, the implementation is
�rst-order secure as expected. Additionally, the second-order evaluation shows
leakage early on for every module and displays an upward trend with higher
number of measurements. This is also expected given that we implemented �rst-
order masking.

However, it should be noted that even though our evaluations clearly show
second-order leakage, performing an actual second-order attack on the masked
implementation might not be trivial. For one, there is the aforementioned issue
of the extreme high number of sample points which makes our naive combi-
nation approach infeasible. Instead, more sophisticated point of interest detec-
tion mechanisms need to be utilized to reduce the number of considered sample
pairs [21,50] which further increases the complexity of the attack. Another aspect
which is brie�y mentioned in Section 3.4 is the mixture of masking with hiding
countermeasures. Higher-order attacks are very sensitive to the measurement
noise. Therefore, to increase the higher-order security it is advised to include
one of the discussed hiding countermeasures. In one recent example, this in-
creased the practical resistance more than implementing a higher-order masking
scheme [40]. Furthermore, if only the start of the ring-LWE decryption is tar-
geted, a designer can rely on the linear masking property to increase the num-
ber of shares signi�cantly. However, including hiding countermeasures prevents
us from evaluating only simpli�ed versions of the modules, since the e�ciency
strongly increases with the number of coe�cients. Therefore, we did not mea-
sure a masked design with hiding, since the second-order evaluation would not
be feasible (the �rst-order test would give similar results to Figure 4).

6 Results and Comparison

We evaluate the performance of our implementation using Keil µVision V5.17
and use -O3 optimization for compiling. We took special care that no side-channel
leakage was induced by compiler optimization, e.g. by overwriting one shared
value in a register with the second share. Cycle counts are measured using the
on-board cycle count register (DWT_CYCCNT). We present the cycle counts of our
implementation in Table 2. The CCA2-secure encryption takes 1,222,054 cycles
which translates to 7.3 milliseconds when operating at a clock frequency of 168
MHz. This is an overhead of 16.7% compared to the ring-LWE encryption with-
out CCA2-conversion. The costs of this operation are divided into two forward
NTTs (5.9% each) and one backward NTT (7.4%), three runs of the Gaussian
sampler (15.2% each), the execution of both hash functions H and G (6.2%
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(e) Point-wise multiplication and addition

Fig. 4: Absolute maximum t-values for di�erent modules of our masking scheme.
The solid blue line marks the �rst-order t-values and the dashed red line marks
the second-order t-values.
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each), and other minor computations like encoding or polynomial addition. The
key generation takes 4.7 ms at 168 MHz.

Applying the CCA2-conversion to the decryption causes a much higher over-
head due to the necessary re-encryption. In the unmasked case, it requires 8.6
times more cycles and in the masked case 5.8 times more cycles. Thus the masked
CCA2-decryption takes 12.3 milliseconds which is an overhead of 46.6% com-
pared to the CCA2-secure decryption without masking. Applying masking to the
(core) ring-LWE decryption is expected to increase the cost by at least a fac-
tor of two as the most time-consuming operation, the NTT, has to be executed
twice in both masking schemes. Additionally, we have to generate 32 bytes of
randomness for the re-masking using the TRNG what is also expensive. Masking
the hash functions also costs twice as much since most operations have to be
performed on both shares.

Table 2: Cycle counts of our implementation on an ARM Cortex-M4F. Cycle
counts for sampling are given for a whole polynomial. Our parameters are n =
1024, q = 12289, and k = 11.

Operation Cycle counts
unmasked masked

Key Generation (RLWE.CPAgen
NTT) 781,423 -

CCA2-secure Encryption (RLWE.CCAenc
NTT) 1,222,054 -

CCA2-secure Decryption (RLWE.CCAdec
NTT) 1,412,839 2,070,952

CPA-RLWE Encryption (RLWE.CPAenc
NTT) 1,047,394 1,239,510

CPA-RLWE Decryption (RLWE.CPAdec
NTT) 163,882 355,444

Hash H (Shake-128) 87,463 201,721
Hash G (Shake-128) 86,943 201,206
NTT 83,906 -
INTT 104,010 -
Uniform Sampling (TRNG) 26,306 -
SampleNoisePoly (PRNG) 214,974 -
PRNG (64 bytes) 2,979 -

Table 3: Cycle counts of our CCA2-secure decryption.
Masking

Hiding unmasked masked

no hiding 1,412,839 2,070,952
blinding/shu�ing 1,614,553 2,372,242
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The results of combining our masking approach of the decryption with ad-
ditional hiding countermeasures are given in Table 3. The overhead caused by
shu�ing and blinding is 14.3% without masking and 14.5% with masking. The
reason that the overhead for both countermeasures does not simply add up is
that the hiding countermeasures also is applied to the second share in the masked
case. Thus, the overall running time for our protected decryption is 2,372,242
cycles which leads to 14.1 milliseconds runtime at 168 MHz.

The secret key is one polynomial and therefore requires 2,048 bytes of mem-
ory. As the public key consists of two polynomials, it needs twice of much memory
(4,096 bytes). The ciphertext consists of two polynomials (c1, c2) and a bit string
c3 of 256 bits and therefore has a total size of 4,104 bytes.

6.1 Comparison

Notice that the masked implementation in [52] is a hardware implementation
and that [49] does not give any performance numbers and thus we cannot di-
rectly compare our results to theirs. Thus we re-implemented their proposals
together with a CCA2-conversion to allow a fair comparison. Our results can
be seen in Table 4. By doing so, we are also able to give results independent
of the speed of the NTT. In this fair comparison, our CCA2-secure decryption
needs 43% less cycles than the masked decoder approach from [52] and 29%
less cycles than additively homomorphic masking [49]. Additively homomorphic
masking takes more than twice as many cycles in comparison with the unmasked
implementation as there are now two encryption runs (one re-encryption for the
CCA2 security and one additional encryption for the masking scheme) during
the decryption. Additionally, the hashing and the re-encryption also have to
be performed in a masked fashion. The [52] approach su�ers from the masked
decoder that has to be evaluated up to 16 times. It is also worth mentioning
that encoding one message bit into four coe�cients is much more complex when
using the masked decoder approach as we no longer have 42 = 16 possible com-
binations of values hitting quadrants but 42·4 = 256 combinations. Thus, for the
evaluation of the masked decoding approach, we encode one message bit into
only one coe�cient even though this leads to a higher failure probability of the
scheme. Similarly, the additively homomorphic masking also inherently increases
the failure probability. Thus, the security level of the scheme is actually lower
when one of these masking schemes is applied.

To measure the dynamic memory consumption we used the callgraph feature
of the Keil IDE. Our approach as well as the masked decoder approach from [52]
needs seven temporary polynomials and each polynomials needs 2,048 bytes of
memory. Because of the second encryption the additively homomorphic masking
from [49] needs another two polynomials. Additionally, each approach requires
400 bytes to store the two shares of the state of the hash function.
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Table 4: Cycle counts and dynamic memory consumption of our CCA2-secure
decryption.

Masking Scheme Cycle counts Dynamic memory

Our scheme 2,070,952 15,284 bytes
Masked decoder [52] 3,661,431 15,412 bytes
Additively homomorphic masking [49] 2,931,411 19,380 bytes

7 Future Work

In this work we have used the straight-forward Fujisaki-Okamoto [26] CCA2
transformation as a tool to make the side-channel analysis meaningful and opti-
mization would certainly improve the overall performance. In [44] Peikert already
discusses some of the issues that arise from the instantiation with ring-LWE.
Still, an avenue for future research is certainly the question whether this trans-
formation can be tuned for the instantiation with RLWE.CPA or if di�erent and
more e�cient transformations could be proven secure (maybe also considering
the costs of masking). Certainly, a huge performance boost could be gained in
case the re-encryption during decryption could be made obsolete (however, this
seems to be a hard problem).

Regarding more security we explained in Section 3.6 countermeasures against
higher-order attacks and what challenges arise when using the t-test to check for
leakage in combination with hiding. Future work is to further explore protection
and exploitation of higher-order leakages, their practicality, and the performance
of implementations. Additionally, we plan to carry out actual attacks against
our implementation as a complement of our leakage assessment based on the
t-test. Moreover, our masking scheme (and also the CCA transformation) could
also be applied to a standard lattice-based encryption scheme, e.g., the one
given in [36] or Frodo [12]. For Frodo the challenge would be to obtain a
negligible error probability to make the CCA2 conversions applicable. However,
the performance of a side-channel protected standard lattice-based scheme on
microcontrollers or FPGAs would be interesting for a comparison with our ideal
lattice-based approach. In addition, in this work we have not protected the key
generation but some use-cases would also require a key generation algorithm
that is protected against side-channel and fault attacks. Moreover, we plan to
explore FPGA implementations of our masking scheme and the corresponding
evaluations.
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A Appendix

In Table 5 we provide details security estimations based on the approach and
using the script provided in [1]. For the evaluation of the error rate we also
used the script from [1] and set the parameters dim = 1024, q = 12289, k =
11, bound_CC = 94833.915727, t_CC = 0.007911055, tau = 13.3208737785.

Table 5: Security level of various parameters for ring-LWE encryption schemes

Known Known Best
Attack m b Classical Quantum Plausible

RLWE.CPA [28] q = 7681, n = 256, ς ≈ 4.5160

Primal 347 222 64 58 46
Dual 369 222 64 58 46

RLWE.CPA [28] q = 12289, n = 512, ς ≈ 4.8591

Primal 660 496 145 131 102
Dual 674 494 144 131 102

BCNS proposal [13]: q = 232 − 1, n = 1024, ς = 3.192

Primal 1062 296 86 78 61
Dual 1055 296 86 78 61

NTRUencrypt [30]: q = 212, n = 743, ς ≈
√

2/3 ≈ 0.8165

Primal 613 603 176 159 125
Dual 635 600 175 159 124

JarJar: q = 12289, n = 512, ς =
√
12 ≈ 3.4641

Primal 623 449 131 119 93
Dual 602 448 131 118 92

NewHope: q = 12289, n = 1024, ς =
√
8 ≈ 2.8284

Primal 1100 967 282 256 200
Dual 1099 962 281 255 199

Our Work: q = 12289, n = 1024, ς =
√

11/2 ≈ 2.3452

Primal 1046 922 269 244 191
Dual 1080 917 268 243 190
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