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Abstract

Attribute-Based Encryption (ABE) is a special type of public key encryp-
tion that allows users to share sensitive data efficiently through fine-grained
access control. The security involved in existing ABE systems is current-
ly insufficient. These systems are usually built on the Decisional Bilinear
Diffie-Hellman (DBDH) assumption or the q-type DBDH assumption, which
is stronger than the DBDH assumption. However, once the DBDH assump-
tion is unsecure, all concerned ABEs become vulnerable to threats. To ad-
dress this problem, the k-BDH assumption family proposed by Benson et al.
is adopted. Any assumption in the k-BDH assumption family is associated
with parameter k and becomes strictly weaker as k increased. We propose
a framework to implement Ciphertext-Policy Attribute Based Encryption
(CP-ABE) under the arbitrary assumption in the k-BDH assumption family.
When the k′-BDH assumption in the k-BDH assumption family becomes un-
secure, where k′-BDH is the assumption on which our ABE relies, the scheme
can be shifted to rely on the l′-BDH assumption instead, where l′ > k′. This
condition guarantees security as the underlying assumption of our scheme
becomes weaker. In addition, we define the formal security model of our
schemes and prove the security of CP-ABE in the selective attribute model.

Keywords: KP-ABE, CP-ABE, k-BDH assumption family, selective
security model, strictly weaker
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1. Introduction

Attribute Based Encryption (ABE), as presented by Sahai and Water-
s [1], is an influential paradigm for embedding a complex access policy
into encrypted data. Key-Policy Attribute-Based Encryption (KP-ABE)
and Ciphertext-Policy Attribute-Based Encryption (CP-ABE) are common-
ly used ABE schemes [2]. In KP-ABE, ciphertext is associated with the
attribute set, and the private key is associated with the access policy. In
the case of CP-ABE, ciphertext is associated with the access policy, and the
private key is associated with the attribute set.

In recent years, interest in ABEs has grown because of their new func-
tionalities [3, 4] or better performance [5, 6, 7]; however, they often suffer
from two undetectable security problems as described below :

(1) q-type DBDH assumptions may not guarantee ABE security when en-
countering Cheon’s attack [8]. Most proposed ABEs are reduced to
”q-type DBDH” assumptions [3, 9, 7, 10, 2]. Nevertheless, Cheon [8]
claimed that q-type assumptions and the associated ABEs may be vul-
nerable to special attacks. Consider the well-known q-Decisional Bilin-
ear Diffie-Hellman Exponent Assumption (q-DBDHE). This assump-
tion is often used by all kinds of ABEs [10][11]; we briefly describe it
as follows:
Definition 1 (q-DBDHE)[10][11]) Let G be a group of prime order

p, g be a generator of G, and a, s
R←− Zp be two integers. Given tuples:

~X = (G, p, g, ga, ..., gaq , gaq+2
, ..., ga

2q
).

The adversary is unable to distinguish element ga
q+1

from a random
element R in group G.
Most ABEs are reduced to q-DBDHE to enforce security, where pa-
rameter q denotes the number of attributes. However, security may
be threatened as the number of attributes increases. In [8], Cheon
formulated the following theorem:
Theorem 1 A cyclic group G with prime order p is chosen, and g is
an element of G. Let d be a positive divisor of p − 1. Let g, g1 = gα

and gd = gα
d
, then one can use O(max{

√
p− 1/d,

√
d}) memory to

compute α in O(log p(
√
p− 1/d+

√
d)) group operations.

Theorem 1 implies that ABE security decreases when the attribute
number (i.e., d) increases. Cheon pointed out that, compared with the
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DBDH assumption, the q-type DBDH assumption has computational
complexity reduced by

√
d.

(2) Any single assumption may be compromised when new attacks against
the assumption are found. Most ABE frameworks are built to adapt to
one assumption, but the above frameworks fail to provide a ”scalable”
property, i.e., when the current assumption becomes compromised, ex-
isting ABEs cannot provide a ”plug and play” mechanism to shift to
a new framework that is based on a more secure assumption. In other
words, the existing ABE framework is relatively ”fixed” for one as-
sumption.

We simultaneously overcome the above two problems by employing a new
scalable ABE framework that can flexibly ”switch” the based assumption to
a more secure assumption in an assumption series defined as  L, with the
limitation that it must satisfy the following three conditions. First, each
assumption in  L is weaker than q-type DBDH assumptions. Second, each
assumption is associated with a parameter κ, and we denote this assumption
as ASκ. Third, the assumption ASκ in  L becomes progressively weaker as κ
increases.

While utilizing the assumption series  L, an ABE framework that can
accommodate an arbitrary assumption in  L can be constructed so that the
two secure problems mentioned above may be addressed. First, since any
assumption in  L is weaker than a q-type DBDH assumption, this improved
ABE is more secure than the existing schemes based on q-type assumptions.
The method for addressing the second secure problem is intuitive: when the
current assumption ASκ1 becomes unsecure, we switch to an even weaker
assumption, ASκ2 where κ1 < κ2, which replaces ASκ1 and guarantees the
security of the scheme (according to the property of  L, assumption ASκ2 is
weaker than assumption ASκ1).

The remaining problem is that a series of assumptions,  L, must be for-
mulated, and a suitable framework for  L must be constructed. Recently,
Benson et al. [12] have proposed a proper assumption family, k-BDH. This
assumption family satisfies all properties of assumption series  L. We provide
a brief introduction to the k-BDH assumption family below.

1.1. k-BDH Assumption Family

The k-BDH assumption family, first proposed in [12], is a decisional as-
sumption family. We describe the k-BDH assumption as
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A group G with prime order p be chosen. Let x, y, r1, ..., rk be chosen at
random and g, v1, ..., vk be generators of G. The adversary must distinguish
the target element e(g, g)xy(r1+···+rk) from a random element T ∈ GT .

Formally, if an adversary B is given:

~z = (g, gx, gy, v1, ..., vk, v
r1
1 , ..., v

rk
k ).

it is difficult for it to distinguish K = e(g, g)xy(r1+···+rk) from a random ele-
ment in GT .

The advantage ε of Algorithm B in solving the k-BDH assumption in G
is defined as

|Pr[B(~z, T = K) = 0]− Pr[B(~z, T = R) = 0]| ≥ ε.

Each k-BDH assumption is associated with a parameter k. When k = 1,
the 1-BDH assumption is given (g, gx, gy, v1, v

r1
1 ), distinguish T = e(g, g)xyr1

from a random element in GT . Benson et al. [12] proved that the 1-BDH
assumption is equivalent to the DBDH assumption. They also proved that
assumptions in the k-BDH assumption family become progressively weaker
when k increases (Section 4 in [12]). For example, the 2-BDH assumption is
weaker than the 1-BDH assumption, 3-BDH is weaker than 2-BDH, and so
on.

We demonstrate that the k-BDH assumption family satisfies three prop-
erties of  L. First, considering that the DBDH assumption is weaker than the
q-type DBDH assumption, the 1-BDH assumption is equivalent to the DB-
DH assumption, and the l-BDH assumption is weaker than 1-BDH (l > 1),
we can deduce that the k-BDH assumptions (k ≥ 1) are weaker than the
q-type DBDH assumption. Second, the k-BDH assumption family satisfies
the second property of  L because each k-BDH assumption is associated with
a parameter k . Finally, the k-BDH assumption family satisfies the third
property of  L in that assumptions in the k-BDH assumption family become
progressively weaker. Therefore, the k-BDH assumption family meets the
requirements of the assumption series  L.

1.2. Contributions

The contributions of this paper are multifold. First, considering that
trivial ABE scheme may become vulnerable to severe attacks and unable to
shift to a new assumption, we propose a ABE framework that can flexibly
”generate” an ABE scheme on an arbitrary assumption in an assumption
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series that becomes progressively weaker. Our framework serves the benefit
of simply adding some public parameters and system switches to rely on a
new assumption, thus making redesigning a new system unnecessary. Second,
we demonstrate the implementation of the above mentioned framework. A
CP-ABE scheme is proposed. The CP-ABE scheme is built by adapting to
the k-BDH assumption family, and it can be constructed on an arbitrary
assumption in the same assumption family. This scheme is capable of easily
switching between based assumptions in the k-BDH assumption when the
relied-on assumption is attacked instead of redesigning the whole scheme.
Third, we formally prove the security of the proposed scheme and analyze
its performance in terms of computational and storage overhead.

1.3. Related Work

The first work on Identity-Based Encryption (IBE) [13] was proposed by
Boneh-Franklin a decade ago. Several works that focused different types of
IBE schemes are presented [14][15][16].

Benson, Shacham and Waters [12] proposed an IBE system based on an
arbitrary assumption in the k-BDH assumption, proving that the assumption
can generalize the DBDH assumption. Their work strengthens the security of
IBE because one can create a scheme reduced to a weak enough assumption
in the k-BDH assumption family as needed.

Research on IBE has also been conducted by Sahai and Waters [1]. They
proposed a Fuzzy IBE scheme that provides a mechanism for provider to
control how data are shared within the encryption algorithm. Basing on this
scheme, Sahai and Waters [1] presented ABE.

Most existing ABE schemes are based on the DBDH or q-type DBDH
assumption. For example, in terms of KP-ABE, Goyal, Pandey, Sahai, and
Waters [2] proposed an expressive KP-ABE scheme that uses fine-grained
access control based on the DBDH assumption. Attrapadung et al. [17] pro-
posed another scheme with constant-size ciphertexts based on the q-DBDHE
assumption (q-Decisional Bilinear Diffie-Hellman Exponent, a type of q-type
DBDH), while Ostrovsky et al. [9] proposed one with a non-monotonic access
structure where secret keys are associated with a set of attributes including
positive and negative attributes based on the DBDH assumption. Rouselakis
and Waters [18] proposed a KP-ABE scheme with a large universe using a
new proving method under the assumption called ”q-2”, which belongs to a
q-type DBDH assumption.
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In terms of CP-ABE, Bethencourt et al. [19] uses a monotonic access tree
as access structure to propose the first CP-ABE construction in 2007. How-
ever, the security of their scheme is limited, and their system is secure only
in the generic group model. Waters [10] proposed three CP-ABE schemes
that express the access structure using the Linear Secret Sharing Scheme
(LSSS); the three CP-ABEs are based on the q-parallel DBDHE assumption
(q-parallel Bilinear Diffie-Hellman Exponent problem, a type of q-type DB-
DH), the q-DBDHE assumption, and the DBDH assumption. CP-ABE has
attracted increasing interest. For example, Goyal et al. proposed a bound-
ed CP-ABE on the DBDH assumption, Chase [3] proposed multi-authority
CP-ABE on the DBDH assumption, Rouselakis and Waters [18] proposed a
CP-ABE with a large universe on the so-called ”q-1” assumption, which is a
type of q-type DBDH assumption.

Most recently, Zhou et al. proposed an efficient privacy-preserving CP-
ABE[20]; Boyen proposed ABE based on lattices [21]. Zhang et al. proposed
multi-authority ABE from lattices [22]. Takashima proposed a new proof
techniques for DLIN-Based adaptively secure ABE [23]. Rahulamathavan
proposed a novel user collusion avoidance Scheme for KP-ABE [24]. Cramp-
ton et al. proposed ABE for Access Control Using Elementary Operations
[25]. GIACON et al. proposed a proof of security for a KP-RS-ABE scheme
[26]. Fu proposed unidirectional proxy re-encryption for access structure
transformation in ABE [27].

2. Background

Bilinear maps, access structures, and LSSS are first defined. Finally, the
security definitions of CP-ABE are formulated.

2.1. Bilinear Maps

Two multiplicative cyclic groups G and GT with prime order p be chosen.
Generator g of G be chosen, and let e be such a bilinear map that e : G×G→
GT and

1. Bilinearity: assuming u, v are elements of G and a, b ∈ Zp, then it
holds that e(ua, vb) = e(u, v)ab.

2. Non-degeneracy: e(g, g) 6= 1.
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2.2. Access Structures

Definition 2 (Access Structure [28]) A set of parties be denoted as
{Q1, Q2, ..., Qn}. We say the collection of A ⊆ 2{Q1,Q2,...,Qn} is monotone
if ∀A,B : if A ∈ A and A ⊆ B then B ∈ A.

In this paper, attributes are the equivalent of the parties. In our context,
the access structure is monotone [10].

2.3. Linear Secret-Sharing Schemes

Definition 3 (Linear Secret-Sharing Schemes (LSSS) ) A secret-
sharing scheme Π over a set of parties P is called linear (over Zp) if

(1) A vector is formed by the shares for each party over Zp.
(2) We call the matrix M with l rows and n columns the share-generating

matrix. For all i = 1, ..., l , we let the function ρ be defined the party
labeling row i as ρ(i). When aiming to share a secret s ∈ Zp, we choose
a random vector v = (s, r2, ..., rn), where r2, ..., rn ∈ Zp are randomly
chosen, then (Mv)i for i = 1, ..., l is the l shares of the secret s and the
party ρ(i) owns the share (Mv)i.

As mentioned in [28] that, every LSSS also possesses the linear recon-
struction property. Linear reconstruction is defined as follows: let S ∈ A
be any authorized set, and let I ⊂ (1, 2, ..., l) be the following set that
I = (i : ρ(i) ∈ Zp). A constant set that satisfies ωi ∈ Zp must exist. If λi
are valid shares of any secret s, then we have:

∑
i∈I ωiλi = s.

3. Our Proposed CP-ABE Scheme

A straightforward method to directly construct an ABE system on the
k-BDH assumption is lacking. We explain the difficulty in reducing ABE
security to the k-BDH assumption.

In the k-BDH assumption, we are given 2k + 3 elements in group G ,
which are referred to as ”the given terms”: (g, gx, gy, v1, ..., vk, v

r̂1
1 , ..., v

r̂k
k ) and

to distinguish the target term T = e(g, g)xy(r̂1+···+r̂k). As in most encryption
schemes, we use the target term to randomize the encrypted message m (e.g.,
we can randomize the encrypted message m by generating the ciphertext
component C0 = m · e(g, g)xy(r̂1+···+r̂k)) and then use the given terms to
generate ciphertext components and private key components. However, this
process is difficult because the given terms include bases (v1, v2, ..., vk) that
we cannot directly transform to the generator g, which is the only generator
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that exists in the target term. To combine the encrypted message (e.g., C0)
with the other ciphertext components and private key components, we must
express the relations between the target term and the given terms, and we
must implicitly associate generator g with generator (v1, v2, ..., vk).

Our CP-ABE scheme is a variant of Waters’ CP-ABE scheme that was
proposed on the DBDH assumption (Section 6 of [10]). To adapt Waters’
scheme to the k-BDH assumption, we use the cancellation trick of [12]. We
build a connection between generator g and generators (v1, ..., vk) by setting
vt = gst for t = 1, ..., k. For any vt, we choose a random at and implicitly
set a corresponding element: st,1 = aty/st and set rt = r̂t/at. Then, we
can create the target term e(g, g)xy(r̂1+r2+···+r̂k) according to the given terms
and the terms of st,1, (t ∈ [k]):

∏
t∈[k]

e(gx, vrtt )st,1 =
∏
t∈[k]

e(gx, gst)r̂t/at·aty/st =∏
t∈[k]

e(g, g)xyr̂t (let set [k] denote a positive integer set in which all positive

integers in the set are less than or equal to positive integer k).
The formal definition of CP-ABE is as follows.

3.1. Ciphertext-Policy ABE

A CP-ABE scheme based on the k′-BDH assumption includes four al-
gorithms: Setup, Encrypt, KeyGen, and Decrypt. The k′-BDH assumption
belongs to the k-BDH assumption family, where parameter k′ is the corre-
sponding value of the assumption.

Setup(λ,U,k′). A security parameter λ, an attribute universe description
U, and parameter k′ are all used as inputs to the setup algorithm. The
outputs are public parameters PK and a master key MSK.

Encrypt(PK,m,A). Public parameters PK, a message m, and an access
structure A over the attribute universe are used as inputs to the encryption
algorithm. Ciphertext CT is encrypted using message m and access structure
A. A user must own a set of attributes that satisfies the access structure A
to decrypt the ciphertext.

Key Generation(MK,S). A master key MSK and a set of attributes S
that describes the key are used as inputs to the key generation algorithm.
The output is a private key SK.

Decrypt(PK,CT,SK). Public parameters PK, a ciphertext CT linked
with an access policy A, and a private key SK associated with a set S of
attributes are used as inputs to the decryption algorithm. This algorithm
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can decrypt the ciphertext and recover a message m once the access structure
A is satisfied by the set of attribute set S.

Security Model for CP-ABE. The security model of CP-ABE is a
game between the challenger and the adversary. First, the adversary pub-
lishes the challenge access structure A∗. The adversary can ask the challenger
to encrypt message m in respect of the access structure A∗ and also can query
for any private key corresponding to attribute set S such that S does not
satisfy A∗. We give the formal security game as follows.

Init. The adversary publishes a challenging access structure A∗, which it
will attempt to attack.

Setup. The challenger runs the setup algorithm and generates public
parameters PK, which are then given to the adversary.

Phase 1. The adversary can repeatedly query the private keys associated
with sets of attributes S1, ..., Sq1 . The limitation of each query is that none
of the queried attribute sets satisfies the challenging access structure A∗.

Challenge. The adversary must submit two equal-length messages m0

and m1. The challenger flips a coin b and encrypts message mb under the
challenging access structure A∗. The challenger gives the ciphertext CT ∗ to
the adversary.

Phase 2. Phase 1 is repeated with the same limitation that none of the
sets of queried attributes Sq1+1, ..., Sq satisfies the challenging access structure
A∗.

Guess. The adversary outputs a guess b′ of b. The advantage of an
adversary in this game is defined as Pr[b′ = b]− 1

2
.

Definition 4. A CP-ABE scheme is secure if all polynomial time (PPT)
adversaries have at most a negligible advantage ε in the above game.

3.2. Our Proposed CP-ABE Scheme

3.3. Proposed CP-ABE Scheme

We restrict ρ(.), a function that associates rows of a LSSS matrix M to
attributes, to be injective. Let set [x] denote a positive integer set where
all integers in the set are less than or equal to positive integer x, i.e., [x] =
{1, 2, ..., x}. We give our construction as follows.

Setup(U,nmax,k
′) The setup algorithm takes the number of attributes U ,

the maximum number of columns nmax in the access structure matrix, and
parameter k′ as inputs. Parameter k′ implies that the scheme must be con-
structed on the k′-BDH assumption, i.e., the assumption is given the terms
(g, gx, gy, v1, ..., vk′ , v

r1
1 , ..., v

rk′
k′ ) and to distinguish the term of e(g, g)xy(r1+···+rk′ ).
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The setup algorithm selects the following: a group G of prime order p
and generators g, v1, ..., vk′ , x, a1, ..., ak′ , r1, ..., rk′ ∈ Zp, and k′ × nmax × U
random elements (h1,1,1, ..., hk′,nmax,U).

The public key is published as

g, gx, vt : (t ∈ [k′]), vrtt : (t ∈ [k′]), ht,i,j : (t ∈ [k′], i ∈ [nmax], j ∈ [U ]).

The algorithm sets the master secret key MSK = (r1, ..., rk′ , x).
Encrypt(PK,(M,ρ),m) The encryption algorithm uses public parameters

PK, a message m, and an LSSS access structure (M,ρ) as inputs. Function
ρ(.), which is an injective function, associates rows of M to attributes.

Assuming that M is an `×nmax matrix. The algorithm chooses k′ random
vectors −→v1 = (s1,1, s1,2, ..., s1,nmax), ...,

−→vk′ = (sk′,1, sk′,2, ..., sk′,nmax). The above
k′ vectors will be used to share the k′ encryption exponents s1,1, ..., sk′,1.

The algorithm first computes

C0 = m · e(gx, vr11 )s1,1e(gx, vr22 )s2,1 · · · e(gx, vrk′k′ )sk′,1 = m
∏
t∈[k′]

e(gx, vrtt )st,1 .

Then, the algorithm computes

Ct = v
st,1
t : (t ∈ [k′]).

Finally, the algorithm computes

Ct,i,τ = gxMτ,i·st,ih
−st,1
t,i,ρ(τ) : (t ∈ [k′], i ∈ [nmax], τ ∈ [`]).

Ciphertext is published as

C0, Ct : (t ∈ [k′]), Ct,i,τ : (t ∈ [k′], i ∈ [nmax], τ ∈ [`]).

along with a description of (M,ρ).
KeyGen(MSK,S) The KeyGen algorithm takes the MSK and a set S of

attributes as inputs. The algorithm chooses k′ × nmax random elements

pt,i ∈ Zp : (t ∈ [k′], i ∈ [nmax]).

The algorithm first computes

Kt = gxrtgxpt,1 : (t ∈ [k′]).
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Then, the algorithm computes

Lt,i = v
pt,i
t : (t ∈ [k′], i ∈ [nmax]).

Finally, the algorithm computes

Nt,χ =
∏

i∈[nmax]
(ht,i,χ)pt,i : (t ∈ [k′], χ ∈ S).

The private key is issued to the user as follows

Kt : (t ∈ [k′]), Lt,i : (t ∈ [k′], i ∈ [nmax]), Nt,χ : (χ ∈ S, t ∈ [k′]).

Decrypt(CT,SK) The decryption algorithm takes ciphertext CT for ac-
cess structure (M,ρ) and a private key for set S as inputs. Assuming that
attribute set S satisfies the access structure, we define set J = {τ : ρ(τ) ∈ S}.
Then, if for some t ∈ [k′], terms {λt,τ = Mt,τ ·−→vt } are valid shares of secret st,1
over access matrix M , we can find a constant set {ωt,τ ∈ Zp}τ∈J efficiently
that satisfies ∑

τ∈J
ωt,τMτ,1 = 1,∑

τ∈J
ωt,τMτ,2 = 0,

...∑
τ∈J

ωt,τMτ,nmax = 0.

The above equations hold true because, according to the description of
LSSS in Section 2.3, if terms {λt,τ = Mt,τ · −→vt } are valid shares of secret st,1
over access matrixM , then the decryptor can efficiently find constants {ωt,τ ∈
Zp}τ∈J that allows the equation

∑
τ∈J

ωt,τλt,τ = st,1 to hold. The decryptor

finds such constants by finding constants that let the following equation hold:∑
τ∈J

ωt,τMt,τ = (1, 0, · · · , 0) (so,
∑
τ∈J

ωt,τλt,τ =
∑
τ∈J

ωt,τMt,τ · −→vt = (1, 0, · · · , 0) · (st,1, st,2, · · · , st,nmax) =

st,1).
Using the above LSSS properties, the decryption algorithm works as fol-

lows. The decryption algorithm first computes

CT1 = e(C1, K1)e(C2, K2) · · · e(Ck′ , Kk′)
=

∏
t∈[k′]

e(g, vt)
xst,1rt

∏
t∈[k′]

e(g, vt)
xst,1pt,1 .
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Then, the algorithm computes (according to the above description,
∑
τ∈J

ωt,τMτ,1 = 1

and
∑
τ∈J

ωt,τMτ,i = 0 for τ ∈ {2, 3, ..., nmax})

CT2 =
∏
t∈[k′]

∏
i∈[nmax]

e(Lt,i,
∏
τ∈J

C
ωt,τ
t,i,τ )

=
∏
t∈[k′]

∏
i∈[nmax]

e(v
pt,i
t , g

∑
τ∈J

xωt,τMτ,ist,i
)×

∏
t∈[k′]

∏
i∈[nmax]

e(v
pt,i
t ,

∏
τ∈J

h
−st,1ωt,τ
t,i,ρ(τ) )

=
∏
t∈[k′]

e(g, vt)
xst,1pt,1

∏
t∈[k′]

∏
i∈[nmax]

e(v
pt,i
t ,

∏
τ∈J

h
−st,1ωt,τ
t,i,ρ(τ) ).

The algorithm also computes

CT3 =
∏
t∈[k′]

∏
τ∈J

e(N
ωt,τ
t,ρ(τ), Ct)

=
∏
t∈[k′]

∏
τ∈J

e(
∏

i∈[nmax]
h
pt,iωt,τ
t,i,ρ(τ) , v

st,1
t )

=
∏
t∈[k′]

∏
i∈[nmax]

e(v
pt,i
t ,

∏
τ∈J

h
st,1ωt,τ
t,i,ρ(τ) ).

Finally, the algorithm recovers a message m through the following com-
putation

m = C0 · (CT1/(CT2 · CT3))−1.

3.4. Proof

Our proposed scheme is constructed on the k′-BDH assumption, where
parameter k′ is given in the setup phase; therefore, we must reduce our
scheme to the k′-BDH assumption to proof its security. We use the following
theorem to prove the selective security of our scheme.

Theorem 2 Suppose that the k′-BDH assumption holds true, then no
polytime adversary A can selectively break our CP-ABE system.

Proof. If an adversary A can selectively break our scheme with a non-
negligible advantage ξ1 = AdvA, then we show that we can build a challenger
B that can resolve the k′-BDH assumption with a non-negligible advantage
ξ2 = AdvB.

Init. The challenger B first accepts the k′-BDH challenge: ~z = (g, gx, gy, v1, ..., vk′ , v
r̂1
1 , ..., v

r̂k′
k′ )

and T , the challenger wants to decide if the element T = e(g, g)xy(r̂1+···+r̂k′ )

or is a random element in the group GT . Then the adversary A chooses a
challenge `×nmax matrix M∗ and a challenge injective function ρ∗ which as-
sociates rows of M∗ to attributes. A publishes the challenge access structure
(M∗, ρ∗).

12



Setup. Challenger B chooses a random element zt,i,j ∈ Zp and sets the
public parameter ht,i,j : (t ∈ [k′], i ∈ [nmax], j ∈ [U ]) as follows:

ht,i,j =

{
v
zt,i,j
t gxM

∗
d,i (d ∈ [`]) ∧ (∃ρ∗(d) = j)

v
zt,i,j
t else.

(1)

B sets parameter ht,i,j using the following methods: if attribute j is asso-
ciated with row x in the challenge matrix M∗ (note that M∗ has ` rows, so
we have d ∈ [`]), then B chooses zt,i,j ∈ Zp and sets ht,i,j = v

zt,i,j
t gxM

∗
d,i , else

B only sets ht,i,j = v
zt,i,j
t .

Challenger B chooses at for t ∈ [k′] and sets the public key as follows:

g, gx, vt : (t ∈ [k′]), (vr̂tt )1/at : (t ∈ [k′]), ht,i,j : (t ∈ [k′], i ∈ [nmax], j ∈ [U ]).

According to the setting above, challenger B implicitly sets rt = r̂t/at for
t ∈ [k′].

Phase 1. B answers private key queries from adversary A in this phase.
If adversary A queries a private key for a set S that does not satisfy

the challenge access structure (M∗, ρ∗), then according to the LSSS property
[28], B can efficiently find a vector ~ω = (ω1, ..., ωnmax) that satisfies ω1 = −1
and M∗

i · ~w = 0 for all i where ρ∗(i) ∈ S.
B chooses θt,i ∈ Zp and implicitly sets parameter pt,i as

pt,i = θt,i + ωir̂t/at (t ∈ [k′], i ∈ [nmax]). (2)

With the use of pt,i, B sets parameter Lt,i for t ∈ [k′] and i ∈ [nmax] as
follows:

Lt,i = v
θt,i+ωir̂t/at
t = v

θt,i
t ((vr̂tt )1/at)ωi .

B knows the values of vt and vrtt , parameter Lt,i can be computed.
According to the vector setting ~ω, we have ω1 = −1, so B can easily

construct parameter Kt as

Kt = gxr̂t/at+xθt,1+xω1r̂t/at = gxθt,1 .

Finally, let d ∈ [`] denote a row in the challenge matrix M∗; B sets
parameter Nt,χ as follows:
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Nt,χ =


∏

i∈[nmax]

(vr̂tt )zt,i,χwi/atgxθt,iM
∗
d,iv

zt,i,χθt,i
t (∃ρ∗(d) = χ),

∏
i∈[nmax]

v
zt,i,χθt,i
t (vr̂tt )ωizt,i,χ/at (¬∃ρ∗(d) = χ).

(3)

B sets parameter Nt,χ using the following methods: if attribute χ is as-
sociated with row d in challenge matrix M∗, then according to equations (1)
and (2), we have

Nt,χ =
∏

i∈[nmax]

(vr̂tt )zt,i,χwi/atgxθt,iM
∗
d,iv

zt,i,χθt,i
t (gxr̂t)M

∗
d,iwi/at . (4)

In Equation (4), only term gxr̂t is unknown by challenger B. However,
according to the vector description ~ω, when a row d satisfies ρ∗(d) = χ, then
we have

∑
i∈[nmax]

M∗
d,iωi = 0. So, term gxr̂t will not appear in Equation (4).

Then, B can compute parameter Nt,y successfully as shown in Equation (3).
In addition, when no row x associated with attribute j, then according

to Equations (1) and (2), we have

Nt,χ =
∏

i∈[nmax]

(vr̂tt )zt,i,χwi/atv
zt,i,χθt,i
t . (5)

In Equation (5), all terms are known by challenger B, so B can construct
parameter Nt,y successfully.

Challenge. In this phase, adversary A outputs two messages m0,m1,
both with the same length, and gives them to challenger B.
B sets parameter Ct : (t ∈ [k′]) as

Ct = v
st,1
t = (gy)at : (t ∈ [k′]).

Let vt = gst for every t ∈ [k′]. Then, in the above equation, B implicitly
sets the value st,1 = aty/st, so that we have: Ct = v

st,1
t = (gst)aty/st = (gy)at .

B then creates the value of Ct,i,j. For every vector ~vt, B chooses a random
vector ~yt = (0, yt,2, ..., yt,nmax) and implicitly sets vector ~vt for t ∈ [k′] as
follows
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~vt = (aty/st, aty/st, ..., aty/st)︸ ︷︷ ︸
nmax

+~yt

= (aty/st, aty/st + yt,2, ..., aty/st + yt,nmax).

Vector ~vt is properly distributed because vector ~yt randomizes vector
(aty/st, aty/st, ..., aty/st). In addition, the following equations hold true:
st,i = aty/st + yt,i and yt,1 = 0 for every t ∈ [k′].

Using vector ~vt, B creates parameter Ct,i,τ as follows

Ct,i,τ = (gx)M
∗
τ,iyt,i(gy)−zt,i,τat .

Every attribute τ in the challenge phase must be associated with a row
%τ in the challenge matrix M∗. Thus, we have: ρ∗(%τ ) = τ . Then,

ht,i,τ = v
zt,i,τ
t gxM

∗
%τ ,i : (t ∈ [k′], i ∈ [nmax], ρ

∗(%τ ) = τ).

Thus, B computes ciphertext Ct,i,τ as

Ct,i,τ = gxM
∗
%τ ,i

aty/stgxM
∗
%τ ,i

yt,i × v−zt,i,τaty/stt g−xM
∗
%τ ,i

aty/st

= (gx)M
∗
%τ ,i

yt,i(gy)−zt,i,τat .

B then flips a coin β ∈ {0, 1} and creates the following ciphertext

C0 = mβ · T.

We observe that∏
t∈[k′]

e(gx, vrtt )st,1 =
∏
t∈[k′]

e(gx, (gst)r̂t/at)aty/st

= e(g, g)xy(r̂1+r̂2+···+r̂k′ ).

.
Phase 2. This phase is exactly as Same as Phase 1.
Guess. Finally, a guess β′ of β will be output by Adversary A. On

the basis of the output of A, challenger B outputs 0 indicating that T =
e(g, g)xy(r1+...+rk′ ) if β = β′; else, it outputs 1 indicating that T is a random
group element in GT .

When T = e(g, g)xy(r1+...+rk′ ), challenger B actually perfectly simulation
the game with the adversary; else, if T is a random group element, the ad-
vantage for adversary successfully guess the message mβ is negligible. There-
fore, the decisional k′-BDH game can be played by challenger B with a non-
negligible advantage. �
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System Ciphertext Size Key Size Enc. Time Dec. Time

Sec. 3 O(k′n2) O(k′kmaxA+ k′nmax) O(k′n2) O(k′nT )
[10] sec.3 O(n) O(A) O(n) O(T )
[10] sec.5 O(n) O(kmaxA) O(n) O(T )
[10] sec.6 O(n2) O(kmaxA+ nmax) O(n2) O(nT )

Table 1: The Performance Comparisons of ABE Schemes

System Assumption Resist Cheon’s Attack Support Assumption Shifted?

Sec. 3 k′-BDH Assumption Y Y
[10] sec.3 q-Parallel DBDHE Assumption N N
[10] sec.5 q-DBDHE Assumption N N
[10] sec.6 DBDH Assumption Y N

Table 2: The Security of ABE Schemes

4. Discussion

We now compare the performance of our two schemes with that of Waters’
three CP-ABE schemes [10]. Let n be the size of the access formula, A be
the number of attributes for the user’s private key, kmax be the maximum
number of times a single attribute may appear in an access formula, nmax be
the bound on the size of any access formula (i.e., the number of columns),
and T be the minimum number of nodes satisfied by the formula. Efficiency
for the ABE schemes is shown in Table 1, while security for the ABE schemes
is shown in Table 2.

Our scheme is built on the k′-BDH assumption in the k-BDH assumption
family, whereas Waters’ three CP-ABE schemes are built on the q-Parallel
DBDHE assumption (q-type DBDH assumption), the q-DBDHE assumption
(q-type DBDH assumption), and the DBDH assumption.

First, we must point out that ABEs based on the q-type DBDH assump-
tion are more efficient. We observe from Table 1 that Schemes 2 and 3
outperform all other schemes. The stronger the assumption that the scheme
relies on, the more efficient the scheme. However, considering the security
drawback for the q-type DBDH assumption, we construct our system on a
weaker assumption (scheme 1 in Table 1), to ensure the systems absolute
security.

We analyze schemes 1 and 4 in Table 1 and Table 2. When k′ = 1, the
k′-BDH assumption is equivalent to the DBDH assumption. When k′ > 1,
the k′-BDH assumption is weaker than the DBDH assumption. We observe

16



from Table 1 that when k′ = 1, our scheme has the same storage and time
performance as Waters’ scheme (scheme 4, which is constructed based on
DBDH assumption). When k′ increases, our scheme’s performance becomes
approximately k′ times that of Waters’ scheme. However, we can obtain an
ABE system reduced to the k′-BDH assumption, which is weaker than the
DBDH assumption, to achieve much stronger system security.

Using our construction, we overcome the problem that when DBDH, or
an assumption stronger than DBDH, becomes unsecure, we provide a method
to construct a new scheme to replace the old scheme, with the cost that we
must reduce efficiency. However, when security is threatened, system security
must be prioritized.

5. Conclusion

We present a new method to construct CP-ABE system on the k-BDH
assumption family; where an assumption in the k-BDH assumption family
becomes weaker when the values of parameter k increases. Our scheme is a
variant of Waters’ ABE system built on the DBDH assumption, but we create
a CP-ABE system on any k′-BDH assumption in the k-BDH assumption
family. If the current k′-BDH assumption becomes unsecure, we can shift our
system to the l′-BDH assumption, where l′ > k′, ensuring absolute system
security.
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