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Abstract

Physical Unclonable Functions (PUFs) are promising primitives for
lightweight integrated circuit authentication. Indeed, by extracting an
identifier from random process variations, they allow each instance of
a design to be uniquely identified. However, the extracted identifiers
are not stable enough to be used as is, but need to be corrected first.
This is currently achieved using error correcting codes, which generate
helper data through a one-time process. As an alternative, we propose
key reconciliation protocols. This interactive method, originating from
quantum key distribution, allows two entities to correct errors in their
respective correlated keys by discussing over a public channel. We believe
this can also be used by a device and a remote server to agree on two
different responses to the same challenge from the same PUF obtained at
different times. This approach has the advantage of requiring few logic
resources on the device side, at least three times fewer than existing error
correcting codes. The leakage caused by the key reconciliation process
is limited and easily computable. Results of implementation on various
FPGA targets are presented.

1 Introduction

Physical Unclonable Functions (PUF's) have emerged in the last two decades as a
root of trust and a way to provide identifiers for integrated circuits (ICs). They
rapidly gained attention thanks to their lightweight and tamper-proof nature.
Indeed, they usually require only a small area on the device, compared to non-
volatile memory which could be used to store a unique identifier. Moreover,
since they rely on physical characteristics to derive the identifier, any attempt to
tamper with the PUF modifies the responses and makes the PUF useless. This



justifies the term unclonable. These two characteristics made PUF's a convincing
candidate for lightweight and secure IC authentication.

However, PUFs do have one major drawback: the instability of several
responses to the same challenge over time. This instability is caused by environ-
mental parameters, aging of the device, PUF architecture, etc. For that reason,
PUF responses are not reliable enough to be directly used as cryptographic keys
and require error-correction.

The current way to address this issue is to implement error correcting codes
with the PUF [1, 2, 3]. When the PUF is first challenged, so-called helper data
are generated from the response. Later on, if the PUF is challenged again with an
identical challenge, these related helper data are exploited by the error correction
module to regenerate the original response from the inaccurate one. Several
types of error correcting codes can be used to this end, but they all require
significant area overhead on the IC. This is contrasted with the lightweight
nature of PUFs, and prevents large adoption by industry.

In this paper, we propose to use a key reconciliation protocol instead. This
interactive method, proposed in [4] and improved in [5], is called the CASCADE
protocol. It is the main protocol for key reconciliation in a quantum key
distribution context. It allows two parties who exchanged a stream of bits
through an insecure and noisy quantum channel to discuss about it publicly and
derive a secret key from it. We believe that this protocol can also be used to
reconcile two PUF responses obtained from the same challenge but at a different
time. The CASCADE protocol mainly consists in interactively exchanging parity
values of different blocks of the responses. Therefore, only parity computations
need to be carried out on-chip, which requires very few logic resources. This
minimal area overhead comes at the cost of important communication between
the IC and the server. However, in the context of intellectual property protection
of ICs, device authentication occurs rarely in the IC lifetime. Moreover, existing
error correcting codes are also time consuming. The parity values are then
exploited to modify the response bits on the server side, like the reverse fuzzy
extractor [6]. When the protocol terminates, it is highly probable that the two
parties will own an identical response. These two identical responses could then
be further processed to generate a cryptographically strong secret key. The
CASCADE protocol specifically focuses on correcting errors only.

Over existing error-correcting codes used for PUF's, the CASCADE protocol
has two main advantages. Since only parity computations are done on the
circuit, the area overhead is very limited. We propose two implementations that
balance area overhead and latency. As a second advantage, CASCADE is greatly
parameterisable and can accommodate various error-rate and failure rates. The
parameters can be dynamically changed after the circuit has been built. This
makes it a very good candidate for integration alongside PUFs.

1.1 Notations

PUF responses are r, of size n. The reference response, obtained during enrolment,
is written rg. The response obtained later on, which contains errors with
an error rate e, is r,. Bit found at index i of the response is written r[i].
In the key reconciliation protocol, responses ro and r; are split into blocks
Bo,o, Bo,1; -, Bo, & and By, Bt 1, oy B of size k;. Random permutations
used in the protoéol are written o;. '



1.2 Overview

The rest of this paper is organised as follows. Section 3 presents PUF's, error-
correcting codes and key reconciliation protocols. Section 4 explains how key
reconciliation protocols can be adapted to correct errors in PUF responses.
Section 5 gives the results of implementation on various FPGA targets. Finally,
Section 6 discusses other aspects such as secret key generation, implementation
variations and security.

1.3 Reproducibility

We have made our implementation of the CASCADE protocol on the device and
server sides, i.e. hardware and software, available online!.

2 Motivation

2.1 Economic context

Following Moore’s law, electronic systems are becoming increasingly complex.
Such an exponential increase in complexity comes with an associated rise of
manufacturing costs. Overseas foundries are now major players in the semi-
conductors market, and provide fabless designers with manufacturing facilities
[7]. However, in order to have their designs manufactured, integrated circuits
designers must disclose it completely to the foundry. Moreover, once the foundry
owns the design for manufacturing, the designer has no control on his intellectual
property anymore. In particular, the designer has no way of knowing how many
instances of the design are actually built.

This situation has led to the rise of counterfeiting and illegal copying of
integrated circuits [8, 9], even though the vast majority of the actual incidents
are never reported to legal authorities. According to the Alliance for Gray
Market and Counterfeit Abatement, approximately 10% of the semiconductor
products are counterfeited [10]. The associated loses are worth hundreds of
billions of dollars [11]. The target audience of this work are then designers of
integrated circuits and intellectual property (IP) cores who wish to protect their
designs against such threats.

There has been several propositions aiming at mitigating these threats [12, 13]
Most of them have in common the following requirement: every instance of a
design must be absolutely distinguishable from the others. Therefore, a unique,
per-device identifier is necessary. PUFs are great candidates for the generation
of such identifiers.

2.2 Overall scheme

After is has been embedded in the integrated circuit, the unique device identifier
is used to remotely identify the integrated circuit. Typically, integrated circuit
remote identification requires two phases. The first one is the enrolment phase.
It is usually carried out after manufacturing. The aim is to assign a challenge-
response pair to every circuit, obtained from the PUF, so that it can be identified
later on.

Thttp://www.univ-st-etienne.fr/salware/index.html



The second is the identification phase. Upon device request, the server sends
the challenge of a known challenge-response pair to the device. The device
generates the associated response by questioning the PUF again and sends it
back to the server. The server then owns two responses to the same challenge
from the same PUF. If the Hamming distance between those two responses is
low enough, the circuit is identified. This basic protocol is shown in Figure 1.

Server Device 1

att =20 Generates challenge ¢;
enrolment ri0 < PUF(¢;)

Stores (c¢;, ri.0)

att =1 Requests activation

Ci

identification it < PUF(c;)

Validates if HD(r;0,7i4,) < €

Figure 1: Basic protocol for integrated circuit remote identification using a PUF.

However, PUF responses are not perfectly stable and contain errors, so the
maximum Hamming distance value € can be hard to choose. Usually, error-
correcting codes are associated to the PUF to correct those errors.

Key reconciliation protocols [5] can be used instead, in order to make identical
the two responses obtained at different times. They are presented in details in
the following section. Once the two response are “reconciled”, they are identical
with a very high probability. Therefore, they can be used to encrypt an activation
word (AW in Figure 2). Such activation word is not a cryptographic key, but
controls a logic masking or logic locking module [14] embedded in the circuit.
This module controllably disrupts the outputs of the circuit if a wrong activation
word is sent on its inputs. Since both the integrated circuit and the server
own an identical response, the integrated circuit can then internally decrypt the
activation word. If the correct activation word is fed to the logic masking/locking
module, the circuit operates correctly. This protocol is used only once in the
integrated circuit lifetime, when an activation request is issued. The adapted
basic protocol is depicted in Figure 2.

In order to implement the previously described protocol for intellectual
property protection, an activation module must be added to the integrated
circuit. As stated before, the activation module is used only once, in order to
make the circuit usable if it is not an illegal copy. Therefore, the main evaluation
criterion for this module is its area overhead. Indeed, the overhead is directly
related to an increase in manufacturing costs for the designer. This increase
in cost cannot be greater than the losses due to counterfeiting. The activation
module must then be as lightweight as possible.
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Figure 2: Overview of a typical protocol for integrated circuit remote activation
using a key reconciliation protocol.

It is composed of the following components:

e a lightweight block cipher: it allows to decrypt the cipher-text [ATV]

’l"tl

using r¢, as a key in order to obtain the activation word AW. A lightweight
block cipher, such as PRESENT [15], can be used to this end.

e a PUF': it provides the unique identifier, which is then used as a key to
encrypt the activation word.

e a logic locking/masking module: it makes the circuit unusable by
disrupting the outputs if the wrong activation word is sent to its inputs.

e a key reconciliation module: it computes the parity values exploited in
the key reconciliation protocol, and allows to obtain an identical response
on the server and in the circuit.

Figure 3 depicts the activation module.

parity Key reconciliation
module

[AW], | Lightweight
block

cipher AW

.,

Trusted zone?

Logic
locking/masking

Figure 3: Activation module added to the integrated circuit.



The logic resources required must then be as low as possible. This is the main
advantage of key reconciliation protocols over existing error-correcting codes.
This detailed in Section 5. However, this is only possible by relaxing other design
constraints. In particular, the communication overhead can be more important,
since the protocol is meant to be executed only once in the circuit lifetime.

For the activation to be carried out properly, the availability of a server with
high computational power is also assumed.

3 Related work

3.1 Physical Unclonable Functions

Physical Unclonable Functions (PUFs) are hardware primitives which are capable
of extracting a binary string from random process variations. Strong PUFs can
be challenged with an m—bit word called the challenge. The associated n—bit
string obtained from the PUF is called the response. Those two form challenge-
response pairs, which can be used as identifiers for integrated circuits. Indeed,
since the response results from random process variations, every integrated circuit
embedding a PUF will generate a different response to the same challenge.

In the use case we consider, we assume the responses have full entropy.
Making the original response have full entropy is outside the scope of this work,
which focuses only on error-correction.

3.2 Error-correcting codes for PUFs

An overview of helper data algorithms for PUF-based key generation has recently
been published [16]. Helper data algorithms have several purposes, such as
correcting the errors in the PUF response, making the response bits independent
or ensuring they are uniformly distributed. Following their classification in [16],
we consider only the so-called Reproducibility requirement. Related to the error
correction step, this requirement guarantees that the corrected response has a
very high probability of being identical to the reference response.

State-of-the-art error correcting codes adapted to PUF responses employ
code-offset or syndrome construction. Different types of codes are used, including
repetition, BCH, Reed-Muller or Golay codes. A comparison is shown in Table 1,
in which logic resources, failure rate, acceptable error-rate and number of PUF
bits required to reach 128-bit entropy are compared. The logic resources overhead
should be as low as possible. For the failure rate, the typical value found in most
articles is 107%. The acceptable error-rate depends on the PUF type which is
used and the environmental conditions in which the PUF will be used. Finally,
the number of PUF bits required to reach 128-bit entropy is also an important
criterion. Indeed, the more bits required from the PUF the larger the PUF
implementation. For lightweight applications, requiring less bits from the PUF is
then an advantage. As shown in Table 1, the overhead of classic error-correcting
codes exceeds hundred of slices when implemented on Xilinx Spartan FPGAs,
with 4-input LUTs on Xilinx Spartan 3 and 6-input LUTs on Xilinx Spartan 6.
The last row in Table 1 gives the logic resources required by the key reconciliation
protocol presented. Compared to the smallest error correcting codes [6, 17, 18],
it requires almost three times fewer resources.



Table 1: Logic resources required to implement different codes with different
constructions. The failure rate, acceptable error-rate and number of PUF bits
required to obtain 128-bit entropy are also given.

Logic resources (Slices) Failure Acceptable PUF bits required
Article Construction and code(s) Spartan 3  Spartan 6 rate error-rate for 128-bit entropy
1] Concatenated: 221 1077 13% 2226
Repetition (7, 1, 3)
and BCH (318, 174, 17)
2] Complementary IBS 250 1076 15% >1536
with Reed-Muller (2, 6) (12x128)
3] Reed-Muller (4, 7) 179 1.48 x 107° 14% 130
6] BCH (255, 21, 55) >59 107897 21.6% 1785
[17] Reed-Muller (2, 6) 164 1076 15% 1536 (12x128)
[18] Concatenated: 168 1.49 x 107° 15% 4640
Repetition (5, 1, 5) (41+
and Reed-Muller (1, 6) 127)
[18] Concatenated 570 5.41 x 1077 15% 3696
Repetition (11, 1, 11) (41+
Golay G24(24, 13, 7) 539)
This work  CASCADE protocol 67 19 tunable tunable Depends on the failure
107* =107% 0.5% — 15% and error rates

256 — 2048

An interesting approach called reverse fuzzy extractor is presented in [6]. It
is called reverse because instead of correcting the errors on the device side, the
reference response stored on the server side is modified. This makes it possible
to transfer the computationally expensive workload of error correction from the
device to the server. When requested, the PUF generates helper data from a
noisy response. This helper data is then sent to the server, which uses it to
modify the reference response and get both responses to match. We suggest
using this reverse principle along with key reconciliation protocols.

3.3 Key reconciliation protocols

Key reconciliation protocols have been developed in the context of quantum
key exchange [4, 5]. They allow two parties who exchanged a message over a
quantum channel to discuss it publicly, locate the errors, and correct them. The
errors can originate from noise in the channel or eavesdropping, which are usual
characteristics of quantum channels. Obviously, the public discussion comes
with associated leakage, which should be kept as small as possible so that most
of the message is kept secret. Depending on the number of bits leaked, an
appropriate privacy amplification method is used later to extract a secret key
with the appropriate amount of entropy per bit. The overall protocol is depicted
in Figure 4.

The public discussion step can be implemented as the BINARY protocol,
described in [4] and shown in Algorithm 2. First, the original message is
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Figure 4: Key reconciliation protocol.
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scrambled to spread the errors over the whole message in case they occur in
bursts, which is often the case in quantum key distribution. The permutation
used here is public, and so are the subsequent ones. The message is then split
into blocks of size k1. The initial block size k; is derived from the expected error
rate in the quantum channel, so there is approximately one error per block.

Then the parity is computed for all the blocks, and exchanged over a public
channel. The relative parity, i.e. the exclusive-OR of the parities of the blocks
from each of the two responses is then computed too (see Equation (1) in which
By and By are the blocks containing bits from identical indexes from the two
responses) .

P.(By,By) = <ilBl) ® <§§B2) (1)

Parity of B, Parity of B,

The relative parity is used to detect the errors. If it is odd, that means that
there is an odd number of errors. Thus there is at least one error to correct. At
this point, an error-correction step is carried out, called CONFIRM. It proceeds
with a binary search in order to isolate the errors. This is shown in Algorithm 1.
This method enables the detection of an odd number of errors and the correction
of one error per execution. The block is split into two parts of equal size, and
the parity of the first half is exchanged. If the relative parity is odd, then the
error is located in the first half. If the relative parity is even, then the error is
located in the second half. The message is then split into two parts again and
the process is repeated until the parts are only two bits long. By convention,
the first bit is then sent. Knowing the parity of the two-bit block, the error has
been located and corrected.

After the CONFIRM method has been executed on all the blocks for which the
relative parity is odd, the BINARY protocol is resumed. The block size is then
doubled. The message is scrambled again using a public random permutation.
The process starts again for the subsequent pass by splitting the message into
blocks. After a sufficient number of passes, the probability that an error is still
present in the message should be sufficiently low. A toy example of using the
BINARY with 16-bit responses is shown in Figure 5.

CASCADE improved on BINARY by adding a backtracking step to the protocol.



Algorithm 1: CONFIRM
Input: By, B:
while size(By) > 1 do
Split By into two parts Bo,o and By 1
Split B; into two parts By o and By
if P,,«(Bo’o, Bt,O) =1 then
// The error is located
// in the first half
| Bo = Bo,o
else
// The error is located
// in the second half
| Bo=Bo,1

return By

Algorithm 2: BINARY
Input: ro, 7¢, €, Npasses
Scramble r¢ and r; using a public permutation oo
Estimate the initial block size k1 from the error rate e
for i = 1 to npgsses do
Split o and 7+ into blocks of size k;
forall blocks do
Compute the relative parity P,(Bo,:, B,:)
if Pr(Bo,, Bt,;) = 1 then
L CUNFIRM(BO,i,Bt,i)

Double the block size kiy1 =2 X k;
| Scramble ro and r; using a public random permutation o;

—1

) . -1 -1
Unscramble ro and ry with o5 ", 07, .oy Oy

return 7o, ¢

At the end of each pass, all the blocks have an even relative parity, since all
detected errors have been corrected. Then, in the subsequent passes, if an error
is corrected as index 7, that means that all blocks from previous passes that
contain index ¢ are now of odd relative parity. Therefore, CONFIRM can be applied
to them again.

First, two lists storing the blocks of even and odd relative parity are required.
The backtracking step starts with the smallest block of odd relative parity, in
which one error is corrected. All the blocks from the even and odd relative parity
lists that contained this error are moved from one list to the other. This process
is carried out until the list of blocks of odd relative parity is empty, which means
all detected errors have been corrected. Finally, this allows more errors to be
corrected in the same number of passes than by using BINARY alone.

We believe that the framework in which key reconciliation protocols are
currently used, i.e. quantum key exchange, shares considerable similarity with
the use case of PUFs requiring error correction presented in Sect. 1. Our
arguments are detailed in the following section.
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P, # P,

Flips ro[13
[oT1T2]3T4]5]6]7[8]9T0[11]12

Figure 5: Toy-example of executing the BINARY protocol on 16-bit responses

with one error.
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Algorithm 3: CASCADE
Input: ro, r¢, €, Npasses
Scramble r¢ and r; using a public permutation og
Estimate the initial block size k1 from the error rate &
Create a list of blocks of even relative parity: Leyen
Create a list of blocks of odd relative parity: Lodd
for i = 1 to npasses do

Split ¢ and r; into blocks of size k;

forall blocks do

Compute the relative parity P-(Bo,s, Bt,:)

lf PT(BOJ', Bt,i) =1 then
| CONFIRM(By,, B::): correct an error at index j

Move all blocks containing j from Leyen t0 Loda or from Logq t0 Leven

Add all blocks to Leyen
while L,qq is not empty do
// Backtracking step
Find the smallest block B from Lyqq
CONFIRM(By, Bt): correct an error at index j
Move all blocks containing j from Leyen t0 Loda or from Logq t0 Leven

Double the block size ki+1 =2 X k;
Scramble r¢ and r; using a public random permutation o;

. -1 -1 —1
Unscramble ro and 7 with 0", 017, .. Onpgeies

return ro, r¢

4 Key reconciliation for error correction in PUF
responses

Over time, the PUF responses to the same challenge differ as if they were altered
by transmission over a binary symmetric channel (BSC) under the assumption
that all the response bits have the same flipping probability. Therefore, using
public discussion, the errors in the PUF response could be corrected. Following
the reverse principle of [6], the response is modified on the server side according
to the parity values received from the device.

4.1 Protocol parameters

There are two parameters to tune for the CASCADE protocol: the initial block
size and the number of passes.

4.1.1 Initial block size

The initial block size ki is the block size used in the first pass, which is then
doubled for every subsequent pass. It should be set so that there is one error
per block on average after scrambling. This will make the error detectable by
the parity check. Thus the initial block size is derived from the error rate . In
the original article [5], the initial block size is: k; ~ 0.73/c. However, optimised
versions of CASCADE presented in [19] tend to increase the initial block size up
to 1/e. Moreover, [19] states that the block size should be a power of two to

11



achieve to the best reconciliation efficiency. This is emphasised in [20], in which
the initial block size is given in Equation (2):
1n
2 e)
However, this initial block size makes it possible to correct enough errors only
for very long bit frames, which is typically the case in quantum key distribution.
For PUF responses, however, using k; from Equation (2) does not allow enough
errors to be corrected. Therefore, in the following subsections, we explore
different values for k1, from 4 to 32 bits.

k1 = min(2”og2(%)

4.1.2 Number of passes

The number of passes depends on the acceptable number of responses left
uncorrected after the protocol has been executed. By increasing the number of
passes, more errors can be detected and corrected. However, each pass implies
parity exchanges, so increasing the number of passes also increases the leakage.
Yet the final passes leak less since the blocks on which the parity is computed are
larger. On the other hand, the block size is limited by the size of the response
and cannot exceed half the response length: Vi, k; < n/2. This limitation is
already present for frames of 2™ bits found in quantum key distribution, but
is much more problematic when dealing with PUF responses, that are much
shorter. For instance, if n = 256, then the passes must stop when the block size
reaches k; = 128 bits.

However, one approach proposed in [19, 20] is to add extra passes with
block size n/2. This makes it possible to overcome the limitation previously
mentioned. It then increases the success rate without leaking too much additional
information. Indeed, each extra pass requires only two parity checks. Therefore,
for each extra pass, only two bits of the response are leaked. Up to twenty passes
are performed in the following example.

4.1.3 Block size multiplier

In [19, 21], it is said that, from one pass to the next one, the block size could be
multiplied by another factor than 2. Values ranging from 2 to 5 are explored
for the block size multiplier. In our case, we chose to use multipliers that are
powers of two. This led to the block sizes shown in Table 2.

Table 2: Block sizes used here for passes 1 to 20.

k1 ko ks ... koo
4 32 128 ... 128
8 32 128 ... 128
16 64 128 ... 128
32 64 128 ... 128
64 128 128 ... 128
128 128 128 ... 128

12



4.1.4 Example

Figure 6 shows how the number of passes influence leakage. The values were
obtained by simulation on 2,500,000 random responses. We chose to overestimate
the leakage here by considering that one bit is leaked for every parity bit that
is transmitted. When considering all the bits, the errors were assumed to be
independent and identically distributed, although this might not be the case for
practical PUF responses. Different distributions are discussed in Sect. 6.4.

219
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Final response length (bits)
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Shannon bound
=@ (32/64/128)-bit blocks O=0 (8/32/128)-bit blocks
@=@ (16/64/128)-bit blocks O O (4/32/128)-bit blocks

Figure 6: Final response length after executing the CASCADE protocol on a 256-bit
response with different numbers of passes and initial block sizes. Here, the error
rate is 2%.

As mentioned above, the number of passes is limited by the block size, which
cannot exceed n/2. The Shannon bound, i.e. the maximum number of secret
bits that can be achieved with optimal error correction is in grey. As can be seen
in Figure 6, the best strategy to remain close to the Shannon bound appears to
start with large blocks. For instance here, with n = 256 and ¢ = 0.02, starting
with 32-bit blocks makes it possible to stay close to the Shannon bound.

A second metric that has to be taken into account is the failure rate. It is
defined as the ratio of responses that could not be corrected after executing
the protocol. Since increasing the number of passes enables more errors to be
corrected, it also reduces the failure rate. Similarly, using smaller initial blocks
makes it possible to detect more errors, which can then be corrected, thereby
reducing the failure rate. Reusing previous parameters, Figure 7 shows how the
failure rate is influenced by the number of passes and the initial block size.

4.1.5 Design flow

After characterisation of the PUF, the error rate can be estimated. Depending
on the target application, the designer can then select a failure rate, and estimate
the protocol parameters that have to be chosen to achieve it: the initial block size
and the number of passes. These two parameters make it possible to compute

13
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Figure 7: Failure rate for a 256-bit response with different numbers of passes
and initial block sizes. Here, the error rate is 2%.

the leakage. They give the number of bits that can be kept secret. If the number
of bits is too low for the target application, the designer can request more bits
from the PUF in order to obtain a final secret key of sufficient length.

Table 3 and 4 show which parameters can be chosen for the CASCADE protocol
in real-life examples to achieve a failure rate of 10~* and 10~ respectively and
a security of 128 bits, which is the usual value for the length of a symmetric
encryption key. Several types of PUF architectures are considered: a ring-
oscillator (RO), transient-effect ring-oscillator (TERO) and SRAM PUFs. The
associated error rate provided in the original articles is used to evaluate the
initial block size ki1, the number of passes n,qsses and the number of bits required
from the PUF. The number of bits from the PUF is set to be a power of two.
Two failure rates, 10~* and 107%, are considered.

Table 3: Parameters chosen to achieve a failure-rate of 10~ for different PUF
architectures, aiming for at least 128 bits of final entropy.

. Technology Error rate k1 Number of PUF

PUF  Article  Target node € [bits] Mpasses bits required
RO [22] FPGA 90 nm 0.9% 32 15 256
23]  ASIC  65nm 2.8% 32 20 256
24 FPGA 90 nm 1.7% 128 20 256
TERO [25] FPGA 28 nm 1.8% 128 20 256
[26] ASIC 350 nm 0.6% 32 15 256
27 FPGA — 4% 64 15 512
SRAM  [28] FPGA — 10% 8 15 512
20  ASIC  65nm 5.5% 32 20 512
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Table 4: Parameters chosen to achieve a failure-rate of 10~° for different PUF
architectures, aiming for at least 128 bits of final entropy.

. Technology Error rate k1 Number of PUF

PUF - Article  Target node 5 [bits] Mpasses bits required
RO [22] FPGA 90 nm 0.9% 64 25 256
[23] ASIC 65 nm 2.8% 32 15 512
[24] FPGA 90 nm 1.7% 32 25 256
TERO [25] FPGA 28 nm 1.8% 32 25 256
[26] ASIC 350 nm 0.6% 64 25 256
[27] FPGA — 4% 16 25 512
SRAM [28] FPGA — 10% 8 25 512
[29] ASIC 65 nm 5.5% 8 20 512

4.2 Leakage estimation

As highlighted in [19], the minimum information required to recover a variable X
when an altered version Y is known is given by the conditional entropy H(X|Y).
When considering a BSC of error rate ¢, the conditional entropy is related to
the error rate. Y is then an instance of the X wvariable, in which every bit
has a flipping probability of . The minimum information to be exchanged
between the two parties in order to reconcile their respective responses is given
in Equation (3), where n is the response and h(e) is the Shannon entropy.

nh(e) = n.(—elogae — (1 — €)loga (1 — €)) (3)

For example, for a 5% error rate, one cannot expect to keep secret more than
182 bits from an initial 256-bit response. However, if the error rate is lower, 2%
for instance, then up to 219 bits can be kept secret. This is an overestimation,
and tighter bounds can be found in the literature [30]. However, there is no
analytical value for the exact leakage associated with the execution of CASCADE

In practise, at most one bit is leaked each time a parity value is transmitted
over the public channel. Therefore, the leakage mainly depends on the number
of passes and the size of the block. In order to limit leakage, the protocol
parameters need to be carefully chosen.

4.3 Implementation

This section presents the hardware implementation of the CASCADE protocol on
the device side and its software implementation on the server side. We assume
that the server has high computational capabilities, whereas the implementation
should be as lightweight as possible on the device.

4.3.1 Device side

The only computation that needs to be carried out on the device is the parity
computation. It must be done on blocks of variable length. This is simply
achieved by multiplexing the PUF response bits to an XOR gate one after the
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other. After the XOR gate, the intermediate result is sampled by a D flip-flop.
This is illustrated by the diagram in Figure 8.

N

parity

Figure 8: Parity computation module on the device-side.

4.3.2 Server side

All the other computations are handled by the server. The communication
between the server and the device consists in a list of indexes sent by the server
to the device and a parity value sent back to the server from the device. The
permutations are selected by the server, and only individual indexes are trans-
mitted to the device. Therefore, the permutation layer is entirely implemented
on the server side. After the error has been located using binary search, it is
corrected on the server. Table 5 summarises how computations are distributed
between the device and the server.

Table 5: Distribution of features between device and server.

Feature Device side  Server side
Block-size computation X
Parity computations X X
Permutations X
Error detection X
Error correction X

5 Implementation results

For the device side implementation of CASCADE, we used different target FPGAs
to provide the most accurate comparison possible. We integrated the module
computing the parity in a simple controller with three states: idle, compute_parity
and send_parity. On the server side, we used Python for development.

5.1 Logic resources

Table 6 and 7 shows the implementation results in terms of LUTs, D flip-flops and
Slices/ALMs/LCs?. As already shown in Table 1, the hardware implementation

2ALM: Adaptive Logic Module LC: Logic Cell
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of CASCADE is very lightweight. It is at least two to three times smaller than
state-of-the-art error-correcting codes. Again, a 256-bit response is assumed
here. Increasing the initial response size would require a larger multiplexer, and
hence more logic resources.

Table 6: Implementation on different target FPGAs for the parity computation
module on a 256-bit response.

Target device #LUTs #DFFs #Shcels‘é:LMs/
Xilinx Spartan 3 ¢ 132 1 67 Slices
Xilinx Spartan 6 ° 68 1 19 Slices
Altera Cyclone IIT ¢ 170 1 171 LCs
Altera Cyclone V ¢ 86 1 56 ALMs

@ 4-input LUTs ? 6-input LUTs ¢ 7-input LUTs

Table 7: Implementation on different target FPGAs for the parity computation
module on a 512-bit response.

Target device #LUTs #DFFs #Shcesé/:LMs/
Xilinx Spartan 3 ¢ 264 1 133 Slices
Xilinx Spartan 6 ° 170 1 95 Slices
Altera Cyclone III @ 340 1 342 LCs
Altera Cyclone V ¢ 170 1 109 ALMs

@ 4-input LUTs ? 6-input LUTs ¢ 7-input LUTs

A more device-specific FPGA implementation could also be achieved by
instantiating a dedicated vendor primitive for the multiplexer.

5.2 Latency

Another criterion used to evaluate the different error correcting codes is their
latency. For the CASCADE protocol, we distinguish two border cases. The actual
latency of one execution of the protocol lies between those two cases.

The latency of the protocol can be split into a fixed and a variable portion.
The fixed portion includes the parity computations aimed at detecting the errors,
which are executed after the scrambling step of each pass. The variable portion
is related to the execution of the CONFIRM method. If the errors are detected in
the initial passes, then the CONFIRM method will be applied to small blocks. On
the other hand, if errors remain until the last passes, correcting them means
CONFIRM will have to be executed on large blocks. The larger the blocks, the
longer the parity computations. Computing the parities for all the blocks of
an n-bit response requires n clock cycles with the module shown in Figure 8.
The number of clock cycles required for parity computations when executing the

17



CONFIRM method on a t¢-bit block is given by Equation (4). This corresponds to
computing parities on blocks of sizes starting at ¢/2 down to 1.

loga(t) ;
> 5 =t-1 (4)
i=1
Let us consider the previous case of a 256-bit response and a 2% error-rate.
On average, five bits are flipping. We assume that the protocol starts with 32-bit
blocks and runs for 15 passes.
In the best case, the errors are corrected as soon as possible. The binary
search is conducted on smaller blocks and is shorter. The five errors are corrected
in the first pass. Therefore, the device side latency is:

256 x 154+ 5 x (32 — 1) = 3,995 clock cycles

In the worst case, there are more than five errors. For example, let us assume
that 15 bits are faulty. This occurs with a probability of 2.10~* Moreover, since
we are in the worst case scenario, the errors are corrected as late as possible.
The binary search is then conducted on larger blocks and is longer. The errors
are corrected in the last passes.

In this case, the latency is:

256 x 154 15 x (128 — 1) = 5, 745 clock cycles

Table 8 gives a comparison with existing error-correcting codes in terms of
latency. We considered two corner cases for CASCADE. First, the protocol was
executed on a 256-bit response with a 1% error rate. The errors were corrected
as early as possible, making it the best case scenario. This leads to a low latency
of 3933 clock cycles, comparable to the fastest existing codes. In the worst case,
we considered a 512-bit response, in which the errors were corrected as late as
possible. This gives a much higher latency of 33280 clock cycles, which is still
much lower than [3].

The latency of the CASCADE protocol is then very dependent on the size of
the response which is corrected. It also depends on the error rate, since the
error-correction steps achieved by the CONFIRM method are also a source of
latency. Depending on when the errors are corrected, the latency also varies to
a great extent.

The logic function is very simple here, since it consists only of one XOR gate
and a D flip-flop, as shown in Figure 8. A higher clock frequency than the one
used by the other logic of the circuit could then be used to reduce the delay
required by the CASCADE protocol.

However, due to the great interactivity of the CASCADE protocol, the main
latency bottleneck is the communication between the device and the serve. It
can be order of magnitude slower that intra-device communication. Thus the
associated latency depends to a great extent on the target platform. However,
recent devices usually embed very high speed communication channels.
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Table 8: Latency in clock cycles of different codes with different constructions.

Article  Construction and code(s) Latency

[1] Concatenated: 5831
Repetition (7, 1, 3)
and BCH (318, 174, 17)

[2] Complementary IBS —
with Reed-Muller (2, 6)

[3] Reed-Muller (4, 7) 108000

6]  BCH (255, 21, 55) —

7]  Reed-Muller (2, 6) 1248

[18] Concatenated: 6505

Repetition (5, 1, 5)
and Reed-Muller (1, 6)
[18] Concatenated 1210
Repetition (11, 1, 11)
Golay G24(24, 13, 7)
CASCADE on 256-bit responses and ¢ = 1%, 3933

15 passes, starting with 32-bit blocks
(errors corrected as early as possible)

CASCADE  on 512-bit responses and & = 10%, 33280
25 passes, starting with 8-bit blocks
(errors corrected as late as possible)

5.3 Alternative device-side implementation

Among the PUF architectures we considered, both the RO and TERO PUFs
have the characteristic to not derive the full response immediately. Instead,
the RO PUF generates one response bit per challenge, as the result of the
comparison between the frequencies of two ring oscillators. Similarly, the TERO-
PUF generates from one up to three bits of response per challenge. In both
cases, in order to obtain the full response, the response bits must be stored in a
shift register. Such existing shift register can be leveraged to further reduce the
logic resources overhead of the CASCADE protocol implementation. However, it
comes at the expense of increasing the protocol latency.

The architecture of the parity computation module is detailed in Figure 9.
The bottom left D flip-flop samples the response bit once it is available at the
shift register output. The XOR gate computes the parity value, which is then
sampled by another D flip-flop.

Therefore, the only additional components to add to the PUF are the following,
since the shift-register is already present:

e One logs(n)-bit counter,
e One XOR gate,

e Two flip-flops.
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Figure 9: Alternative architecture for the parity computation module on the
device-side.

The shift register is made circular by connecting its output to its input.
Depending by how much the data in the circular shift register is shifted, the
appropriate response bit is selected and sent to the parity computation module.
The amount of shifting required to select a specific response bit is controlled by
a counter, connected to the A input.

Let us identify two consecutively selected response bits as r[i] and r[j]. The
response r[j] is then the response bit to be selected after r[i]. Two cases can
occur when selecting these response bits.

e If j > ¢, the counter must be set to count for j — i clock cycles, which is
the difference of indexes.

e If j <4, the counter must be set to count for n + j — i clock cycles, which
is the difference of indexes when wrapping beyond the response size n.

The counter must then count for A clock cycles (see Equation (5)).

A=(j—1i)modn (5)

Therefore, the counter must be logs(n)-bit wide so that it can index all
response bits.

The associated logic resources overhead is very low. Table 9 gives the
implementation results on the four types of FPGAs previously considered with
the same metrics: number of LUTs, number of D flip-flops and number of
Slices/ALMs/LCs. We considered a 256-bit response here.

As seen in Table 9, the logic resources overhead drops significantly when
an existing shift register can be reused. Depending on the type of PUF, this
alternative implementation is an interesting solution. However, this comes at
the price of increased latency.

5.3.1 Associated latency

With the original device-side implementation shown in Figure 8, one response
bit can be selected for parity computation every clock cycle. Indeed, in order to
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Table 9: Implementation on different target FPGAs for the alternative parity
computation module on a 256-bit response.

Target device #LUTs #DFFs #ShceiééLMs/
Xilinx Spartan 3 ¢ 26 12 17 Slices
Xilinx Spartan 6 ° 17 12 7 Slices
Altera Cyclone IIT ¢ 25 20 26 LCs
Altera Cyclone V ¢ 23 20 15 ALMs

@ 4-input LUTs °? 6-input LUTs ¢ 7-input LUTs

select a response bit, the circular shift register must be shifted by an amount
§, with § € [1;n — 1]. On average, reaching the next response bit requires n/2
shifts.

Therefore, computing the parity on a t-bit block taken out of an n-bit response
is done in (t.n)/2 clock cycles on average. Since there are n/t of these blocks in
the response, computing the parity of all the blocks of an n-bit response requires
n?/2 clock cycles on average. This is much longer than for the original parity
computation module, for which only n clock cycles are necessary.

The other step which increases in latency with this implementation is the
CONFIRM method. The number of clock cycles required to execute the CONFIRM
method on a ¢-bit block is given in Equation (6).

l"%t) tL n(t—1) ©
~ 202

Like previously, we need to consider the best and worst case scenario for
when the CONFIRM method is applied. A 256-bit response with a 2% error rate is
studied, with five bits flipping on average. We assume the protocol starts with
32-bit blocks and runs for 15 passes.

In the best case, the errors are corrected as early as possible, in the first pass
where blocks are 32 bits long. Therefore, the associated device-side latency is:

2 —
2526 155 256><(232 1)

= 511, 360 clock cycles

In the worst case, the errors are corrected as late as possible, when the blocks
are 128 bits long. Moreover, there are 15 of them instead of 5. In this case, the
latency is:

2562 2 128 — 1
56 ><15+15><—56X(28 )

= 735, 360 clock cycles

After comparing with the numbers given in Table 8, it is clear that the latency
here exceeds by far the one of existing error-correcting codes. However, the logic
resources overhead is also greatly reduced. This trade-off provides the designer
with the ability to chose the most suited solution for the target application.
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6 Discussion

6.1 Privacy amplification

The number of bits leaked during the error correction step can be estimated.
However, the remaining entropy is not only concentrated in the non-leaked bits.
Instead, it is evenly spread over all the bits of the response. The next step is thus
to shorten the response in order to get all the bits with maximum entropy. This
is called privacy amplification, and can be achieved by using a universal hash
function, thanks to the leftover hash lemma [31]. In practise, a hash function is
used for this purpose. Figure 10 shows how the number of bits varies at different
steps.

n n i n—t )
, Key ' / Pr'lvacy (
reconciliation amplification
t
——leakage

Figure 10: Changes in the number of bits in the response at different steps.

After key reconciliation, t bits are leaked. Therefore, the hash function used
for privacy amplification should have an output of size inferior or equal to (n —t)
bits so that all the output bits have maximum entropy.

A lightweight hash function can be used to achieve privacy amplification
with low area penalty. SPONGENT [32] was used in [1], and requires only 22
Slices on a Xilinx Spartan 6 FPGA for the 128-bit output block option. Another
alternative is to implement Toeplitz hashing [33], which was chosen in [34]. Based
on an LFSR, this construction occupies 59 Slices on a Xilinx Spartan 3 FPGA.
Other low-area oriented hash functions can be found on the SHA-3 competition
webpage, in the “low-area implementations” section?.

6.2 Replacing parity check with hashing

Some works [35, 36] suggested using a hash function instead of a parity check to
detect the errors in corresponding response blocks. This would enable detection
of two errors in the same block, which is not possible using the simple parity
check. However, this error detection method cannot be used with small blocks.
Hence it does not suit our use case.

For example, if the the CASCADE protocol starts with 8-bit blocks, then it is
easy for an attacker to pre-compute a 28-bit look-up table containing the hashes
if the hash function is public. By observing the successive hash values sent by
the device, the attacker could easily recover the PUF response.

6.3 Security analysis

6.3.1 Brute force attack

By observing the indexes sent to the PUF and the associated parity value that it
returns, an attacker can build a system of linear equations describing the parity

3http ://ehash.iaik.tugraz.at/wiki/SHA-3_Hardware_Implementations
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relations between the indexes. This system can then be solved to obtain the PUF
response by Gaussian elimination. However, the system of linear equations does
not fully specify the values of the variables, and multiple responses can satisfy
these equations. Therefore, an attacker would have to exhaustively explore the
remaining space until the correct response is revealed.

Assuming ¢t parity bits have been leaked during the protocol execution on n-bit
responses, 2"~ ¢ possible responses are still to explore for the attacker. Therefore,
after executing the CASCADE protocol, taking the conservative estimation that
one bit of information is leaked every time a parity value is sent, the security
level drops from 2" to 2"~t. As detailed before, it is up to the PUF designer to
tune the protocol parameters so that ¢t remains as low as possible in order to
limit the leakage.

6.3.2 Device impersonation: chosen parity values scenario

An attacker could impersonate the PUF and return parity values of his choice
to the server, with the aim of setting the reference response rq to a chosen value.
This corresponds to a chosen parity values scenario. We propose the following
counter-measure to address this threat.

Counter-measure Device impersonation is thwarted by limiting the number
of modifiable bits on the server side. Since response bits have probability € of
flipping, the total number of bits that flipped in a n-bit response follows the
binomial distribution B(n,e). We chose to allow up to m bits to be modified. m
was chosen so that the probability that m bits flip is lower than the expected
failure rate. For example, for a 256-bit response and a 2% error rate, if a failure
rate of 1079 is specified, then we search for the number of bits flipping m such
that Pr(X =m) < 1075, Therefore, the maximum number of bit modifications
we would allow for on the server side in this configuration is m = 20.

The general value for the number of modifiable bits m on the server side with
respect to the failure rate f is given in Equation (7), where X is the number of
bits modified by executing the CASCADE protocol.

m:P(X=m)<f (7)

Over this limit, the probability that an attacker is trying to modify the
response on server-side is higher than the failure rate of the protocol. Therefore,
further modifications are not allowed and the protocol is stopped. This allows
to prevent device impersonation.

6.3.3 Server impersonation: chosen indexes scenario

Following our use case, the main threat here is server impersonation. Indeed, this
would allow an attacker to unlock an integrated circuit by sending the activation
word encrypted with a chosen PUF response. In order to do so, an attacker
must construct a PUF response. He can choose the indexes sent to the PUF,
and obtain the associated parity values. This corresponds to a chosen indexes
scenario. The point here is to obtain a sufficient number of parity relations
between the PUF bits, in order to forge a PUF response.

Considering a set of parity relations as a sufficiently determined system of
equations over GF(2), Gaussian elimination can be used to recover the PUF
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response bits. However, this requires the attacker to be able to build a suffi-
ciently determined system of equations. Therefore, we propose the two following
counter-measures against server impersonation. In addition, deterministic scram-
bling, presented in Subsection 6.4, demonstrates another way to avoid server
impersonation.

Counter-measure 1 This countermeasure comes in two aspects. The point
is to prevent the attacker from building a sufficiently determined system of
equations. First, a hard limit is set on the device-side for the number of parity
values which can be sent when the protocol is executed. By setting it at the
security requirement, 128-bit in our case, the designer can be sure that at least
128 bits are kept secret. This however, can be circumvented by resetting the
device and executing the CASCADE protocol multiple times, to obtain more linear
equations. Therefore, we propose an additional counter-measure to address this
problem.

Counter-measure 2 At the beginning of each execution of the CASCADE
protocol, a new PUF response must be requested. By doing so, the attacker can
obtain more parity relations between the PUF response bits. However, since a
new response has been generated, some bits might have flipped to an erroneous
value or flipped back to a correct value with respect to the reference response
ro. Therefore, the parity relations do not correspond to the same PUF response,
and cannot be used to forge a response by Gaussian elimination.

This problem is equivalent to the Learning parities with noise problem, which
is considered a hard problem and has been used as the hardness assumption
in constructing cryptographic schemes [37]. Learning parities with noise is
equivalent in complexity to decoding from a random linear code [38], which is
known to be an NP-hard problem.

6.3.4 Single index request

By challenging the system with only one index i, an attacker could obtain the
value of the PUF response at index . Doing so sequentially for all indexes
would allow the attacker to recover the whole response. A simple and not costly
secure controller should thus be implemented in the system to avoid this type
of manipulation. For example, single index requests can be counted and not
allowed anymore once a specific threshold has been exceeded. Indeed, knowing
the error-rate, one can fix a threshold on the number of faulty bits. Above this
threshold, single index requests are not allowed anymore. It prevents an attacker
from recovering the entire response this way.

6.3.5 Helper data manipulation

Recent works highlight the fact that helper data can be manipulated [39]. Since
CASCADE only requires exchanging simple parity values, manipulation is not a
threat and is handled like impersonation.
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6.4 Deterministic scrambling

The first step of the key reconciliation protocol is scrambling. The aim is to spread
the errors evenly over the blocks. However, depending on the PUF architecture
used, characterisation can be done right after the PUF is implemented on the
device. This will detect which bits of the response are the most unstable, i.e.
the ones whose value is the most likely to change over time [40]. At that point,
the chosen permutation can assign one unstable bit per response block, so that
the errors on those bits are easily detected and corrected in the first passes of
the protocol.

Another point of using deterministic scrambling is to thwart attacks which
aim at fully determining the system of parity equations in order to solve it and
recover the response, i.e. server impersonation. This could be achieved for
example by executing the CASCADE protocol on the same circuit multiple times,
since random permutations are normally used. If deterministic scrambling is used
instead, the same fixed set of permutations is used for all protocol executions.
Therefore, running the protocol multiple times does not help an attacker in
building a sufficiently determined system of parity equations, hence avoiding the
previously described threat.

7 Conclusion

This article proposes to use key reconciliation protocols for error correction of
PUF responses. We show that this interactive method is efficient at reaching
very low failure rates while requiring less bits from the PUF than existing
error-correcting codes. Although it incurs significant communication overhead
compared to existing error correcting codes, its main advantage is requiring
very low area overhead on the device and small latency for the computations.
Another advantage of this solution is its great flexibility. Parameters can be
very easily tuned, and adapted to the constraints of the application. This makes
it a suitable option for resource constrained applications, which are the ones
targeted by PUFs in the first place. Our work clearly points toward using silicon
PUFs and key reconciliation protocols in an industrial context for intellectual
property protection and authentication of integrated circuits.
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