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Abstract. In 2014, the orthogonalized integer representation is pre-

sented indepently by Dan Ding etc and Fukase etc to solve SVP respec-

tively by genetic algorithm and sampling technique, and both work have

achieved very good results. In this paper, we first study the probability

distribution of the shortest vector with orthogonalized integer represen-

tations, and give a new enumeration method based on the representa-

tions, called orthognalized enumeration. Besides, we present a new BKZ

method, called MBKZ, which alternately uses orthognalized enumeration

and traditional enumeration. Our method has the obvious advantage in

time complexity compared to the previous ones which achieved expo-

nential speedups both in theory and in practice. Furthermore, a new

technique of reducing enumeration space is described, we can’t find a

quantitative analysis about success probability but it is effective in prac-

tice.

Key words: Lattice-based, SVP, sparse representations, enumeration,

BKZ

1 Introduction

A lattice L is a discrete additive subgroup of Rm. It is generated by n linearly

independent vectors b1, . . . ,bn in Rm, and the integer n is the dimension of L.

The discreteness of lattices implies that there exists a nonzero vector with the

smallest non-zero Euclidean norm in each lattice, denoted as λ1. There are two

famous computational problems in lattices:

− Shortest Vector Problem (SVP): Given a basis of lattice L, find the shortest

nonzero vector in the lattice.

− Closest Vector Problem (CVP): Given a basis of lattice L and a target

vector, find the lattice vector closest to the target.

The two hard problems SVP and CVP are of prime importance to the lattice

cryptography in the past 20 years. There are two main types of algorithms for

solving SVP and CVP. One is the exponential space algorithms, and the other
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is algorithms with polynomial space. The first exponential algorithm much at-

tracted cryptographic community is the randomized sieve algorithm proposed

in 2001 by Ajtai, Kumar and Sivakumar[3]. The sieve method reduces the up-

per bound of the time to 2O(n) at the cost of 2O(n) space. It has been developed

into some improved sieves including heuristic methods in recent years[25][26][34].

Another important work is the deterministic algorithm with O(22n) time and

O(2n) space given by Micciancio and Voulgaris[23]. The latest progress is the

randomized algorithm with O(2n) time using the discrete Gaussian sampling

method[1], which is the first randomized algorithm(without heuristic assump-

tion) faster than the deterministic algorithm.

For polynomial-space algorithms, two popular techniques are used, one is

lattice reduction, including the famous LLL alogrithm[20], HKZ reduction[17]

and BKZ reduction[30]. The other important technique is enumeration technique

which is an exact algorithm to find the shortest vectors in the reduced space.

Two techniques are complementary. Usually, the reductions cannot output the

shortest vectors in high dimension lattices, it is used to find sufficient short vec-

tors to ensure the enumeration search work efficiently. Whereas the enumeration

technique on sublattices with low dimensions is repeatedly used as a subrou-

tine, and aims to improve the output quality of the reductions greatly. The first

polynomial-space algorithm was provided by Kannan[17] in 1980s which is based

on LLL-reduced basis and HKZ reduction, the complexity of Kannan’s enumera-

tion is 2O(nlogn). The more accurate analysis complexity with d
d
2+o(d) was given

by Helfrich [15], and the further improved complexity bound of d
d
2e+o(d) was

proved by Hanrot and Stehlé in [12]. Another popular polynomial-space algo-

rithm is Schnorr-Euchner enumeration based on the BKZ reduction, and its

enumeration complexity is estimated by Gama, Nguyen and Regev in [10] as∑n
l=1 q

(n−l)l/22O(n)(q is a constant decided by basis). Although the complex-

ity of Schnorr-Euchner enumeration seems higher than Kannan’s enumeration,

in fact it is widely used in practical implementations, and becomes a funda-

mental tool in the popular mathematical library NTL[33]. Many security es-

timates[21][24][27][31] and SVP searching[13][19] of lattice cryptosystems are

based on BKZ implementation of NTL. Therefore, the further improvement of

the enumeration becomes very important for SVP searching. Gama, Nguyen and

Regev proposed an improvement to enumeration with extreme pruning technique

and the speedup is exponential[10]. Chen and Nguyen used the technique to im-

prove the BKZ algorithm named BKZ 2.0[6]. Further improvements of BKZ are

also achieved in progressive strategy[4] and result predictions[22] in recent years.

The main purpose of our paper is to describe a new enumeration method,

and we call it othogonalized enumeration. Our idea is motivated by the integer

sparse representation of the shortest vector regarding the Gram-Schmidt basis.

The idea of using the sparsity of the shortest vector’s representation regarding
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the Gram-Schmidt basis can be trace back to Schnorr’s Random Sampling Al-

gorithm[29], and was expanded independently by Dan Ding etc[7] in a genetic

algorithm and Fukase etc[9] in a sampling algorithm. Genetic algorithm is origi-

nated by Holland[16] in 1975, and has been used to solve optimization problems,

like timetabling, scheduling and engineering problems[5][8][11]. The main clue of

the method is to transform the shortest lattice vector into a new integer vector

corresponding to the Gram-Schimdt orthogonal basis. The new integer vector is

sparse, which means that it often consists of −1, 0, 1; most of elements in the

vector are 0s; most nonzero elements always locate on the tail of the vector. With

the help of the sparse representations, vectors can act as chromosomes to start a

genetic algorithm and search SVP successfully. While Random Sampling Reduc-

tion was proposed by Schnorr in 2003[29], and M. Fukase and K. Kashiwabara

[9] extended Schonrr’s sampling technique by the integer sparse representation

(also denoted as natural number representation), they used the technique com-

bined with restricting reduction techniques to solve SVP challenge in a higher

demension than ever.

Our contributions. Our contribution is to give a more efficient enumeration

utilizing the sparse integer representation of shortest vectors . Firstly, we study

the distribution of the shortest vector with the orthogonalized integer represen-

tation, and get a probability distribution through Monte-Carlo Simulation. With

the support of the probability distribution, we describe a natural enumeration

method which is called orthognalized enumeration. Orthognalized enumeration

demands for a new input parament k. In more details, the main purpose of

our method is to reduce the enumeration trials by considering the relationship

between the sparse integer vector y = (y1, ..., yn) regarding the Gram-Schmidt

basis B∗ and the original searched vector x = (x1, ..., xn) with the basis B. By

choosing a theoretical estimated threshold k such that yi(1 ≤ i ≤ n−k) equals to

0 with high probability, we can cut the searching space for the shortest vector v

into (xn−k+1, ..., xn). For every (xn−k+1, ..., xn), we can compute (yn−k+1, ..., yn)

according to the one-to-one correspondence between x and y, and then compute

the unique values of xi,∀i = 1, ..., n− k. This means that, our enumeration only

searches k-dimension subspace instead of the previous method (full enumer-

ation, linear enumeration, extreme enumertaion etc) with n-dimension space.

This feature makes the method ideal for use in high dimension. Furthermore,

we introduce a new BKZ method called MBKZ by alternately using orthognal-

ized enumeration and traditional enumeration. Monte-Carlo Simulation is used

to estimate the expectations of number of nodes by using different enumeration

methods, and the result shows that exponential speedup can be achieved by

our new method. We make experiments in basis with dimension up to 140, and

experimental results are consistent with our theoretical estimation.
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Furthermore, we describe an interesting technique to reduce the searching

space of enumeration with non-negligible probability. Although we cannot find

a quantitative analysis about success probability, it works well in experiments.

The rest of the paper is organized as follows: In Section 2, we provide some

necessary backgrounds on lattice and describe the orthogonalized integer rep-

resentations. In Section 3, we introduce our basic orthogonalized enumeration,

and estimate the success probability. Section 4 introduces the details of MBKZ.

A further improvement of enumeration is given in Section 5. Finally a conclusion

is given in Section 6.

2 Preliminaries

Lattice. A lattice L is defined as the set of all integral combinations of n lin-

early independent vectors b1, . . . ,bn in Rm(m ≥ n), these linearly independent

vectors are a basis of L. The integer n is the dimension of L and vol(L) is the

volume or determinant of L:

L(b1, . . . ,bn) = {
n∑
i=1

xibi, xi ∈ Z}.

The basis of L is not unique, but they have the same number n of elements

and the same volume vol(L). When m = n, the lattice is called full-rank.

Shortest vector. ‖v‖ is denoted as the Euclidean norm of a vector v ∈ Rm,

the non-zero vector with smallest Euclidean norm in a lattice L, which is called

the shortest vector, and its norm is the first minimum λ1(L).

Gram − Schmidt orthogonalization. The Gram-Schmidt orthogonalization

is a method for orthogonalizing a set of vectors in an inner product space, most

commonly the Euclidean space Rn. For a basis B = [b1, . . . ,bn], the Gram-

Schmidt process generates an orthogonal set B∗ = [b∗1, . . . ,b
∗
n] as follows:

b∗i = bi −
i−1∑
j=1

µijb
∗
j . (1)

where uij =
〈bi,b

∗
j 〉

〈b∗j ,b
∗
j 〉
, for 1 ≤ j < i ≤ n.

The Gram-Schmidt procedure projects each bi to the space orthogonal to the

space spanned by b∗1, . . . ,b
∗
i−1, and keeps the determinant unchanged, det(B) =∏n

i=1 ‖b∗i ‖.
BKZ. BKZ is a lattice reduction technique with blockwise algorithms[30].

It applies successive elementary transformations to an input basis, and outputs

a BKZ-reduced basis whose vectors are shorter and more orthogonal. For a

blocksize β ≥ 2 and a basis B = (b1, . . . ,bn) of a lattice, it firstly applies
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LLL to B and then applies enumeration to each block B[j,min(j+β−1,n)] which

is denoted as L[j,min(j+β−1,n)] for 1 ≤ j ≤ n to find v = (v1, · · · , vn) which

ensures ‖πj(
∑min(j+β−1,n)
i=j vibi)‖ = λ1(L[j,min(j+β−1,n)]), πj is the orthogonal

projection on (b1, · · · ,bi−1)⊥. And after finding vectors shorter than any vectors

in the basis, LLL is called to update the basis. These steps would be repeated

several times until no vector shorter than the basis vectors can be found in

each block, and the final basis is the output. While it is a popular observation

that the output basis seems to have ‖b∗i ‖/‖b∗i+1‖ ≈ q, and q depends on the

quality of BKZ, which is also mentioned in [10]. All the lattice basis B discussed

throughout this paper are BKZ-reduced lattices unless specified otherwise.

Gaussian Heuristic. The Gaussian Heuristic is used to estimate the distri-

bution of vectors in a lattice. It assumes that the number of points in a set is

related to its volume. Given a lattice L and a subset S ⊆ L, the number of

points in L ∩ S is approximately vol(S)/vol(L).

Heuristic 2. The distribution of the coordinates of the shortest vector v,

when written in the normalized Gram-Schmidt basis (b∗1/‖b∗1‖, ...,b∗n/‖b∗n‖) of

the input basis, look like those of a uniformly distributed vector of norm ‖v‖.
Heuristic 3. The distribution of the normalized Gram-Schmidt orthogonal-

ization (b∗1/‖b∗1‖, ...,b∗n/‖b∗n‖) of a random reduced basis (b1, . . . ,bn) looks like

that of a uniformly distributed orthogonal matrix.

Here we use the same heuristic 2 and heuristic 3 as [10], so as to assume the co-

ordinates x of the target vector v in the orthogonal basis (b∗n/‖b∗n‖, ...,b∗1/‖b∗1‖)
distribute like a uniform vector where ‖x‖ = ‖v‖.

Orthogonalized Integer Representations. A vector v can be represented

as the integral combination of the basis vectors v = Bx. With the help of

orthogonalized integer representations[7][9], x can be transformed into an integer

vector y with B∗ by the following way: Given a basis B = [b1, . . . ,bn] and

its Gram-Schimdt orthogonalization B∗ = [b∗1, . . . ,b
∗
n] with the matrix R =

[µij ]1≤i,j≤n ∈ Rn×n, such that B = B∗R. For any vector v ∈ L(B), and v = Bx,

in which x = (x1, . . . , xn), define a vector t = (t1, . . . , tn) ∈ Rn as

ti =


0 for i = n,

n∑
j=i+1

µj,ixj for i < n.

and compute y = (y1, . . . , yn) ∈ Zn as,

yi = bx∗i e = bxi + tie = xi + btie, for 1 ≤ i ≤ n.

Since xi ∈ Z, we can establish a one-to-one correspondence between x and

y, and also a one-to-one correspondence between v and y. We call y the orthog-

onalized integer representations in this paper:

y
y=x+bte←−−−−−→ x

v=Bx←−−−→ v.
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3 Enumeration

In this section, we first recall Full Enumeration and Extreme Prunging Enumer-

ation, and then present our main contribution, the Orthogonalized Enumeration.

3.1 Full Enumeration

Given a Gram-Schmidt orthogonalized basis B∗ and an upper bound R, the

full enumeration method[30] enumerates xn, xn−1..., x1 of x successively which

satisfy(the enumeration algorithm can be found in appendix A):

x2n‖b∗n‖2 ≤ R2,

(xn−1 + µn,n−1xn)2‖b∗n−1‖2 ≤ R2 − (xn)2‖b∗n‖2,

(xi +

n∑
j=i+1

µj,ixj)
2‖b∗i ‖2 ≤ R2 −

n∑
j=i+1

lj .

Here li = (xi +
∑
j>i xjµj,i)

2‖b∗i ‖2.

The number of nodes that need to be searched is decided by the size of

enumeration tree. The total number of tree nodes Ne is estimated as Ne ≈∑n
l=1Hl[10], where Hl is the estimated number of nodes at level l, and:

Hl =
1

2
· Vl(R)∏n

i=n+1−l ‖b∗i ‖
≈ q(n−l)l/22O(n).

where Vl(R) = Rl · πl/2

Γ (l/2+1) and ‖b∗i ‖/‖b∗i+1‖ ≈ q. And when l = n/2, Hl gets

the maximum value as qn
2/82O(n).

3.2 Extreme Pruning Enumeration

Extreme Pruning Enumeration improves Full Enumeration by replacing the

bound R by a serial of bounding functions R1, ..., Rn. Two strategies of choosing

bounding functions are often used. One is linear pruning with success probability

about 1/n, and the other is extreme pruning with success probability extreme

small.

The number of nodes in enumerating tree of extreme pruning is:

Next = 1/2

n∑
t=1

VR1,··· ,Rt∏n
i=n+1−t ‖b∗i ‖

,

where VR1,··· ,Rt = Vt(Rt) · Pr
u∼Ballt

(∀j ∈ [1, t],
∑j
i=1 u

2
i ≤

R2
j

R2
t
).
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For orthogonalized enumeration with pruning, the number of nodes in enu-

merating tree is :

Nort = 1/2

n−k∑
t=1

VR1,··· ,Rt∏n
i=n+1−t ‖b∗i ‖

.

where VR1,··· ,Rt = Vt(Rt) · Pr
u∼Ballt

(∀j ∈ [1, t],
∑j
i=1 u

2
i ≤

R2
j

R2
t
).

The linear pruning can reduce the number of nodes searched by a factor of

1.189n and extreme pruning can achieve a speedup of 1.414n compared to full

enumeration according to [10].

3.3 Orthogonalized Enumeration Algorithm

The idea of the orthogonalized enumeration is to make use of orthogonalized

integer representations, which has been used in solving SVP in many meth-

ods including sampling[9] and genetic algorithm[7]. However, as a new efficient

method, enumeration based on orthogonalized integer representations hasn’t ever

been designed. So we provide the orthogonalized enumeration in order to make

a further improvement for enumeration.

The orthogonalized enumeration demands for a new input k, and the number

of nodes enumerated is limited by k, which makes it different from previous

enumeration methods. By choosing a proper k such that yi(1 ≤ i ≤ n−k) equals

to 0 with high probability, enumeration is conducted among (xn−k+1, ..., xn). For

every (xn−k+1, ..., xn), we can compute the corresponding (yn−k+1, ..., ..., yn),

and then compute the unique values of xi,∀i = 1, ..., n − k with the condition

that yi = 0,∀i = 1, ..., n − k. The algorithm of Orthogonalized Enumeration is

described in Algorithm 1.

3.4 Running Time and Success Probability Analysis

The running time of enumeration algorithm is given by:

Tnode ·N

Where Tnode is the average amount time used in processing one node, and N

is the number of nodes which is needed to search. As we can see in Algorithm

1 and Algorithm 2, enumerations are conducted among (xn−k+1, ..., xn) while

other xis are directly computed. And the expected number of nodes N can be

computed as follow.

N = 3 ·
n−1∏

i=n−k+1

poss v cnti
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Algorithm 1 Orthogonalized Enumeration Algorithm

Input: BKZ-reduced basis: B, an upper bound of ‖v‖2: Rb, k

Output: the shortest vector v with ‖v‖2 < Rb

1: For the input basis B, compute Gram-Schmidt orthogonalization of it as B∗ and

µi,j as the elements of the lower-triangular matrix where bi = b∗i +
∑i−1

j=1 µi,jb
∗
j .

2: Compute the d := [d1, ..., dn] = [R0.5
b n−0.5/‖b∗1‖, ..., R0.5

b n−0.5/‖b∗n‖].
3: sv1×n := 0, slen := 0

4: unn×n := 0,ylen1×n := 0,uvec1×n := 0

5: poss vn×5 := 0,poss v cnt1×n := 0,poss v ind1×n := 0

6: for xn = 2, 1, 0 do

7: uvecn := xn
8: unn,i := xn · µn,i ∀i = 1, ..., n− 1

9: ylenn := x2n‖b∗i ‖2

10: for t = n− 1, ..., 1 do

11: if poss v cntt = 0 then

12: (poss vt, poss v cntt) := COMPUTE POSSIBLE VALUE(t, k, dt, unt+1,t)

13: poss v indt := 1

14: else

15: poss v indt := poss v indt + 1

16: end if

17: uvect := poss vt,poss v indt

18: unt,i := unt+1,i + uvect · µt,i ∀i = 1, ..., t− 1

19: ylent := ylent+1 + (uvect + unt+1,t)
2‖b∗i ‖2

20: if t=1 then

21: update slen to store the shortest ylen1 and update sv to store the corresponding uvec1
22: for i = t, ..., n− 1 do

23: if poss v indi < poss v cnti then

24: t := i, break

25: else

26: poss v cnti := 0

27: end if

28: end for

29: t := t+ 1

30: end if

31: end for

32: end for

33: v = sv

34: return v
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Algorithm 2 COMPUTE POSSIBLE VALUE Algorithm

Input: t, k, dt, unt+1,t

Output: a set c and the number of elements in c

1: c := ∅
2: c← b−unt+1,te
3: if t ≥ n− k + 1 then

4: c← bdt − unt+1,te
5: if |dt − unt+1,t − bdt − unt+1,te| > 0.4 then

6: if dt − unt+1,t > bdt − unt+1,te then
7: c← bdt − unt+1,te+ 1

8: else

9: c← bdt − unt+1,te − 1

10: end if

11: end if

12: c← b−dt − unt+1,te
13: if | − dt − unt+1,t − b−dt − unt+1,te| > 0.4 then

14: if −dt − unt+1,t > b−dt − unt+1,te then
15: c← b−dt − unt+1,te+ 1

16: else

17: c← b−dt − unt+1,te − 1

18: end if

19: end if

20: end if

21: return c, card(c)
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For a basis B = [b1, . . . ,bn] and its Gram-Schimdt orthogonalization B∗ =

[b∗1, . . . ,b
∗
n], let x∗ = (x∗1, ..., x

∗
n) be the coordinates of the shortest vector v in

B∗.

v =

n∑
i=1

vi =

n∑
i=1

x∗ib
∗
i .

Let y = (y1, ..., yn) = (bx∗1e, ..., bx∗ne) stands for its orthogonalized integer rep-

resentation. We have vi = x∗ib
∗
i = x∗i ‖b∗i ‖ ·b∗i /‖b∗i ‖. According to the Heuristic

2 and Heuristic 3, we assume that (‖v1‖, ..., ‖vn‖) distributes uniformly. And

success probability of orthogonalized enumeration with parament k can be esti-

mated as:

Psucc(n, k) = Pr
v∼Balln(‖b1‖)

(
∀j ∈ [1, n], b‖vj‖/‖b∗j ‖e ∈ poss vj − b−unj+1,je

)
We obtain the relationship between dimension n ranging from 40 to 130 and

Psucc(n, k) with k ∈ [8, 20] through Monte-Carlo Simulation. The results can be

found in Figure 1.

Figure 1. Relationship between Dimension n and Psucc(n, k) with k ∈ [8, 20]

3.5 Comparison between Orthogonalized Enumeration and

Previous Enumeration

Based on N and Psucc(n, k) of the orthogonalized enumeration obtained in Sec-

tion 3.4, we can get the expected number of nodes needed to search a n dimension
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basis using orthogonalized enumeration by N/Psucc(n, k) with different k, and

then get the expected number of nodes needed to search a n dimension basis

using orthogonalized enumeration with a proper k, denoted as North. We also

estimate the expected number of nodes when using full enumeration, linear prun-

ing enumeration and extreme pruning enumeration, denoted as Nfull, Nlinear,

Nextreme, and results can be found in Figure 2.

Figure 2. Relationship between Dimension n and Expected Number of Nodes Needed

for Different Enumeration Methods

Compared to full enumeration, linear pruning enumeration and extreme prun-

ing enumeration achieve a speedup of 1.189n and 1.414n, while the orthogonal-

ized enumeration improves full enumeration by a factor of 1.512n. The improve-

ment compared to extreme pruning enumeration is sharp, but not as large as

that n-dimension search reduced to k-dimension search as we expected. This in-

dicates that though doesn’t select an unique (x1, ..., xn−k) as the orthogonalized

enumeration does in enumeration, extreme pruning has pruned the searching

space of (x1, ..., xn−k) to a very small space which makes it an extremely ef-

fective method since it’s presented. While the orthogonalized enumeration has

a smaller searching space which is limited by k, and the introduction of k also

makes it more flexible to control the searching process. These features make the

orthogonalized enumeration a more efficient method than previous methods and

one of our biggest innovations.
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4 MBKZ

4.1 Description of Algorithm

The main idea of Mixed BKZ (denoted as MBKZ) is to alternately use orthognal-

ized enumeration and traditional enumeration(full enumeration, linear pruning

enumeration, extreme pruning enumeration etc). Another difference of MBKZ

is that we set the blocksize of orthognalized enumeration to n, in order to make

good use of the fact that the number of nodes needed in the orthognalized enu-

meration is limited by k. The detail of MBKZ can be found in Algorithm 3.

Besides, the orthognalized enumeration algorithm is adjusted a little to speedup

the effectiveness in MBKZ, which is shown in Algorithm 4.

The design of MBKZ is due to the following reason. According to [6], prob-

ability enumeration can speedup the search but may not return any vector or

maybe not the shortest one. As a result, in BKZ 2.0, randomizing technique is

used to ensure the enumeration process can find a shorter vector in acceptable

time. Though the technique is useful, but it also brings unavoidable overheads

according to [4], because the bases are not good after they have been random-

ized in practice and an extra reduction process should be called to reduce the

randomized bases before enumeration. Though no quantitative analysis about

the proportion of the extra overheads has been proposed, it is non-negligible in

practice. While in MBKZ, we use a new technique to avoid randomizing bases

and ensure enumeration success probability at the same time. Experimental data

shows that this technique is effective which makes MBKZ a more efficient method

compared to the previous ones. The details are as follow.

In BKZ process, enumeration is called to successively search a better vector

v which is consist of a combination of (bi, ...,bj) to replace bi for all i from 1

to n− 1, where j = min(i+ β − 1, n) and β denotes the blocksize. However, the

searching of orthognalized enumeration is conducted among the last k dimen-

sions (bj−k+1, ...,bj). And in orthognalized enumeration the blocksize β is set to

n which indicates that we are always searching the shortest vector v to replace bi

among the same space (bn−k+1, ...,bn) for all i. All nodes needed to enumerate

for replacing bi are usually included by those enumerated for replacing bi−1 if

no changes have been made to the basis after the enumeration for bi−1. There-

fore if the enumeration for bi−1 is failed, we can avoid repeating enumeration

process by reusing the intermediate results to search bi. As a result, we can run

orthognalized enumeration when i = 1, store a best result in each depth and

decide which bi should be replaced after enumeration. And this is the main idea

of MBKZ.
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Algorithm 3 The Mixed Block Korkin-Zolotarev Algorithm

Input: A basis B = (b1, ...,bn), a blocksize β ∈ 2, ..., n, the Gram-Schmidt triangular

matrix µ, ‖b∗1‖2, ..., ‖b∗n‖2 and orthognalized enumeration parament k

Output: A BKZ − β reduced basis (b1, ...,bn)

1: svn×n := 0, slen1×n := 0

2: z := 0, jj := 0, cnt := 0, LLL(b1, ...,bn, µ)

3: while z < n− 1 do

4: jj := jj mod (n− 1) + 1

5: if jj = 1 then

6: cnt := cnt+ 1

7: end if

8: if cnt mod 2 = 0 and jj = 1 then

9: kk := n, h := min(k + 1, n), v := (1, 0, ..., 0)

10: (sv, slen) = Orthognalized Enum for MBKZ(µ[jj,kk], ‖b∗jj‖2, ..., ‖b∗kk‖2, k)

11: for i = jj, ..., kk do

12: if sleni < ‖b∗i ‖2 then

13: v = svi, jj = i, break;

14: end if

15: end for

16: else

17: kk := min(jj + β − 1, n), h := min(k + 1, n)

18: v = Traditonal Enum(µ[jj,kk], ‖b∗jj‖2, ..., ‖b∗kk‖2)

19: end if

20: if v 6= (1, 0, ..., 0) then

21: z := 0

22: update basis by LLL(b1, ...,
∑kk

i=jj vibi,bj, ...,bh, µ)

23: else

24: z := z + 1

25: reduce the next block by LLL(b1, ...,bh, µ)

26: end if

27: end while
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Algorithm 4 Orthognalized Enum for MBKZ

Input: µ, ‖b∗1‖2, ..., ‖b∗n‖2, k

Output: svn×n, slen1×n

1: Compute the d := [d1, ..., dn] = [n−0.5‖b∗1‖/‖b∗1‖, ..., n−0.5‖b∗1‖/‖b∗n‖].
2: svn×n := 0, slen1×n := 0

3: unn×n := 0,ylen1×n := 0,uvec1×n := 0

4: poss vn×5 := 0,poss v cnt1×n := 0,poss v ind1×n := 0

5: for xn = 2, 1, 0 do

6: uvecn := xn
7: unn,i := xn · µn,i ∀i = 1, ..., n− 1

8: ylenn := x2n‖b∗i ‖2

9: for t = n− 1, ..., 1 do

10: if poss v cntt = 0 then

11: (poss vt, poss v cntt) := COMPUTE POSSIBLE VALUE(t, k, dt, unt+1,t)

12: poss v indt := 1

13: else

14: poss v indt := poss v indt + 1

15: end if

16: uvect := poss vt,poss v indt

17: unt,i := unt+1,i + uvect · µt,i ∀i = 1, ..., t− 1

18: ylent := ylent+1 + (uvect + unt+1,t)
2‖b∗i ‖2

19: update slent to store the shortest ylent and update svt to store the corresponding uvect
20: if t=1 then

21: for i = t, ..., n− 1 do

22: if poss v indi < poss v cnti then

23: t := i, break

24: else

25: poss v cnti := 0

26: end if

27: end for

28: t := t+ 1

29: end if

30: end for

31: end for

32: return sv, slen
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4.2 Running Time and Success Probability Analysis of

Orthognalized Enumeration in MBKZ

According to the MBKZ algorithm, the success probability of the orthognalized

enumeration in MBKZ, denoted as Psucc MBKZ(m, k), should be computed as

follow.

Psucc MBKZ(m, k) = Psucc(m, k)

η∏
i=m+1

(1− Psucc(i, k))

where η is the largest j such that Psucc(j, k) 6= 0.

The results of Psucc MBKZ(m, k) with k ∈ [8, 20] can be found in Figure 3.

After conducting an orthognalized enumeration, the probability of successfully

finding a better vector to replace bn−m+1 is indicated by Psucc MBKZ(m, k).

And if we don’t use orthognalized enumeration, the work demands for running

a traditional enumeration in m dimensions instead.

Figure 3. Relationship between m and Psucc MBKZ(m, k) with k ∈ [8, 20]

We compute an expected number of nodes that orthognalized enumeration

needs with different k, denoted as North,k, by using the method described in Sec-

tion 3.4. To make comparison between orthognalized enumeration and other enu-

meration methods, we compute expected number of nodes needed for different

methods. Let φfull(m), φlinear(m) and φextreme(m) denote the expected number

of nodes it takes to find a better vector in m dimensions with full enumeration,

linear pruning enumeration and extreme pruning enumeration. Respectively we

can get expected number of nodes it takes to finish what a round of orthognal-

ized enumeration with the parament k can do with three enumeration methods,
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denoted as Nfull,k, Nlinear,k and Nextreme,k. Results with k ∈ [8, 20] are shown

in Figure 4.

Nfull,k =
∑
∀m

(Psucc MBKZ(m, k) · φfull(m))

Nlinear,k =
∑
∀m

(Psucc MBKZ(m, k) · φlinear(m))

Nextreme,k =
∑
∀m

(Psucc MBKZ(m, k) · φextreme(m))

Figure 4. Number of Nodes Needed for Different Enumeration Methods

According to the comparison above, the design for the orthognalized enu-

meration in MBKZ brings another speedup of O(n) compared to the original

orthognalized enumeration. We conduct experiments in basis of [28] with di-

mensions up to 140, the results are consistent with our analysis. Besides, there

are still some important notions we get through experiments need to be known.

1. Orthognalized enumeration can exponentially speedup traditional enumer-

ation, but which bi will be replaced is uncertain. As a result, combining orthog-

nalized enumeration and traditional enumeration method in MBKZ can improve

previous BKZ method sharply. However when using orthognalized enumeration

independently as the enumeration process in a BKZ algorithm, things are not

as good as the ideal. Because in this situation, k should be set large enough to

keep the probability of updating b1 considerable, which may introduce extra

overhead in enumeration.

2. The output of MBKZ generally has better quality compared to BKZ or

BKZ 2.0 with the same blocksize (note that blocksize in MBKZ denotes the

blocksize of traditional enumeration, the orthognalized enumeration’s blocksize
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is always set to n), the shortest vector in dimension 100 − 110 can be directly

found by MBKZ with the blocksize about 40−42, while BKZ or BKZ 2.0 need a

much larger blocksize (i.e in BKZ 2.0, blocksize should be set about 75 according

to [6]) to do so.

3. When we choose linear pruning or extreme pruning as the traditional

enumeration method in MBKZ, randomizing technique is not as necessary as it is

in BKZ 2.0, because the orthognalized enumeration and traditional enumeration

methods have different searching spaces and are continuously updating it for

each other. Though hard to make quantitative analysis, this is thought to be an

effective way to reduce duplicate searching and improve the effectiveness further.

5 Further Improvements

In this section, we describe an interesting technique to reduce the searching

space of enumeration with non-negligible probability. We can’t give an exact

quantitative success probability analysis for the method, but it is practicable in

experiments.

5.1 Description of Method

The main idea of the method is to utilize the property of basis transformation.

Let v =
∑
xibi represent the shortest vector in B. Matrix U is an upper trian-

gular matrix with elements on the main diagonal are all 1s, so in a new basis

B′ = UB, v =
∑
x′ib
′
i is still the shortest vector. We set U as:

U =


1 0 0 . . . 0 0 a1
0 1 0 . . . 0 0 a2
...

...
...

...
...

...
...

0 0 0 . . . 0 1 an−1
0 0 0 . . . 0 0 1


Then we can know that B′ = [b′1, ...,b

′
n] = UB = [b1+a1bn, ...,bi+aibn, ...,bn],

so b′n = bn and b′i = bi + aibn ∀i ∈ [1, n− 1]. And we have:

v =
∑

x′ib
′
i =

n−1∑
i=1

x′i(bi + aibn) + x′nbn =

n−1∑
i=1

x′ibi + (

n−1∑
i=1

aix
′
i + x′n)bn

=
∑

xibi

which indicates:

x′i = xi ∀i ∈ [1, n− 1]
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x′n = −
n−1∑
i=1

aixi + xn

Let’s make two extremely strong assumptions first to describe the idea:

Extremely Strong Assumption 1. We know x′n exactly.

Extremely Strong Assumption 2. ai = ωi and ω > 2|xi| ∀i ∈ [1, n− 1]

Based on the two extremely strong assumptions, we can get (x1, ..., xn−1) by

Algorithm 5:

Algorithm 5 The xi Recovery Algorithm

Input: x′n, ai = ωi

Output: (x1, ..., xn−1)

1: s := x′n
2: for i = 1, ..., n− 1 do

3: if s > 0 then

4: xi := bs/aic
5: else

6: xi := ds/aie
7: end if

8: s := s mod ai
9: end for

10: for i = n− 1, ..., 1 do

11: if |xi| > ω/2 then

12: if xi > 0 then

13: xi = xi − ω, xi−1 := xi−1 + 1

14: else

15: xi = xi + ω, xi−1 := xi−1 − 1

16: end if

17: end if

18: end for

19: return (x1, ..., xn−1)

5.2 Success Probability Analysis

The result is amazing. But in actual case, we don’t know x′n, and we can’t

compute ai of that size (when n = 100, an−1 is over 10195). So we choose to

make two new assumptions that are more practical:

Assumption 1. We can estimate |x′n| with an acceptable error.

Assumption 2. ai = 0 ∀i ∈ [1,m − 1], ai = ωi−m+1 and ω > 2|xi| ∀i ∈
[m,n− 1].
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From the heuristic 2 and heuristic 3, we assume the coordinates x of the target

vector v in the orthogonal basis (b∗n/‖b∗n‖, ...,b∗1/‖b∗1‖) distribute like a uniform

vector where ‖x‖ = ‖v‖. And we assume it is so in (b′∗n /‖b′∗n ‖, ...,b′∗1 /‖b′∗1 ‖)
where we have changed directions of (b′∗m, ...,b

′∗
n ) compared to the original B.

Heuristic 4. The distribution of the normalized Gram-Schmidt orthogonal-

ization (b′∗1 /‖b′∗1 ‖, ...,b′∗n /‖b′∗n ‖) of B′ = UB where B is a random reduced basis,

U is an upper triangular matrix with elements on the main diagonal are all 1s

and b1 = b′1 , looks like that of a uniformly distributed orthogonal matrix.

We estimate |x′n| by n−0.5‖b′1‖/‖b′∗n ‖, let E|x′n| denote the error of the es-

timation and Perror(θ) denote the probability that E|x′n| ≤ θ, we can get the

probability distribution by Monte-Carlo simulation. Results can be found in

Figure 5.

E|x′n| =
||x′n| − n−0.5‖b′1‖/‖b′∗n ‖|

|x′n|

Perror(θ) = Pr(E|x′n| ≤ θ)

Figure 5. Relationship between θ and Perror

Errors in the estimation of |x′n| bring error of computing xi (note that we

use x′n but not |x′n| below because of the symmetry of v and −v ):

n−0.5‖b′1‖/‖b′∗n ‖ = x′n ± θ|x′n| = −
n−1∑
i=m

ωi−m+1xi + xn ± θ|x′n|

The threshold that the computation of xi is not influenced by the error θ,

denoted as th(ω, i), is calculated by ω−(n−1−i) − ω−(n−i)(the maximum and
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minimum of th(ω, i) is ω−(n−1−i) and ω−(n−1−i)−2ω−(n−i), we take the average

of them). For ω = 3, 5 and 7, th(ω, i) is shown in Table 1.

Table 1. th(ω, i) for different i with ω = 3, 5 and 7

i = n− 1 i = n− 2 i = n− 3 i = n− 4 i = n− 5 i = n− 6

ω = 3 0.66667 0.22222 0.07407 0.02469 0.00823 0.00274

ω = 5 0.8 0.16 0.032 0.0064 0.00128 0.00026

ω = 7 0.85714 0.11429 0.02286 0.00457 0.00091 0.00018

With Perror(θ) and th(ω, i), we can get Pnf (ω, i) which represents the prob-

ability that we can successfully calculate (xi, ..., xn−1) and the result is not

influenced by the error caused by the estimation of |x′n|. Table 2 shows Pnf with

ω = 3, 5 and 7, and Pnf (ω, i) is calculated by Pnf (ω, i) = Perror(th(ω, i)).

Table 2. Pnf (ω, i) for different i with ω = 3, 5 and 7

i = n− 1 i = n− 2 i = n− 3 i = n− 4 i = n− 5 i = n− 6

ω = 3 0.81966 0.50113 0.15408 0.0517 0.01736 0.00573

ω = 5 0.84558 0.34396 0.06726 0.01342 0.0028 0.0006

ω = 7 0.85554 0.24013 0.04787 0.00954 0.00215 0.00038

From Pnf (ω, i), we know that the larger ω is, the harder it is to get more xis

because of the error caused by the estimation of |x′n|.
Now we have Pnf (ω, i) which shows the influence of the error brought by

the estimation of |x′n|, the remaining thing to do is to choose a proper ω. From

the analysis before, we know that the larger ω is, the smaller Pnf (ω, i) becomes.

While ω > 2|xi| ∀i ∈ [m,n] is the precondition of the method, let P|x|(ω,m)

denote the probability that |xi| < ω/2 ∀i ∈ [m,n]. The success probability of the

method, denoted as Ps(ω,m), that we can calculate (xm, ..., xn−1) successfully

is expressed as:

Ps(ω,m) = P|x|(ω,m) · Pnf (ω,m)

We can’t give an exact probability analysis about P|x|(ω,m), but quali-

tative analysis can be done. Many experiments based on orthogonalized in-

teger representations[9][7] have shown the orthogonalized integer representa-

tion y = (y1, ..., yn) of the shortest vector is consist of small yi where yi =

xi + b
∑n
j=i+1 µj,ixje. And for a BKZ-reduced basis we generally have |µ| < 0.5,

so when i is close to n, the xi which can be got by a small yi minus a limited



21

number of µj,ixj usually has a limited absolute value. However, when i gets

smaller, b
∑n
j=i+1 µj,ixje tends to get larger and so it is with |xi|. The analysis

leads to a notion that P|x|(ω,m) has positive correlation with ω and m, and

when ω and m is large P|x|(ω,m) is close to 1. We conduct experiments in ran-

dom basis, the experiment results are consistent with our analysis, and also show

that P|x|(ω,m) is considerable with m ∈ [n − 1, n − 6] which makes Ps(ω,m)

negligible with m ∈ [n− 1, n− 4].

With some xis computed, enumerations can be conducted in a reduced space,

which brings an obvious speedup to all enumeration methods including orthog-

onalized enumeration and previous ones.

6 Conclusion

In this paper, we describe a new enumeration algorithm based on orthogonal-

ized integer representations of the shortest vector, and give a success probability

analysis through Monte-Carlo Simulation. According to the result of analysis,

we can set a suitable threshold, and reduce the enumerated space greatly which

brings an exponential speedup compared to the existing enumeration algorithms

based on BKZ reduction. Another meaningful work is to present a new BKZ

method named MBKZ. Besides the speedup in enumeration nodes, MBKZ uses

a new technique which reduces the duplicate work caused by probability enu-

meration and avoids the overheads brought by randomizing technique at the

same time. In addition, MBKZ generally outputs better basis than other BKZ

methods with the same blocksize in practice. What’s more, a new technique to

reduce enumeration space with non-negligible probability is given, though lack

of quantitative analysis about success probability, it is effective in experiments.

Next we will work on a simulation algorithm to predict the performance of

MBKZ in terms of running time and output quality, which will help a lot in

theoretical analysis and conducting experiments in high dimension.
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A Appendix

Algorithm 6 The full enumeration algorithm

Input: An integral lattice basis (b1, · · · ,bd), a bound A ∈ Z
Output: All vectors in L(b1, · · · ,bd) that are of squared norm ≤ A

1: Compute the rational µi,j ’s and ‖b∗i ‖2’s

2: x := 0, l := 0, S := ∅
3: i := 1. While i ≤ d, do

4: li := (xi +
∑

j>i xjµj,i)
2‖b∗i ‖2.

5: If i = 1 and
∑d

j=1 lj ≤ A, then S := S ∪ {x}, x1 := x1 + 1

6: If i 6= 1 and
∑

j≥i lj ≤ A, then

7: i := i− 1, xi := d−
∑

j>i(xjµj,i)−
√

A−
∑

j>i lj

‖b∗
i
‖2 e.

8: If
∑

j>i lj > A, then i := i+ 1, xi := xi + 1.

9: return S.


