
Functional Encryption from Secure Enclaves

Sergey Gorbunov∗ Dhinakaran Vinayagamurthy †

Abstract

Functional encryption (FE) is an emerging paradigm for public-key cryptography that enables fine-grained access
control over encrypted data. In FE, each function (program) P is associated with a secret key skP . User holding
skP and a ciphertext ct encrypting a message msg, can learn P (msg) in clear, but nothing else about the message is
revealed. Unfortunately, all the existing constructions are either very restrictive in the supported classes of functions,
or rely on non-standard mathematical assumptions and satisfy weaker security notions such as indistinguishability-
based security, or far from satisfying practical efficiency for general function families.

In this work, we present a construction of functional encryption in a hardware assisted model of computation. We
prove the security of our construction under the simulation-based definition. We present an implementation of our
construction and show essential evaluation results, which demonstrate that our construction is very practical. In our
evaluation, key-generation, encryption and decryption take around 1, 22 and 140 milliseconds for linear regression
programs over 4 million sample points. Our construction is motivated by the recent advances in processors that enable
creation of encrypted memory containers.

1 Introduction
Functional encryption (FE) is a new vision for public-key encryption proposed by Boneh, Sahai and Waters [BSW12].
On the high level, FE provides fine-grained access control mechanism needed for emerging cloud and mobile
applications in today’s world. In FE, any program P can be assigned a “program specific” secret key skP . A user,
holding the secret key skP and a ciphertext ct = Enc(msg), can learn P (msg). Moreover, informally, the security of
functional encryption ensures that no other information about msg can be learned, except P (msg).

Functional encryption generalizes and subsumes many of the previously defined notions including (anonymous)
identity-based encryption (IBE) [Sha84, BF01, Coc01, BW06], fuzzy IBE [SW05], attribute-based encryption
(ABE) [GPSW06, LOS+10, GVW13], and predicate encryption [KSW08, LOS+10, GVW15]. Many of these
notions found extensive applications in protecting medical, financial and personal information in the cloud [APG+11,
LYZ+13, PPM+14]. For instance, using FE, a user may issue a secret key to an email server for a program that
performs spam detection. Using the secret key, the email server can learn whether or not encrypted emails contain
spam, but nothing else about the email is revealed to the server.

Unfortunately, strong security notions for functional encryption (known as simulation-based), very much desired
in the real world, are known to be impossible in the standard models for many natural classes of programs
[BSW12, AGVW13]. A lot of research effort went into understanding the impossibility results and searching for
new directions [CIJ+13, AAP15].

One direction to bypass these impossibility results is to look at a weaker indistinguishability-based notion for
FE. However, even this notion is very hard to realize. Currently, existing candidate constructions are built from multi-
linear maps and indistinguishability obfuscation [GGH13a, CLT13, GGH15, GGH+13b], which are new cryptographic
objects that rely on non-standard mathematical assumptions. Many of these are shown to be broken [CHL+15, HJ16,
CLLT15, MSZ16], and significant research effort is needed to understand how to build them securely. Finally, even the
existing candidates are very far from practical as they require astronomically large keys and ciphertexts [AHKM14].

Another direction to bypass FE simulation-based impossibility results is to introduce new assumptions in the
model. For instance, the work by Chung, Katz and Zhou [CKZ13] bypassed the impossibilities by introducing “small
∗University of Waterloo. Email: sgorbunov@uwaterloo.ca.
†University of Waterloo. Email: dvinayag@uwaterloo.ca.

1

hardware tokens”. However, these hardware tokens are simply programmable “deterministic oracles” and not modeled
after any concrete real primitive.

Together, existing impossibility results and technical difficulties put functional encryption for general functions on
a melting iceberg and in search for a new land.

1.1 Our Contributions
In this work, we present a new construction of functional encryption for arbitrary programs that leverages new advances
in secure processor technologies. More explicitly, our contributions can be summarized as follows:

• We describe an oracle assisted model of computation for functional encryption that enhances classical models
(and can be used to bypass existing impossibility results). In our model, the oracle is restricted to strict efficiency
requirements discussed below.

• We present a construction of functional encryption for arbitrary programs in the oracle assisted model of
computation. Our construction leverages a secure hardware component, modeled after existing encrypted
memory containers such as Intel Software Guard Extensions (SGX) enclaves. We prove the security of our
construction under the simulation-based security definition.

• We present an architecture, implementation and evaluation of our functional encryption scheme.

The hardware component used in our construction can be instantiated with existing processor technology (e.g.
Intel SGX [MAB+13], or AMD memory encryption [KPW16]) that enable creation of encrypted memory containers.

Our results set in motion a new direction for functional encryption, where it is possible to simultaneously satisfy
strong security definitions and very practical aspects desired from all cryptographic primitives. We now provide
a high level overview of our contributions. In the discussion later in this section we highlight additional practical
considerations, our assumptions, and future research directions.

Our Model of Computation We define an oracle assisted model of computation and show how to construct a
functional encryption scheme in this model. Informally, in this model, a decryptor is given access to an oracle O(·)
(defined below) and a secure hardware component HW. The oracle is restricted to strict efficiency requirements that
help prevent trivial and not very useful instantiations. Prior to our work, the works of Chung et al. [CKZ13] and
Naveed et al. [NAP+14] used similar albeit more powerful oracles to achieve simulation secure functional encryption
and “controlled” functional encryption, respectively. (Please refer to Section 1.3 for a comparison of our work with
their works. We also discuss in Section 1.2 why neither HW nor an efficientOmsk, is sufficient by itself for constructing
a simulation secure FE scheme).

We envision that the oracle O(·) is run by an authority or an independent enclave on the system of the decryptor
or a third party.1. Intuitively, in our construction, this oracle is used to verify/decrypt small tokens for the decryptor.
We enforce an efficiency requirement for the authority oracle, which states that it must run in time polynomial in the
security parameter, but independent of the input size, program size, and the program runtime.2

The secure hardware component HW satisfies the following semantics. It can load an arbitrary program P and
run P on any input x. It outputs the result y = P (x) along with a succinct proof that can be used to authenticate the
result of computation (with respect to some global public parameters). All intermediary results of the computations
are hidden from the outside world.

We built our prototype on a modern Intel CPU enabled with a Software Guard Extensions (SGX). On the high level,
these CPUs are equipped with instructions that can be used to create encrypted memory containers. One can create
an encrypted container on an arbitrary program P , and run it on arbitrary inputs. No adversary, even with physical

1For the latter cases, one can load its code, without the “secret”, inside the enclave. Then, use the attestation service to verify that the right code
has been loaded. Finally, transmit the secret to the enclave, via a secure channel. All this can be performed during the setup phase of the functional
encryption.

2Without this condition an FE construction would be trivial and not very meaningful. Given a ciphertext (encrypted under a standard public-key
encryption) and a secret key (corresponding to a digital signature), the authority can verify the key, decrypt the input, compute the program on the
input and return the result to the decryptor.

2

access to the system, can see the internal computation state of these containers [MAB+13, AGJS13]. In particular, all
program code, data and state values are stored encrypted in computer’s memory. A hardware encryption/decryption
engine decrypts each instruction and required data and passes it to the CPU. After the CPU finishes executing the
instruction, the engine encrypts the results and places them back in the memory. Hence, the memory remains encrypted
at all times during the execution.

Construction Overview Zeroth attempt. From what we have described till now, a shrewd reader would have noticed
a very trivial construction: generate the FE master public and secret keys and then instantiate the secure hardware by
inscribing the master secret key inside it. Given the ciphertext, the secure hardware can use the master secret key to
decrypt the message, evaluate and output any function on the message. But, this fails for two main reasons. First of
all, the setup of secure hardware is done once and for all, independently of the FE setup. That is, we envision that a
manufacturer (e.g., Intel) ships computers equipped with the secure hardware. Since anyone should be able to run the
FE scheme, there is no method to simply “place” the master secret key inside the secure hardware (without giving it
to the manufacturer or leveraging additional crypto protocols, such as secure channels). However, the second reason,
is even more troublesome: this construction does not satisfy the simulation-based security notion. In Section 1.2, we
discuss why any realistically modelled secure hardware is not sufficient by itself to satisfy simulation-based FE notions.

First attempt. We now describe a simple reasonable starting point for our construction, which is unfortunately
insufficient again to satisfy the simulation-based security definition. Let (pkpke, skpke) denote a public/secret key pair
for a semantically secure public-key encryption scheme. Let (vksign, sksign) denote a verification/signing key pair for a
secure signature scheme. A secret key for a program P is simply a signature σP , generated using sksign. On an input
msg, the ciphertext ct is generated by encrypting msg with the public key pkpke. Now, consider a decryptor that has
oracle access to O(·) and a trusted hardware component HW. To describe how the decryptor works, we must first
define how these oracles are operating.

The authority oracle O on input pktmp (arbitrary public key), outputs cttmp ← Encpktmp
(skpke) (that is an

encryption of the PKE secret key under the input public key).
Also, consider the hardware component HW that does the following:

• On load, it generates a temporary public/secret key pair (pktmp, sktmp) and outputs pktmp. It stores sktmp in
the internal state (hidden from the outside world).

• On input (ct, cttmp, σP , vksign), it decrypts cttmp to get skpke ← Decsktmp
(cttmp). Next, it verifies the signature

σP . Finally, it decrypts ct to obtain msg← decskpke(ct), evaluates y = P (msg) and outputs the result y.

It is now clear how the decryptor works: it loads the secure hardware HW (technically, there is an implicitly
defined program Q which it must load into the secure hardware piece and then invoke it on various inputs) and obtains
pktmp. It calls the O oracle with pktmp to obtain cttmp ← O(pktmp). It can then learn the result of the computation
y = P (msg) by invoking HW(ct, cttmp, σP , vksign). Correctness of the functional encryption scheme follows.

On the high level, the construction also seems secure: the input is encrypted using a semantically secure encryption
scheme which can only be decrypted using skpke. Consecutively, skpke is only revealed in the internal state of the
hardware component HW, and is never seen by the decryptor in clear. Moreover, secret keys (σP ’s) cannot be
forged by the security of the signature scheme. Unfortunately, this intuition is misleading. First of all, there is an
obvious “man-in-the-middle” attack that the decryptor can perform by generating a temporary public/secret key pair
(pktmp, sktmp) by itself and performing the rest of the functionality of the HW oracle on its own. This means that it
can learn the message msg in clear. Moreover, using regular public-key encryption is not sufficient since its susceptible
to “malleability” attacks, meaning that adversary may also generate related ciphertexts msg′ and learn P (msg′).

Second Attempt. To solve the above problems we turn our attention to stronger properties of the secure hardware
and switch to using more powerful encryption schemes. First of all, every secure hardware HW is associated with
public parameters. On any input, along with the corresponding output, HW also produces a cryptographic proof
(signature) that can be used to verify the output of the computation with respect to the public parameters. We can now
solve the “man-in-the-middle” attack by enforcing the decryptor to pass the proof to the authority oracle. The proof
can be used to authenticate that the temporal public/secret key pair (pktmp, sktmp) was produced inside the secure

3

hardware and its internal state is hidden from the decryptor. We also change all encryption schemes to be secure
against chosen-ciphertext attacks. This prevents any possible malleability by the decryptor.

Yet again, the above construction seems insufficient for the security proof. To explain the issue, we explain the
intuition behind the simulation proof. In the ideal experiment, we need to simulate the ciphertext and the behavior
of the oracles without knowing the input msg. Given P (msg), the authority oracle Omsk can send an encryption of
P (msg) along with skpke (under the public key pktmp). We can then define the hardware oracle to output P (msg),
instead of computing it. However, to argue indistinguishability of encpktmp

(skpke, 0)
3 and encpktmp

(skpke, P (msg)),
we need to remove the key sktmp from the internal state of the secure hardware. However, if we remove the secret key
sktmp from the internal state of the secure hardware, then it cannot decrypt cttmp and we lose the correctness property!
To solve this problem, we modify the construction to use a “dual-encryption” paradigm [NY90]. Using it, we create
two encryption tracks and a special “mode” which can be used to substitute encryptions and switch computation to
a second track that can then be used to satisfy correctness in the simulation experiment. This step also requires the
encryption scheme to be (weakly) “robust” [ABN10]. We refer the reader to Section 3.2 for the detailed security proof.

Implementation and Evaluation We implement our construction on a Dell Inspiron laptop with Intel i7 processor
supporting Software Guard Extensions (SGX) instruction set. Using Intel SGX CPUs, we created a secure container
on the decryptor’s node. The secure container is an encrypted memory region of 128 MB. Only the CPU can access
the code and the data residing inside this container, and external programs can communicate via an explicitly defined
API set. We implemented basic algorithms of FE and performed their benchmarking. Our implementation supports
issuing of secret keys for basic arithmetic programs (sum, multiplication, division, modulo), mean and simple linear
regression function.

Our results show that our construction is very practical for many real world applications. For our evaluations, we
took an input message of 27 MB (so that we do not have to swap chunks of data in and out of the enclave). Setup
and key-generation procedures essentially correspond to a few standard encryption/signing invocations, which takes
no more than a few milliseconds on a modern laptop. Encryption runtime is proportional to the overhead of a standard
encryption over raw data. In our experiments, we encrypted 27 MB messages in 22 milliseconds. Decryption for
arithmetic operations and linear regression took between 130 and 180 milliseconds.

1.2 Discussion
Need for secure hardware One could ask what is the best that we can achieve without the secure hardware when
the decryptor is just given access to the Omsk oracle. To our knowledge, the best possible “crypto-only” approach to
achieve our goal is to combine fully-homomorphic encryption and SNARKs/NIZKs, similar to the second construction
in the work of Chung, Katz and Zhou [CKZ13]. However, in their approach, the decryptor needs to transmit data of
size linear in size of the input message (ciphertext) to the oracle and the complexity of verification of SNARKs depends
on the instance length. Hence, the oracle does not run in time independent of the length of the input message, desired
by our model. If the input is large (database of medical records), this approach becomes infeasible. Moreover, the
computational overhead of FHE and SNARKs is currently very high for general functions to be used in practice.

Need for the Omsk oracle An orthogonal question to ask is what is the best that we can achieve with just the secure
hardware and without the Omsk oracle. Or can we even achieve simulation secure functional encryption with just
the secure hardware in the form that we have defined (and the model that we believe captures the new generation of
trusted computing designs such as SGX)? Informally, the following argument rules out the possibility of this. Only
secure hardware seems insufficient because one would need to pre-program (compress) arbitrary number of outputs
Pi(msg) into the secure hardware to achieve simulation security. Given that secure hardware has a fixed memory
bound (more formally, the secure hardware setup takes as input an aux string of some fixed size), it is impossible to
compress many Pi(msg) into this bound (|aux|) for some function families [BSW12, AGVW13]. Moreover, even if
one were to assume that the secure hardware does not have a fixed memory bound (and one can initiate it with an
arbitrary long aux string), in the security game, the adversary would need to declare all inputs and functions before

3We pad an encryption with 0s to match the length.

4

the game begins so that the simulator can potentially pre-program Pi(msg)’s into aux. This results in a much weaker
“selective” security notion, undesired in practice.

Bypassing FE Impossibility Results A very similar argument also explains why we are able to bypass the
impossibility results of FE using Omsk. The core intuition for why existing simulation-based FE models are
impossible [BSW12, AGVW13, CIJ+13] comes down to a “compression argument”. Intuitively, it says that it is
impossible to compress large number of strings (x1, . . . , xn) into a few succinct strings (y1, . . . , yk) for k much
smaller than n. This becomes relevant in the simulation of functional encryption, because a simulator, given many
function outputs (P1(msg), . . . , Pn(msg)) adaptively, must be able to produce a few public parameters, secret keys
and a ciphertext that can be used to get all n output values. If n output values are pseudorandom (or have a lot of
entropy), then it is impossible to compress them into few strings of fixed sizes. In our model, however, the decryptor
is equipped with oracle access to the authority. The decryptor makes a single call to this oracle for each decryption
invocation. Hence, we can hide the results of the computations Pi(msg) in each oracle response, therefore without
needing to compress all of them into few strings. This is possible even with the strict efficiency constraints which the
oracle is subjected to.

Need for provable security Even with the use of basic crypto primitives as building blocks, in addition to a secure
hardware, proving the security of our construction is not straightforward. As history shows, there are many subtleties
that come up when composing multiple standard building blocks into complex protocols. For example, many TLS/SSL
protocols that seemed secure were later identified with problems. Only recently, formal treatment of these protocols
enabled their better understanding. Similarly, quantifying the security formally has become very important and relevant
for the cryptographic constructions that enable “computations over encrypted data”, especially in light of the recent
attacks on systems such as CryptDB [PRZB11, NKW15] and Mylar [PSV+14, GMN+16].

In our construction, we first need to resolve to the “dual-encryption” proof technique, as explained in the above
paragraphs. In addition, we face similar problems as those that arise in TLS security proofs: during the protocol
execution, some auxiliary information about the shared secret is leaked to the adversary from the handshake protocol.
We overcome these problems by a careful selection of the proof hybrid sequence.

Side-channel leakage Our construction assumes black box access to the secure hardware. One limitation of
Intel SGX, which we use to instantiate secure hardware, is that it leaks program access patterns at 4KB page
granularity [CD16, XCP15]. For us, it means that the programs we run inside the encrypted memory can possibly
be subjected to side-channel attacks based on the access pattern. Moreover, since programs may run in different
time depending on an input, timing side-channels may be introduced in practice. To prevent these attacks, oblivious
algorithms should be designed and implemented within the secure hardware for all the programs. Designing oblivious
algorithms that does not leak sensitive information from run-time, memory access pattern and other side-channel
information is an active research area [MLS+13, LHM+15, WNL+14, SZEA+16]. The overhead incurred to make
a program oblivious is negligible for some programs but it is also orders of magnitude higher for some programs.
Also the crypto libraries used inside SGX should also be oblivious. For instance, SGX leverages AES-NI instruction
set which is side-channel resistant. In general, one should note that Oblivious RAM does not provide a ready made
solution here and some work has to be done on top of it. This is because in ORAM we need a client controller
who stores some secret data and interacts with the server based on this secret. To leverage ORAM non-interactively,
we would need to place both the client and the server code inside secure hardware. While the server component is
oblivious, this is not necessarily the case for the client component. One would need to make the client code oblivious,
which we believe is an interesting follow-up research direction.

1.3 Other related works
As we mentioned, Chung, Katz and Zhou [CKZ13] proposed a way to bypass the impossibility results in functional
encryption by the use of “hardware tokens”. They model the hardware tokens as “simply deterministic oracles” (refer
Definition 5 of [CKZ13]). In contrast, our construction is based on real-world secure hardware with explicitly defined
security properties (as in [BPSW16]). It is not clear if one can replace their deterministic oracles with the secure

5

hardware and carry through the proof. In particular, our secure hardware by itself does not have the “programmability”
property required to achieve simulation security, but the programmability of deterministic oracles is crucially used in
CKZ13. One might wonder how our Omsk oracle compares with their notion of hardware tokens.With an “oracle”
being necessary due to the impossibility results, we made the functionality of the Omsk oracle minimal. In our
construction,Omsk performs minimal crypto functionality: basic signing/encryption. (And it is an independent enclave
without access to msk which runs the user-specified programs on user-specified inputs). Hence, it is relatively easier
to implement the Omsk functionality secure against side-channels, when compared to the powerful hardware tokens.
Also from a theoretical perspective, Omsk runs in time independent of the runtime of program and the length of msg,
in contrast to the hardware tokens whose runtime depends on both the program and msg.

Naveed et al. [NAP+14] propose a related notion of FE called “controlled functional encryption”. The main
motivation of C-FE is to introduce an additional level of access control. The data source encrypts its data and uploads
the “policy” of the ciphertext ct to the authority. A client (playing the role of the decryptor) can make a “key-request” to
the authority for computing P over the decryption of a specific ciphertext ct. For every key-request for the ciphertext,
the authority checks the ciphertext’s policy to decide on answering the key-request. The similarity of C-FE with our
notion is that there is an “authority” mediating every decryption4. Also, our construction could be modified to achieve
controlled functional encryption (CFE) primitive, when the efficiency constraints are relaxed for the authority oracle
such that they run in time independent on the length of the input but dependent on the function description length. The
construction in [NAP+14] requires the authority to run in time proportional to the length of function description and
input.

Organization In Section 2, we discuss our functional encryption model, basic cryptographic preliminaries needed
for our construction (encryption, signatures), and secure hardware component. In Section 3, we describe our main
construction and prove its security. In Section 4, we describe our implementation and evaluation results. In Section 5,
we summarize our results and discuss future directions.

2 Preliminaries

2.1 Functional Encryption
We define functional encryption in an oracle assisted model of computation. We discuss the efficiency requirements
of the oracle below.

Pre-processing In our model, we allow all the parties performing decryption to complete a pre-processing phase.
The pre-processing is executed by the trusted environment. Looking ahead, in our construction this is used to setup
the secure hardware. Pre-processing is executed before any FE algorithm, and hence does not depend on any of
its parameters. An output of the pre-processing phase includes public parameters which are implicitly given to all
subsequent algorithms.

A functional encryption scheme FE for a family of programs P and message space M consists of four p.p.t.
algorithms FE = (FE.Setup,FE.Keygen,FE.Enc,FE.Dec) defined as follows.

• FE.Setup(1λ): The setup algorithm takes as input the unary representation of the security parameter λ and
outputs the master public key mpk and the master secret key msk.

• FE.Keygen(msk, P): The key generation algorithm takes as input the master secret key msk and a program
P ∈ P and outputs the secret key skP for P .

• FE.Enc(mpk,msg): The encryption algorithm takes as input the master public key mpk and an input message
msg ∈M and outputs a ciphertext ct.

4We will discuss the implications of this mediation for FE at the end of Section 2.1.

6

• FE.DecOmsk(·)(skP , ct): The decryption algorithm takes as input a secret key skP and a ciphertext ct and outputs
P (msg) or ⊥. It has access to an oracle Omsk(·), which is subject to strict efficiency constraints defined below.

We envision that the oracleOmsk is executed by the trusted authority that executes FE.Setup, or a designated party
that is given the master secret key.

Oracle Efficiency

We require that the runtime of oracle Omsk(·) is at most poly(λ, `out), where `out is the bit-length of the maximum
program output size over all P ∈ P and inputs msg ∈ M. In particular, the runtime must be independent on the
input msg size and program P runtime and description length. It follows that the oracle may not receive input msg
and program P from the decryptor, compute P (msg) and return the return back to the decryptor.

Correctness

A functional encryption scheme FE is correct if for all P ∈ P and all msg ∈M, the probability for

Pr
[
FE.DecO(·)

(
FE.Keygen(msk, P),FE.Enc(mpk,msg)

)
6= P (msg)

]
= negl(λ)

where (mpk,msk)← FE.Setup(1λ) and the probability is taken over the random coins of the probabilistic algorithms
FE.Setup,FE.Keygen,FE.Enc.

Security

Here, we define a strong simulation-based security of FE similar to [BSW12, GVW12, AGVW13]. In this security
model, a polynomial time adversary will try to distinguish between the real world and a “simulated” world. In the real
world, algorithms work as defined in the construction. In the simulated world, we will have to construct a polynomial
time simulator which has to do the experiment given only the program queries P made by the adversary and the
corresponding results P (msg). Formally, the security is defined as follows:

Definition 2.1 (Security-FE) Consider a stateful simulator S and a stateful adversary A. Let Umsg(·) denote a
universal oracle, such that Umsg(P) = P (msg).

Both games begin with a pre-processing phase executed by the environment. In the ideal game, pre-processing is
simulated by S. Now, consider the following experiments.

ExprealFE(1
λ) :

1. (mpk,msk)← FE.Setup(1λ)

2. (msg)← AFE.Keygen(msk,·)(mpk)

3. ct← FE.Enc(mpk,msg)

4. α← AFE.Keygen(msk,·),Omsk(·)(mpk, ct)

5. Output (msg, α)

ExpidealFE (1λ) :

1. (mpk,msk)← FE.Setup(1λ)

2. (msg)← AS(msk,·)(mpk)

3. ct← SUmsg(·)(1λ, 1|msg|)

4. α← ASUmsg(·)(·)(mpk, ct)

5. Output (msg, α)

In the above experiment, oracle calls by A to both the key-generation and Omsk oracles are simulated by the
simulator SUmsg(·)(·). We call a simulator admissible if on each input P , it just queries its oracle Umsg(·) on P (and
hence learn just P (msg)).

The FE scheme is said to be simulation-secure against adaptive adversaries if there is an admissible stateful
probabilistic polynomial time simulator S such that for every probabilistic polynomial time adversaryA the following
distributions are computationally indistinguishable.

ExprealFE(1
λ)

c
≈ ExpidealFE (1λ)

7

There are a lot of subtleties involved in the FE definition. We remark a few here and refer the interested readers to the
original papers for more details. In the above definition, the simulator is given access to msk. Most previous works
[BSW12, AGVW13] let S simulate the public parameters. Hence, running the FE.Setup honestly and providing the
msk to S, as in our definition, actually makes the definition stronger. Also, α may contain all the inputs to the oracles
and the corresponding outputs. Note that the above definition handles one message only. This can be extended to a
definition of security for many messages by allowing the adversary to output many messages and providing him the
ciphertext for all of them. Here, the simulator will have an oracle Umsgi(·) for every msgi.

5

2.2 Additional Basic Crypto Primitives
2.2.1 Secret key encryption

A secret key encryption scheme E supporting a message domain M consists of the following polynomial time
algorithms:

E.KeyGen(1λ) The key generation algorithm takes in a security parameter and outputs a key sk from the key spaceK.

E.Enc(sk,msg) The encryption algorithm takes in a key sk and a message msg ∈M and outputs the ciphertext ct.

E.Dec(sk, ct) The decryption algorithm takes in a key sk and a ciphertext ct and outputs the decryption msg.

The first two algorithms are probabilistic whereas the decryption algorithm is deterministic.

Correctness A secret key encryption scheme E is correct if for all λ and all msg ∈M,

Pr
[
E.Dec

(
sk,E.Enc(sk,msg)

)
6= msg

∣∣∣sk← E.KeyGen(1λ)
]
= negl(λ)

where the probability is taken over the random coins of the probabilistic algorithms E.KeyGen,E.Enc.

An encryption scheme provides data confidentiality. So, it should prevent an adversary from learning which
message is encrypted in a ciphertext. The security of E is formally defined by the following security game.

Definition 2.2 (IND-CPA security of a secret key encryption scheme). Security is depicted by the following game
between a challenger C and an adversary A.

1. The challenger run the E.KeyGen algorithm to obtain a key sk from the key space K.

2. The challenger also chooses a random bit b ∈ {0, 1}.

3. Whenever the adversary provides a pair of messages (msg0,msg1) of its choice, the challenger replies with
E.Enc(sk,msgb).

4. The adversary finally outputs its guess b′.

The advantage of adversary in the above game is

Advenc(A) := Pr[b′ = b]− 1

2

A secret key encryption scheme E is said to have indistinguishability security under chosen plaintext attack if there is
no polynomial time adversary A which can win the above game with probability non-negligible in λ.

5In our model, the decryptor may query the Omsk oracle during every run of decryption. Hence, the authority running the Omsk oracle can
track some metadata regarding the decryption of a ciphertext. We believe this leakage is minimal and acceptable for many real-world applications,
partially due to our efficiency constraints on the oracle.

8

2.2.2 A signature scheme

A digital signature scheme S supporting a message domainM consists of the following polynomial time algorithms:

S.KeyGen(1λ The key generation algorithm takes in a security parameter and outputs the signing key sk and a
verification key vk.

S.Sign(sk,msg) The signing algorithm takes in a signing key sk and a message msg ∈ M and outputs the signature
σ. We assume that σ also explicitly contains the message msg that is signed.

S.Verify(vk, σ)) The verification algorithm takes in a verification key vk and a signature σ and outputs 0 or 1.

The first two algorithms are probabilistic whereas the verification algorithm is deterministic.

Correctness A signature scheme S is correct if for all msg ∈M,

Pr
[
S.Verify

(
vk,S.Sign(sk,msg)

)
= 0
∣∣∣(sk, vk)← S.KeyGen(1λ)

]
= negl(λ)

where the probability is taken over the random coins of the probabilistic algorithms S.KeyGen,S.Sign.

Signatures provide authenticity. So, an adversary without the signing key should not be able to generate a valid
signature. The security of S is formally defined by the following security game.

Definition 2.3 (EUF-CMA). Consider the following game between a challenger C and an adversary A.

1. The challenger runs the S.KeyGen algorithm to obtain the key pair (sk, vk), and provides the verification key vk
to the adversary.

2. Initialize query = {}.

3. Now, whenever the adversary provides a query with a message msg, the challenger replies with S.Sign(sk,msg).
Also, query = query ∪msg.

4. Finally, the adversary outputs a forged signature σ∗ corresponding to a message msg∗.

The advantage of A in the above security game is

Advsign(A) := Pr [S.Verify(vk, σ∗) = 1|msg∗ /∈ query]

A signature scheme S is said to be existentially unforgeable under chosen message attack if there is no polynomial
time adversary which can win the above game with probability non-negligible in λ.

2.2.3 Public key encryption

A public key encryption (PKE) is a generalization of secret key encryption where anyone with the public key of
the receiver can encrypt messages to the receiver. A PKE scheme supporting a message domain M consists of the
following algorithms:

PKE.KeyGen(1λ) The key generation algorithm takes in a security parameter and outputs a key pair (pk, sk).

PKE.Enc(pk,msg) The encryption algorithm takes in a public key pk and a message msg ∈ M, outputs a ciphertext
ct which is an encryption of msg under pk.

PKE.Dec(sk, ct) The decryption algorithm takes in a secret key sk and a ciphertext ct and outputs the decryption msg
or ⊥.

The first two algorithms are probabilistic whereas the decryption algorithm is deterministic.

9

Correctness A PKE scheme PKE is correct if for all λ and msg ∈M,

Pr
[
PKE.Dec

(
sk,PKE.Enc(pk,msg)

)
6= msg

∣∣∣(pk, sk)← PKE.KeyGen(1λ)
]
= negl(λ)

where the probability is taken over the random coins of the probabilistic algorithms KeyGen,Enc.

A PKE scheme provides confidentiality to the encrypted message. The security of PKE is formally defined by the
following security game.

Definition 2.4 (IND-CCA2 security of a public key encryption scheme). Consider the following game between a
challenger C and an adversary A.

1. C runs the PKE.KeyGen algorithm to obtain a key pair (pk, sk) and gives pk to the adversary.

2. A provides adaptively chosen ct and get back PKE.Dec(sk, ct).

3. A provides msg0,msg1 to C.

4. C then runs PKE.Enc(pk) to obtain ct∗ = PKE.Enc(pk,msgb) for b $← {0, 1}. C provides ct∗ to A.

5. A continues to provide adaptively chosen ct and get back PKE.Dec(sk, ct), with a restriction that ct 6= ct∗.

6. A outputs its guess b′.

The advantage of the adversary A in the above game is

Advpke(A) := Pr[b′ = b]− 1

2

A PKE scheme PKE is said to have indistinguishability security under adaptively chosen ciphertext attack if there is
no polynomial time adversary A which can win the above game with probability non-negligible in λ.

We also require the PKE scheme to be “weakly robust” [ABN10]. Informally, a ciphertext when decrypted with
an “incorrect” secret key should output ⊥ when all the algorithms are honestly run.

Definition 2.5 ((Weak) robustness property of PKE). A PKE scheme PKE has the (weak) robustness property if for
all λ and msg ∈M,

Pr
[
PKE.Dec

(
sk′,PKE.Enc(pk,msg)

)
6=⊥
]
= negl(λ)

where (pk, sk) and (pk′, sk′) are generated by running PKE.KeyGen(1λ) twice, and the probability is taken over the
random coins of the probabilistic algorithms PKE.KeyGen,PKE.Enc.

One heuristic way of providing this property to a PKE scheme is by padding the message with 0λ before encrypting
it, and checking the suffix for 0λ during decryption. We refer the readers to [ABN10] for a formal treatment of this
property.

2.3 Collision resistant hash functions
A set of functions H = {Hi} is a collision resistant hash function family with each Hi : {0, 1}poly(λ) → {0, 1}λ (for
all poly(λ) > λ), if for all λ, for every x in the domain of H , the value of

Pr
[
H(x) = H(y)|H ← H.Gen(1λ), (x, y)← A(H)

]
is negl(λ) for any polynomial time adversary A, where the probability is taken over the random coins of Gen. In
particular, we will use a function family which consists of functions with domain {0, 1}|ctenc|, where ctenc is a ciphertext
of a secret key encryption scheme which also depends on the length of the message encrypted.

10

2.4 Secure Hardware
In our model, we assume parties running decryption have access to the secure hardware defined below. Our definition
for secure hardware follows the model defined by Barbosa, Portela, Scerri, and Warinschi [BPSW16]. They use this
model to construct basic cryptographic components such as secure channels and outsourced computation6.

A secure hardware scheme HW for a class of programs Q consists of the following polynomial time algorithms.

• HW.Setup(1λ, aux): The HW.Setup algorithm takes in the security parameter and an auxiliary initialization
parameter aux. It outputs public parameters params along with a secret key skHW and an initialization state
init.st.

• HW.Loadinit.st(params, Q): The HW.Load algorithm loads a program into a secure container. HW.Load takes
as input a possibly non-deterministic program Q ∈ Q and some global parameters params. It first creates a
secure container and loads Q into it with an initial state init.st. It outputs a handle hdlQ.

• HW.Run&AttestskHW
(hdlQ, in): This is the program execution algorithm which takes in a handle hdlQ,

corresponding to a container running the program Q, and an input in. Given access to the secret key skHW,
it outputs a tuple φ :=

(
tagQ, in, out, π

)
, where out = Q(in), π is a proof that can be used to verify the output

of the computation, tagQ is a program tag that can be used to identify the program running inside the secure
container7.

• HW.Verify(params, φ): This is the attestation verification algorithm. HW.Verify takes as input params and
φ =

(
tagQ, in, out, π

)
. It outputs 1 if π is a valid proof that Q(in) = out when the program Q is run inside a

secure container. It outputs 0 otherwise.

All the algorithms except HW.Verify are probabilistic. Note that in the above definition, only HW.Run&Attest has
access to the secret key skHW. Not even the programs running inside the secure containers have access to skHW. Also,
note that we have omitted the nonce in the definition of HW.Run&Attest so that the definition is general enough to
work for arbitrary attestation protocols/verifiers.

Correctness A HW scheme is correct if the following things hold: For all Q ∈ Q and all in in the input domain of
Q,

• Correctness of Run: out = Q(in) if Q is deterministic. More generally, ∃ random coins r (sampled in run time
and used by Q) such that out = Q(in).

• Correctness of Attest and Verify:

Pr
[
HW.Verify

(
params, φ

)
= 0
]
= negl(λ)

where (params, skHW, init.st) ← HW.Setup(1λ, aux) with any aux, hdlQ ← HW.Loadinit.st(params, Q) and φ ←
HW.Run&AttestskHW

(hdlQ, in) for φ =
(
tagQ, in, out, π

)
. The probability is taken over the random coins of the

probabilistic algorithms HW.Setup,HW.Load and HW.Run&Attest.

Security The security of the hardware, denoted by attestation unforgeability (AttUnf), is defined similarly to
the unforgeability security of a signature scheme. Informally, it says that no adversary can produce a tuple
φ =

(
tagQ, in, out, π

)
that verifies correctly and out = Q(in), when the inputs (hdlQ, in) were queried never by

it. The security of HW is formally defined by the following security game.

Definition 2.6 (AttUnf-HW). Consider the following game between a challenger C and an adversary A.

6Barbosa et al. defined a slightly weaker syntax for secure hardware (based on Intel SGX). From it, they built a more powerful remote attestation
functionality which we use in our definition. We believe our definition resembles functionality/syntax provided by Intel SGX and Intel remote
attestation service, combined.

7One may think of tagQ as a cryptographic hash of the program code Q.

11

1. A provides an aux.

2. C runs the HW.Setup(1λ, aux) algorithm to obtain the public parameters params, secret key skHW and an
initialization string init.st. It gives params to A, and keeps skHW and init.st secret in the secure hardware.

3. C initializes a list query = {}.

4. A can run HW.Load on any input (params, Q) of its choice and get back hdlQ.

5. Also, A can run HW.Run&Attest on input (hdlQ, in) of its choice and get φ :=
(
tagQ, in, out, π

)
. For every

run, C adds the tuple (tagQ, in, out) to the list query.

6. Finally, the adversary outputs φ∗ = (tag∗Q, in
∗, out∗, π∗).

We say the adversary wins the above experiment if:

1. HW.Verify(params, φ∗) = 1,

2. (tag∗Q, in
∗, out∗) /∈ query

The HW scheme is secure if no adversary can win the above game with non-negligible probability.

Note that the scheme is secure even if A can produce a π∗ different from the query outputs, but it cannot be a proof
for a different program or input or output. This definition resembles an existential unforgeability like notions.

We also point out some other important properties of the secure hardware that we impose in our model.

• Any user only has black box access to these algorithms and hence hidden from the internal secret key skHW,
initial state init.st or intermediary states of the programs running inside secure containers.

• The output of the HW.Run&Attest algorithm is succinct: it does not include the full program description, for
instance.

• We also require the params and the handles hdlQ to be independent of aux. In particular, for all aux, aux′,

(params, skHW, init.st)← HW.Setup(1λ, aux)

(params′, sk′HW, init.st
′)← HW.Setup(1λ, aux′)

and for hdlQ ← HW.Loadinit.st(params, Q) and hdl′Q ← HW.Loadinit.st′(params′, Q), the tuples (params, hdlQ)

and (params′, hdl′Q) are identically distributed.

A few aspects of our FE model Now that we have described the required preliminaries, we would like to discuss
and reiterate a few aspects of our model. Our model has three pieces that differ from the classical FE crypto models
defined. First, we equip decryptor nodes with a secure hardware component. Given that all newer Intel processors are
equipped with such a component (SGX), we anticipate that this assumption will be real in the next few years. AMD
and other research and industry teams are also working on enabling secure hardware (encrypted memory) containers
in all future processors. Second, we allow a pre-processing phase for all the decryptor nodes. This phase is used to
setup public parameters for each secure component, which can be used to authenticate inputs/outputs from programs
running within it. Intel, for instance, already provides a Intel Attestation Service, that is used to distribute these public
parameters and during verification/attestation [JSR+16]. Finally, we allow the decryptor to communicate with the
authority oracle during decryption. Communication is restricted to short messages and also the authority oracle cannot
compute the function on behalf of the decryptor. This communication is cheap in the real world and, as mentioned
earlier, leveraged by us to bypass impossibility results.

12

3 FE from Secure Hardware
In this section we will provide our construction for functional encryption FE which supports a message domainM
and a class of programs P producing outputs of some fixed length `out (programs with smaller outputs can always
be padded). We also require that each program’s runtime is a function of the length of the input i.e. for all inputs of
a particular length a program takes the same time to produce an output. Our FE scheme makes use of the following
primitives:

1. an IND-CPA secure secret key encryption scheme E = (E.KeyGen,E.Enc,E.Dec) with message domainM,

2. an EUF-CMA secure signature scheme S = (S.KeyGen,S.Sign,S.Verify),

3. a collision resistant hash function family H,

4. an IND-CCA2 secure and weakly robust public key encryption scheme PKE = (PKE.KeyGen,PKE.Enc,PKE.Dec)8,

5. an AttUnf secure hardware scheme HW = (HW.Setup, HW.Load, HW.Run&Attest,HW.Verify).

First we will explain the pre-processing phase.
Pre-processing: A decryptor node, sets up its secure hardware components by running:

1. Run HW.Setup(1λ,⊥) to get params, a secret key skHW and the initialization state init.st.

2. Parameters skHW and init.st remain secretly stored inside the secure hardware, but params is made public.

We are now ready to define the main FE algorithms. params is implicitly given as input to all the FE algorithms.9

FE.Setup(1λ): The setup algorithm takes in the security parameter and does the following:

1. Sample a pair of PKE public/secret keys.

(pkpke, skpke)← PKE.KeyGen(1λ)

2. Sample a pair of signing/verification keys.

(vksign, sksign)← S.KeyGen(1λ)

3. Sample a hash function H ← H.Gen(1λ).

4. Output the master public key mpk := (pkpke, vksign, H) and the master secret key msk := (skpke, sksign).

FE.Enc(mpk,msg): The encryption algorithm takes as input the master public key mpk and a message msg ∈ M,
and does the following:

1. Sample an ephemeral key ek← E.KeyGen(1λ) for encrypting the message.

2. Encrypt the message using the ephemeral key.

ctm ← E.Enc(ek,msg)

3. Encrypt the ephemeral key and the hash of the ciphertext ctm.

ctk ← PKE.Enc
(
pkpke, [ek, H(ctm)]

)
4. Output ct := (ctk, ctm).

8Technically, two different PKE schemes each having one of the two properties would suffice for our construction (i.e., an IND-CCA2 secure
scheme and another IND-CPA secure scheme with the weak robustness property).

9Note that when multiple users will need run decryption, then each one of them needs to make its params public. The setup of the secure
hardware may also come at any time during the execution of FE algorithms. We define it explicitly in the pre-processing phase for clarity.

13

FE.Keygen(msk, P): The key generation algorithm takes in the master secret key msk and a program P and does the
following:

1. Generate a random tag τP
$← {0, 1}λ.

2. Obtain a signature σP of the program P along with its tag.

σP ← S.Sign(sksign, [P, τP])

3. Output skP := (σP , P, τP).

FE.DecOmsk(·)(skP , ct): The decryption algorithm takes as input a secret key skP = (σP , P, τP) and a ciphertext
ct = (ctk, ctm). It has access to oracle Omsk(·), and secure hardware component HW. It proceeds as follows.

1. Create a secure container for the program ProgDec by running HW.Loadinit.st(params,ProgDec). A
succinct handle hdl is obtained after its successful execution. Informally from correctness perspective,
ProgDec performs two main tasks. First it generates ephemeral public keys (pktmp) and sends them along
with ctk to theOmsk oracle. When theOmsk oracle returns the encryption of ek under the ephemeral public
keys, ProgDec also takes in ctm and P and outputs P (msg). A formal description of ProgDec is provided
after FE.Dec.

2. Start the decryption by invoking ProgDec through

φ← HW.Run&AttestskHW(hdl, [τP , ctk])

where
φ =

(
H(ProgDec), [τP , ctk], [pk

1
tmp, pk

2
tmp, ID], π

)
Here, π is a proof that ProgDec is run inside the secure hardware and on input [τP , ctk] has produced the
output [pk1tmp, pk

2
tmp, ID].

3. Transform ctk into an encryption of ek under the pktmp’s by using the Omsk oracle.10

(ψ, σψ)← Omsk(φ)

4. Complete the decryption process by invoking ProgDec again through

φ′ ← HW.Run&Attest (hdl, [skP , ctm, ψ, σψ])

where
φ′ = (H(ProgDec), [skP , ctm, ψ, σψ], [result], π

′)

5. Output result.

We will now formally define the program ProgDec which is loaded inside the secure container. Note that the
ProgDec program description is not dependent on any of the FE parameters.

ProgDec: ProgDec is a stateful algorithm and is initialized with the initial state state , init.st. ProgDec has two possible
entry points.11

• Initializing decryption: On input (τP , ctk),

10Note that φ is succinct and does not include program description or the ciphertext ct. Hence, the interaction withOmsk oracle is minimal.
11In our presentation, we give the non-oblivious version of ProgDec for simplicity. Every step (or collection of steps) run by ProgDec can be

made oblivious to memory access pattern and timing leaks. The important thing that an authority (FE.Keygen algorithm) should ensure is that it
should issue secret keys only for the oblivious versions of the programs for which secret key is requested.

14

1. If pk1tmp =⊥ in state, generate an ephemeral PKE public/secret key pair.

(pk1tmp, sk
1
tmp)← PKE.KeyGen(1λ)

Else, set sk1tmp =⊥.

2. If pk2tmp =⊥ in state, generate another pair.

(pk2tmp, sk
2
tmp)← PKE.KeyGen(1λ)

Else, set sk2tmp =⊥.

3. Output (pk1tmp, pk
2
tmp, ID), where ID

$← {0, 1}λ identifies this run of ProgDec.

4. The state state that is passed onto the second step is (sk1tmp, sk
2
tmp, ID).

• Completing decryption: On input (skP , ctm, ψ, σψ) for ψ = (ID, H(ctm), ct1tmp, ct
2
tmp),

1. Retrieve state = (sk1tmp, sk
2
tmp, ID).

2. Verify the secret key signature skP by running S.Verify(vksign, σP , [P, τP]). If the verification fails output
⊥, else proceed.

3. Verify the signature from Omsk: S.Verify(vksign, σψ, ψ). If the verification fails output ⊥, else proceed.

4. Compare the ID in state and ψ. If they do not match output ⊥, else proceed.

5. Check the validity of ctm by first computing H(ctm) with ctm from the input and then comparing it with
the H(ctm) in ψ. If they do not match output ⊥, else proceed.

6. Decrypt ct1tmp.
[ek, val,mode]/⊥← PKE.Dec(sk1tmp, ct

1
tmp)

7. If ⊥, decrypt ct2tmp.
[ek, val,mode]/⊥← PKE.Dec(sk2tmp, ct

2
tmp)

If ⊥ output ⊥, else proceed.

8. Now use the ek obtained to decrypt ctm.

msg← E.Dec(ek, ctm)

9. Compute the function evaluation P (msg).

10. If mode = 0, output P (msg), else output val.

Now we will describe the Omsk oracle.
Omsk oracle: The Omsk oracle is run by the authority primarily to help the decryption algorithm by providing the
ephemeral key ek. It takes as input

φ =
(
H(ProgDec), [τP , ctk], [pk

1
tmp, pk

2
tmp, ID], π

)
and works as follows:

1. Verify the attestation π by running HW.Verify(φ). If the output is 0 output ⊥, else proceed.

2. Decrypt ctk using the skpke from msk.

[ek, H(ctm)]← PKE.Dec(skpke, ctk)

3. Encrypt [ek, val,mode] under pk1tmp for val = 0`out and mode = 0.

ct1tmp ← PKE.Enc(pk1tmp, [ek, 0
`out , 0])

15

4. Encrypt [ek, 0`out , 0] under pk2tmp.

ct2tmp ← PKE.Enc(pk2tmp, [ek, 0
`out , 0])

5. Obtain a signature on ψ = (ID, H(ctm), ct1tmp, ct
2
tmp).

σψ ← S.Sign(sksign, ψ)

6. Output σψ .

3.1 Correctness
We will informally argue the correctness of our scheme for an honest decryptor. On input (skP , ct) to FE.Dec, where
ct← FE.Enc(mpk,msg) and skP ← FE.Keygen(msk, P),

1. The correctness of HW will ensure that the correct ctk is passed to the Omsk oracle.

2. Then, the correctness of PKE will ensure that Omsk on decryption gets the correct ek which is returned back
encrypted under pk1tmp (and pk2tmp).

3. Again, the correctness of HW and PKE will ensure that the second run of ProgDec will get back ek on decrypting
ct1tmp. This can be used to get the msg due to the correctness of E, and from msg, P (msg) can be calculated.

Also note that theOmsk oracle satisfies the efficiency requirements. Each component of its input φ has length poly(λ).
Also, every step of Omsk runs in time polynomial in the length of its inputs, other than the two PKE.Enc steps whose
running time additionally depends on `out. Hence, the total running time of Omsk does not depend on the length of P
or in, or the running time of P .

3.2 Security
Theorem 3.1 If E is an IND-CPA secure secret key encryption scheme, S is an EUF-CMA secure signature scheme,
PKE is an IND-CCA2 secure, weakly robust public key encryption scheme and HW is an AttUNF secure hardware
scheme, then FE is a secure functional encryption scheme according to Definition 2.1.

Proof. We will construct a simulator S for the FE security game in Definition 2.1. S is given the length |msg∗| and an
oracle access to Umsg∗(·) (such that Umsg∗(P) = P (msg∗)) after the adversary provides its challenge message msg∗.
S has to simulate a ciphertext corresponding to the challenge message msg∗ along with the pre-processing phase,
KeyGen algorithm and the Omsk oracle. It does them as follows:

Pre-processing phase: S simulates the pre-processing phase similar to the real world except that it inputs a pk
sampled using PKE.KeyGen in aux which will be set as pk1tmp in init.st.

1. Run HW.Setup(1λ, [pk,⊥]) to get params, a secret key skHW and the initialization state init.st, where pk is
provided by environment. Here, init.st has pk1tmp = pk and pk2tmp =⊥.

2. Parameters skHW and init.st remain secretly stored inside the secure hardware, and params is made public.

FE.Enc∗(mpk): This algorithm is used by S to simulate the challenge ciphertext for the challenge message msg∗

provided by the adversary A. Enc∗ maintains a list K and does the following:

1. Obtain ek by running E.KeyGen(1λ).

2. Obtain the ciphertext ct∗m by encrypting a string of zeros of length |msg∗|.

ct∗m ← E.Enc(ek, 0|msg∗|)

16

3. Encrypt a string of zeros again along with H(ct∗m).

ct∗k ← PKE.Enc
(
pkpke, [0

|ek|, H(ct∗m)]
)

4. Output ct∗ := (ct∗k, ct
∗
m).

In addition, S stores (ct∗k, H(ct∗m)) in the list K.

FE.Keygen∗(msk, P): S has access to the master secret key msk. So the simulated KeyGen∗ is run the same way as
the real one as follows:

1. Generate a random tag τP
$← {0, 1}λ.

2. Obtain a signature of the program P along with its tag.

σP ← S.Sign(sksign, [P, τP])

3. Output skP := (σP , P, τP).

In addition, S queries Umsg∗(P) to get P (msg∗) and store the tuple (τP , P (msg∗)) in a list R. For the queries
made before A provides msg∗, S stores the programs along with their tags and later fill their entries in R after
A provides msg∗.

O∗msk(φ): S simulates the O∗msk oracle using its oracle access to Umsg∗(·). Remember that Umsg∗(P) = P (msg∗). On
an input

φ =
(
H(ProgDec), [τP , ctk], [pk

1
tmp, pk

2
tmp, ID], π

)
S runs the following steps:

1. Run the HW.Verify oracle on π. If its output is 0 output ⊥, else proceed.

2. If ctk ∈ K (which, as explained later, with very high probability captures the case that decryption is being
run on an encryption of msg∗):

(a) SearchR for τP to obtain P (msg∗) and let val = P (msg∗).
(b) Encrypt a string of zeros of length |ek| with mode = 1 under pk1tmp.

ct1tmp ← PKE.Enc(pk1tmp, [0
|ek|, val, 1])

(c) Encrypt the same string under pk2tmp.

ct2tmp ← PKE.Enc(pk2tmp, [0
|ek|, val, 1])

Else, the decryption is being run on an encryption of some msg 6= msg∗. Here, do as in the real world:

(a) Decrypt ctk using the skpke.

[ek, H(ctm)]← PKE.Dec(skpke, ctk)

(b) Encrypt [ek, 0`out , 0] under pk1tmp.

ct1tmp ← PKE.Enc(pk1tmp, [ek, 0
`out , 0])

(c) Encrypt [ek, 0`out , 0] under pk2tmp.

ct2tmp ← PKE.Enc(pk2tmp, [ek, 0
`out , 0])

17

3. Obtain a signature on ψ = (ID, H(ctm), ct1tmp, ct
2
tmp).

σψ ← S.Sign(sksign, ψ)

4. Output σψ .

Now, for this polynomial time simulator S described above, we have to show that for experiments in Definition 2.1,

(msg, α)real
c
≈ (msg, α)ideal (1)

We prove this by showing that the view of the adversaryA in the real world is computationally indistinguishable from
the view in the ideal world. It can be easily checked that the algorithms KeyGen∗,Enc∗ and oracle O∗msk simulated
by S correspond to the ideal world specifications of Definition 2.1. The most important thing to notice is that no
information about msg∗ is used by S other than those provided by the Umsg∗(·) oracle. We will prove through a series
of hybrids that A cannot distinguish between the real and the ideal world algorithms and oracles. In this paper, we
have removed some details which can be easily worked out. A more detailed proof is available in the full version.

Hybrid 0 ExprealFE(1
λ) is run.

Hybrid 1 As in Hybrid 0, except that FE.Keygen∗ run by S is used to generate secret keys instead of FE.Keygen.
And Enc stores (ct∗k, H(ct∗m)) used in the challenge ciphertext for msg∗ in the list K.

Here, FE.Keygen∗ and FE.Keygen are identical. And storing in lists does not affect the view of A. Hence,
Hybrid 1 is identical to Hybrid 0.

Hybrid 2 As in Hybrid 1, except that during the pre-processing phase S sets pk2tmp to a value provided by the
environment.

The following claims will be useful in proving the indistinguishability of these two hybrids and in the rest of the
proof.

Claim 3.1.1 Any σψ input to the second run of ProgDec, for which S.Verify does not output 0, is a valid signature on
ψ = (ID, H(ctm), ct1tmp, ct

2
tmp) generated by Omsk.

• We will use the EUF-CMA security of the signature scheme S to prove this claim.

• If A violates this claim, we will construct an adversary A∗ which uses A to break the EUF-CMA security. A∗
gets vk∗ from its EUF-CMA challenger and it makes S set vksign = vk∗ in mpk. When S needs to sign [P, τP]
in FE.Keygen∗ or ψ in Omsk, A∗ uses the signing oracle provided by its challenger to get the signature. S can
simulate the other components of the FE game since they do not require any information about sksign. Now, if
A produces a forged σψ A∗ forwards it to its EUF-CMA challenger as its forgery.

• This claim ensures any ψ input to the second part of ProgDec algorithm originates from the Omsk oracle.

Claim 3.1.2 Any φ input to the Omsk oracle

φ =
(
H(ProgDec), [τP , ctk], [pk

1
tmp, pk

2
tmp, ID], π

)
for which HW.Verify does not output 0 has the program hashH(ProgDec), inputs [τP , ctk] and outputs [pk1tmp, pk

2
tmp, ID]

as output by an instance of the HW.Run&Attest oracle for ProgDec.

• We will use the AttUNF security of HW to prove this claim.

18

• If A has forged a π to attest a non-queried(
H(ProgDec), [τP , ctk], [pk

1
tmp, pk

2
tmp, ID]

)
which the HW.Verify oracle approves, we will construct an adversary A∗ for AttUNF security game. First,
when S has to run the pre-processing phase with aux, A∗ provides the aux to its AttUNF challenger and gets
sk∗HW and init.st∗ set in the hardware for A. Now A can run the other algorithms of HW with the challenge
parameters and when A forges a π A∗ can look it up from the transcript α and forward it to its challenger.

• This claim ensures that any valid query to Omsk originates from running the ProgDec algorithm.

Due to Claim 3.1.1 and Claim 3.1.2, A cannot modify any communication between ProgDec and Omsk. Here, the first
part of ProgDec generates an ID and sends it to theOmsk oracle as a part of φ, and the oracle sends it back to the second
part of ProgDec as a part of ψ. Hence, A cannot invoke ProgDec (without aborting during verification) with an output
of Omsk intended for a different instance of ProgDec.

Now, let us complete the proof of indistinguishability between Hybrid 1 and Hybrid 2. In Hybrid 1, ProgDec

has access to the “correct” sk2tmp but in Hybrid 2 sk2tmp =⊥. Hence, the hybrids differ only in the decryption of
ct2tmp, which will be run by the second part of ProgDec only when PKE.Dec(sk1tmp, ct

1
tmp) outputs ⊥. But, according

to Claim 3.1.1 and Claim 3.1.2, A cannot modify the pk1tmp in φ and the ct1tmp in ψ. Hence, ProgDec will have the
correct sk1tmp corresponding to pk1tmp to decrypt ct1tmp, and hence ct2tmp will not be used in both the hybrids. Thus,
Hybrid 1 and Hybrid 2 are indistinguishable.

Hybrid 3 As in Hybrid 2, except that Omsk oracle encrypts [0|ek|, P (msg∗), 1] to generate ct2tmp instead of the
[ek, 0`out , 0] if the ctk in φ is ct∗k ∈ K. Here, P (msg∗) is obtained from the listR.

The indistinguishability between the hybrids depend on the IND-CPA security of PKE. The hybrids differ only in
the messages encrypted in ct2tmp, which will be used by the second part of ProgDec only when PKE.Dec(sk1tmp, ct

1
tmp)

outputs ⊥. But, by the same argument as above we can show that ct2tmp will not be used in both the hybrids.
Now, we will show that if A distinguishes between Hybrid 2 and Hybrid 3, we can construct an adversary A∗

for the IND-CPA security game. A∗ first gets a public key pk∗ from its challenger CPKE. During the pre-processing
stage, S sets aux = [⊥, pk∗]. Then, A∗ provides two messages [ek, 0`out , 0] and [0|ek|, P (msg∗), 1] to CPKE where ek
is got by decrypting ctk. A∗ gets back the challenge ciphertext ct∗. S sets ct2tmp = ct∗. S can simulate the other
elements of the FE security game without knowing whether ct∗ encrypts the first message or the second. If ct∗ is
an encryption of [ek, 0`out , 0], then the view of A is identical to the view in Hybrid 2 and if ct∗ is an encryption of
[0|ek|, P (msg∗), 1], then the view ofA is identical the view in Hybrid 3. Thus, ifA distinguishes between Hybrid 2
and Hybrid 3, A∗ breaks the IND-CPA security of PKE.

Hybrid 4 As in Hybrid 3, except that during the pre-processing phase S sets pk2tmp back to ⊥ and pk1tmp to a
value provided by environment.

Due to these changes, the second part of ProgDec will output ⊥ when ct1tmp is decrypted, by the weak robustness
property of PKE and the authenticity of the communication between ProgDec and Omsk (Claims 3.1.1 and 3.1.2). It
will start decrypting ct2tmp and it will use the correct sk2tmp to do it. But, when ctk ∈ K (corresponding to the challenge
msg∗) ct2tmp will be an encryption of [0|ek|, P (msg∗), 1], else ct2tmp will be an encryption of [ek, 0`out , 0]. Hence, when
ctk /∈ K the second part of ProgDec will follow similar procedures to produce the output in both the hybrids (though
Hybrid 3 will use ct1tmp and Hybrid 4 will use ct2tmp). But when ctk ∈ K, it will have different modes to work with.
In Hybrid 4, ProgDec will just output P (msg∗) got from ct2tmp since mode = 1. But in Hybrid 3, ProgDec will do
as in the real world: find ek from ct1tmp and then use it to get msg and then find P (msg). Due to the authenticity of the
communication between ProgDec andOmsk, the only possibility forA to make ProgDec output a P (msg) different from
P (msg∗) is by finding an H(ctm) corresponding to some message msg 6= msg∗ s.t. such that H(ctm) = H(ct∗m).
But if A can do this, we can construct an A∗ which uses A to break the collision resistance property ofH.

19

Hybrid 5 As in Hybrid 4, except that Omsk oracle encrypts [0|ek|, P (msg∗), 1] to generate ct1tmp instead of
[ek, 0`out , 0] if the ctk in φ is ct∗k ∈ K.

The indistinguishability between these two hybrids can be proven similar to the proof of indistinguishability
between Hybrid 2 and Hybrid 3. During the pre-processing stage, S sets pk1tmp = pk∗ and then later during
the simulation of O∗msk S sets ct1tmp = ct∗.

Hybrid 6 As in Hybrid 5, except that FE.Enc encrypts [0|ek|, H(ct∗m)] to get ct∗k instead of [ek, H(ct∗m)] while
encrypting the challenge message msg∗. Also, when ct∗k is queried to the Omsk oracle, H(ct∗m) is obtained from the
list K. This hybrid can be seen as using the O∗msk oracle.

We will use the IND-CCA2 security of PKE to prove the indistinguishability between these two hybrids. If A
distinguishes between them, we will construct an adversary A∗ for the IND-CCA2 security game. A∗ first gets pk∗

from its challenger and S sets pkpke = pk∗ in mpk. A∗ provides [ek, H(ct∗m)] and [0|ek|, H(ct∗m)] to its challenger as
its two challenge messages, where ek is the ephemeral key used to encrypt msg∗. And it gets back ct∗ which is an
encryption of either of these two. S will set ct∗k = ct∗ in FE.Enc. WheneverA queries theOmsk oracle with a ctk /∈ K
(and hence ctk 6= ct∗), the decryption oracle provided by the IND-CCA2 challenger is used to get [ek, H(ctm)] for
S. Clearly, if ct∗ is an encryption of [ek, H(ct∗m)] the view of A is as in Hybrid 5 and if ct∗ is an encryption of
[0|ek|, H(ct∗m)] the view of A is an in Hybrid 6. Hence, if A distinguishes between these two hybrids, A∗ breaks the
IND-CCA2 security of PKE.

Hybrid 7 As in Hybrid 6, except that FE.Enc encrypts 0|msg∗| to get ct∗m instead of msg∗ while encrypting the
challenge message msg∗. This hybrid can be seen as using the FE.Enc∗ algorithm to encrypt msg∗.

We will use the IND-CPA security of E here. If A distinguishes between these two hybrids, we will construct an
adversary A∗ for the IND-CPA security game. A∗ provides msg∗ and 0|msg∗| to its challenger as its two challenge
messages and gets back ct∗ which is an encryption of either of these two. S sets ctm = ct∗ in the challenge ciphertext.
The other components in the FE security game do not depend on the key used in encrypting ct∗ anymore and hence S
can simulate them. Thus, if ct∗ is an encryption of msg∗, the view of A is an in Hybrid 6 and if ct∗ is an encryption
of 0|msg∗|, the view of A is as in Hybrid 7. Hence, if A distinguishes between these two hybrids, A∗ breaks the
IND-CPA security of E.

4 Implementation and Evaluation
As we mentioned, the motivation for this hardware assisted model and our work is the recent progress in the Intel
processor support for SGX which enables the use of “protected” areas of execution. We perform all our experiments
on a Dell Inspiron 13 laptop with an Intel i7 processor and 8 GB RAM. The laptop has Intel Software Guard Extensions
(SGX) instruction set. A total of 128 MB is allotted by Intel for creating and running secure containers a.k.a.
encrypted enclaves in the main memory. All our experiments are run in the debug mode, hence no remote attestation
and verification are performed. Production mode, where which remote attestation is possible, requires commercial
licenses [Int] which we did not purchase.

We implemented all FE algorithms. Decryption algorithm was loaded inside the encrypted enclave. In SGX
terminology, HW.Load involves running the instructions ECREATE, EADD, EEXTEND and EINIT [MAB+13].
HW.Run&Attest involves first executing the instructions EENTER/ERESUME and EEXIT/AEX and then executing
EREPORT to create the attestation. And, HW.Verify is done by contacting the Intel Attestation service [JSR+16].
In the actual SGX implementation skHW does not contain the “signing key”. The hardware talks to an external key
repository proving its knowledge of skHW to get the signing key.

We run our experiments on 27 MB data files. We designed FE to support issuing of secret keys for basic arithmetic
operations (addition, multiplication, division, modulo), mean and simple linear regression programs. We implement
a simplified form of our FE scheme in which we define these functions in the decryption program itself, rather than

20

taking the function (and the corresponding secret key) as input to the main decryption algorithm and then executing it.
We run our experiment over three different randomly generated data sets: one structured (in linear regression terms),
one with values between 0 and 100 and one with randomly generated unsigned int values. But our implementation
runs the same way for any dataset (with individual data points represented as floats).

We use AES-GCM-128 for our secret key encryption. The crypto library provided for SGX enclaves12 does
not include a public key encryption or a key encapsulation mechanism scheme. However, the library does have
an implementation for Elliptic curve parameters generation algorithms to be used for key exchange and ECDSA
signatures. We build public key encryption on top of these basic operations.

The FE.Setup and FE.Keygen algorithms take about 1 millisecond. We used the EVP interface to OpenSSL to
AES-GCM-128 encrypt our dataset outside the enclave. This encryption of a 27 MB data takes around 22 ms. Now,
we compare the running time of our FE decryption algorithm with that of a simple implementation of equivalent
programs over plaintext data. We first do for simple arithmetic operations: ai � bi where � = {+, ∗, /} over (about
4 million) pairs of numbers. We then do simple linear regression, which involves finding the “best-fit” (α, β) such
that bi = α+ βai, over datasets of the same size. We also do the operations, modulus (ai mod p using a fixed p) and
mean, over the entire dataset. We exclude the file I/O time in our analysis. We also exclude network delay and the
time taken for the one time enclave creation process (around 550 ms) which become relevant only when using FE. Our
results are presented in Table 1. This shows that the overhead involved with our scheme is very low. Actually, most of
this overhead is in the “context-switch” during the enclave function call. This process took 70 ms for mean and linear
regression functions and 50 ms for the others13.

Plaintext computation FE Decryption

Add 15 99
Multiply 15 99
Divide 15 98

Modulus 30 100
Mean 30 133

Lin Reg 52 140

Table 1: Running time in milliseconds first for computations over plaintext data, and then for FE decryptions over FE
encrypted data.

Scaling For larger datasets, the program running inside the enclave has to process the data in chunks. Hence, for
memory intensive programs (eg. data mining algorithms), Intel’s current 128 MB restriction in Windows will have an
impact on the performance. The Linux SGX SDK does not have this 128MB restriction. So the program need not
have to process data in chunks. The catch is that the performance degrades with the amount of memory allotted for
an enclave. It is an interesting direction for future research to explore the performance impact for memory intensive
programs.

5 Summary and Future work
In this work, we presented a construction of functional encryption in an oracle assisted model of computation, where
the decryption nodes are also equipped with a secure hardware component. We proved the security of our construction
under the simulation-based security notion. Our experimental results show that our construction is very practical for
the real-world applications.

12Only a limited set of libraries are available inside SGX. And, that does not include extensive crypto libraries like OpenSSL.
13We measured it by calling a function which has the same arguments but does nothing.

21

A very important future work is to develop efficient oblivious algorithms resistant to side-channel attacks. It will
also be interesting to design oblivious programs that conform to the 4KB page granularity in memory access pattern
leaks. On the other hand, from a theoretical perspective, it will also be interesting to develop a security model to
formally quantify the access pattern and other side-channel leaks by making the FE simulator also take the side-
channel information as input.

References
[AAP15] Shashank Agrawal, Shweta Agrawal, and Manoj Prabhakaran. Cryptographic agents: Towards a unified

theory of computing on encrypted data. In EUROCRYPT II, pages 501–531, 2015.

[ABN10] Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In TCC, pages 480–497, 2010.

[AGJS13] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology for cpu based
attestation and sealing. In HASP, page 13, 2013.

[AGVW13] Shweta Agrawal, Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption:
New perspectives and lower bounds. In CRYPTO, 2013.

[AHKM14] Daniel Apon, Yan Huang, Jonathan Katz, and Alex J. Malozemoff. Implementing cryptographic program
obfuscation. Cryptology ePrint Archive, Report 2014/779, 2014. http://eprint.iacr.org/.

[APG+11] Joseph A. Akinyele, Matthew W. Pagano, Matthew D. Green, Christoph U. Lehmann, Zachary N.J.
Peterson, and Aviel D. Rubin. Securing electronic medical records using attribute-based encryption on
mobile devices. In SPSM, pages 75–86, 2011.

[BF01] Dan Boneh and Matthew K. Franklin. Identity-based encryption from the Weil pairing. In CRYPTO,
pages 213–229, 2001.

[BPSW16] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi. Foundations of hardware-
based attested computation and application to SGX. In EuroS&P, pages 245–260, 2016.

[BSW12] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: A new vision for public-key
cryptography. Commun. ACM, 55(11):56–64, November 2012.

[BW06] Xavier Boyen and Brent Waters. Anonymous hierarchical identity-based encryption (without random
oracles). In CRYPTO, pages 290–307, 2006.

[CD16] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, Report 2016/086,
2016. http://eprint.iacr.org/.

[CHL+15] Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, and Damien Stehlé. Cryptanalysis of
the multilinear map over the integers. In EUROCRYPT I, pages 3–12, 2015.

[CIJ+13] Angelo De Caro, Vincenzo Iovino, Abhishek Jain, Adam O’Neill, Omer Paneth, and Giuseppe Persiano.
On the achievability of simulation-based security for functional encryption. In CRYPTO II, pages 519–
535, 2013.

[CKZ13] Kai-Min Chung, Jonathan Katz, and Hong-Sheng Zhou. Functional encryption from (small) hardware
tokens. In ASIACRYPT II, pages 120–139, 2013.

[CLLT15] Jean-Sebastien Coron, Moon Sung Lee, Tancrede Lepoint, and Mehdi Tibouchi. Cryptanalysis of ggh15
multilinear maps. Cryptology ePrint Archive, Report 2015/1037, 2015. http://eprint.iacr.
org/.

[CLT13] Jean-Sébastien Coron, Tancrède Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the
integers. In CRYPTO (1), pages 476–493, 2013.

22

[Coc01] Clifford Cocks. An identity based encryption scheme based on quadratic residues. In IMA Int. Conf.,
pages 360–363, 2001.

[GGH13a] Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In
EUROCRYPT, pages 1–17, 2013.

[GGH+13b] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candidate
indistinguishability obfuscation and functional encryption for all circuits. In FOCS, pages 40–49, 2013.

[GGH15] Craig Gentry, Sergey Gorbunov, and Shai Halevi. Graph-induced multilinear maps from lattices. In
TCC, 2015.

[GMN+16] Paul Grubbs, Richard McPherson, Muhammad Naveed, Thomas Ristenpart, and Vitaly Shmatikov.
Breaking web applications built on top of encrypted data. In CCS, pages 1353–1364, 2016.

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for fine-grained
access control of encrypted data. In ACM CCS, pages 89–98, 2006.

[GVW12] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Functional encryption with bounded
collusions via multi-party computation. In CRYPTO, pages 162–179, 2012.

[GVW13] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Attribute-based encryption for circuits. In
STOC, pages 545–554, 2013.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Hoeteck Wee. Predicate encryption for circuits from LWE.
In CRYPTO II, pages 503–523, 2015.

[HJ16] Yupu Hu and Huiwen Jia. Cryptanalysis of GGH map. In EUROCRYPT I, pages 537–565, 2016.

[Int] Intel SGX product licensing. https://software.intel.com/en-us/articles/
intel-sgx-product-licensing. Accessed: 2016-05-20.

[JSR+16] Simon Johnson, Vinnie Scarlata, Carlos Rozas, Ernie Brickell, and Frank Mckeen. Intel software guard
extensions: EPID provisioning and attestation services. 2016.

[KPW16] David Kaplan, Jeremy Powell, and Tom Woller. AMD memory encryption. Whitepaper, 2016.

[KSW08] Jonathan Katz, Amit Sahai, and Brent Waters. Predicate encryption supporting disjunctions, polynomial
equations, and inner products. In EUROCRYPT, pages 146–162, 2008.

[LHM+15] Chang Liu, Austin Harris, Martin Maas, Michael W. Hicks, Mohit Tiwari, and Elaine Shi. Ghostrider: A
hardware-software system for memory trace oblivious computation. In ASPLOS, pages 87–101, 2015.

[LOS+10] Allison B. Lewko, Tatsuaki Okamoto, Amit Sahai, Katsuyuki Takashima, and Brent Waters. Fully
secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In
EUROCRYPT, pages 62–91, 2010.

[LYZ+13] Ming Li, Shucheng Yu, Yao Zheng, Kui Ren, and Wenjing Lou. Scalable and secure sharing of personal
health records in cloud computing using attribute-based encryption. IEEE Transactions on Parallel and
Distributed Systems, 24(1):131–143, 2013.

[MAB+13] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software model for isolated
execution. In HASP@ ISCA, page 10, 2013.

[MLS+13] Martin Maas, Eric Love, Emil Stefanov, Mohit Tiwari, Elaine Shi, Krste Asanovic, John Kubiatowicz,
and Dawn Song. PHANTOM: practical oblivious computation in a secure processor. In CCS, pages
311–324, 2013.

23

[MSZ16] Eric Miles, Amit Sahai, and Mark Zhandry. Annihilation attacks for multilinear maps: Cryptanalysis of
indistinguishability obfuscation over GGH13. In CRYPTO, 2016.

[NAP+14] Muhammad Naveed, Shashank Agrawal, Manoj Prabhakaran, XiaoFeng Wang, Erman Ayday, Jean-
Pierre Hubaux, and Carl A. Gunter. Controlled functional encryption. In CCS, pages 1280–1291, 2014.

[NKW15] Muhammad Naveed, Seny Kamara, and Charles V. Wright. Inference attacks on property-preserving
encrypted databases. In CCS, pages 644–655, 2015.

[NY90] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ciphertext attacks.
In STOC, pages 427–437, 1990.

[PPM+14] John P. Papanis, Stavros I. Papapanagiotou, Aziz S. Mousas, Georgios V. Lioudakis, Dimitra I.
Kaklamani, and Iakovos S. Venieris. On the use of attribute-based encryption for multimedia
content protection over information-centric networks. Transactions on Emerging Telecommunications
Technologies, 25(4):422–435, 2014.

[PRZB11] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Balakrishnan. Cryptdb:
protecting confidentiality with encrypted query processing. In SOSP, pages 85–100, 2011.

[PSV+14] Raluca Ada Popa, Emily Stark, Steven Valdez, Jonas Helfer, Nickolai Zeldovich, and Hari Balakrishnan.
Building web applications on top of encrypted data using mylar. In NSDI, pages 157–172, 2014.

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In CRYPTO, pages 47–53, 1984.

[SW05] Amit Sahai and Brent Waters. Fuzzy identity-based encryption. In EUROCRYPT, pages 457–473, 2005.

[SZEA+16] Cetin Sahin, Victor Zakhary, Amr El Abbadi, Huijia Rachel Lin, and Stefano Tessaro. Taostore:
Overcoming asynchronicity in oblivious data storage, 2016.

[WNL+14] Xiao Shaun Wang, Kartik Nayak, Chang Liu, T.-H. Hubert Chan, Elaine Shi, Emil Stefanov, and Yan
Huang. Oblivious data structures. In CCS, pages 215–226, 2014.

[XCP15] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In IEEE SP, pages 640–656, 2015.

24

