LIZARD - A Lightweight Stream Cipher for
Power-constrained Devices

Matthias Hamann', Matthias Krause!, and Willi Meier?

! University of Mannheim, 68131 Mannheim, Germany
{hamann, krause}@uni-mannheim.de
2 FH Nordwestschweiz, 5210 Windisch, Switzerland
willi.meier@fhnw.ch

Abstract. Time-memory-data (TMD) tradeoff attacks limit the secu-
rity level of many classical stream ciphers (like Eo, A5/1, Trivium, Grain)
to %n, where n denotes the inner state length of the underlying keystream
generator. In this paper, we present LIZARD, a lightweight stream cipher
for power-constrained devices like passive RFID tags. Its hardware effi-
ciency results from combining a Grain-like design with the F'P(1)-mode,
a recently suggested construction principle for the state initialization of
stream ciphers, which offers provable %n-security against TMD tradeoff
attacks aiming at key recovery. L1IZARD uses 120-bit keys, 64-bit IVs and
has an inner state length of 121 bit. It is supposed to provide 80-bit
security against key recovery attacks. LIZARD allows to generate up to
2'8 keystream bits per key/IV pair, which would be sufficient for many
existing communication scenarios like Bluetooth, WLAN or HTTPS.

Keywords: Stream Ciphers, Lightweight Cryptography, Time-Memory-
Data Tradeoff Attacks, F'P(1)-mode, Grain, RFID

1 Introduction

Stream ciphers have a long history when it comes to protecting digital commu-
nication. In 1987, Ronald L. Rivest designed RC4 [49], which was later used in
SSL/TLS [2I] and the wireless network security protocols WEP [I] and TKIP
(often called WPA) [2]. Other well-known stream cipher examples are E of the
Bluetooth standard [51] and A5/1 of GSM [15]. Unfortunately, Ey and A5/1 have
been shown to be highly insecure (see, e.g., [42] and [9]) and RC4 also shows
severe vulnerabilities, which led to its removal from the TLS protocol [46] and
rendered other protocols like WEP insecure [26]. In 2004, the eSTREAM project
[45] was started in order to identify new stream ciphers for different application
profiles. In the hardware category, aiming at devices with restricted resources,
three ciphers are still part of the eSTREAM portfolio after the latest revision in
2012: Grain v1 [34], MICKEY 2.0 [§] and Trivium [I7].

Grain v1 uses 80-bit keys, 64-bit IVs and the authors do not give an explicit
limit on the number of keystream bits that should be generated for each key/IV

pairB MICKEY 2.0 uses 80-bit keys, IVs of variable length up to 80 bit and the
maximum amount of keystream bits for each key/IV pair is 24°. Trivium uses
80-bit keys, 80-bit IVs and at most 25 keystream bits should be generated for
each key/IV pair.

Interestingly, all three ciphers of the eSTREAM hardware portfolio are obvi-
ously designed for potentially very large keystream sequences per key/IV pair.
In contrast, the aforementioned transmission standards all use much smaller
packet sizes. For example, A5/1 produces only 228 keystream bits per key/TV
pair, where the session key is 64 bits long and the IV corresponds to 22 bits of
the publicly known frame (i.e., packet) numberﬂ Similarly, Bluetooth packets
contain at most 2790 bits for the so-called basic rate. The Bluetooth cipher Ej
takes a 128-bit session key and uses 26 bits of the master’s clock, which is as-
sumed to be publicly known, as the packet-specific IV. For wireless local area
networks (WLANS), the currently active IEEE 802.11-2012 standard [3] implies
that at most 7943 bytes are encrypted under the same key/IV pair using CCMPE|
Another widespread example for encryption on a per-packet basis is SSL/TLS,
which underlies HTTPS and thus plays a vital role in securing the World Wide
Web. In the most recent version, TLS 1.2 [21], the maximum amount of data
encrypted under the same key/IV pair is 2!4 4 210 bytes (as long as RC4 is not
usedEI)

Considering the above examples, the natural question arises whether a stream
cipher with attractive features regarding security and efficiency could be designed
by specifically targeting such packet mode scenarios, where only moderately long
pieces of keystream are generated under the same key/IV pair. In this paper,
we answer the question in the affirmative by presenting LIZARD, a lightweight
stream cipher for power-constrained devices. L1IZARD takes 120-bit keys, 64-bit
IVs and generates up to 2'® keystream bits per key/IV pairﬂ It is designed
to provide 80-bit security against key recovery attacks including generic time-
memory-data (TMD) tradoff attacks. This is remarkable insofar as LIZARD’s
inner state is only 121 bit wide. In contrast, Trivium and Grain v1, for example,
have an inner state length of at least twice the size of the targeted security
level against key recovery attacks. This is due to the inherent vulnerability of
classical stream ciphers (i.e., stream ciphers which compute the keystream based
on a so-called initial state) against TMD tradeoff attacks like those of Babbage

! However, in [34], the designers of Grain point out that the feedback polynomial
of the employed 80-bit LFSR is primitive and in [33] they state that “[tlhe LFSR
guarantees a minimum period for the keystream”, suggesting a corresponding upper
bound on the number of keystream bits allowed per key/IV pair.

2 More precisely, 114 bits are used for uplink and 114 bits are used for downlink.

3 In IEEE 802.11-2012, WEP and TKIP are marked as deprecated. The maximum
of 7943 bytes per key/IV pair is only achieved when MSDU aggregation is used.
Without this type of frame aggregation, the maximum amount of data encrypted
with CCMP under the same key/IV pair is 2330 bytes.

* For security reasons, RC4 is now forbidden for all TLS versions by RFC 7465 [46)].

5 Note that a maximum packet size of 2'® bits covers all of the real-world protocol
examples given in the previous paragraph.

[6] and Biryukov and Shamir [I3], which allow to compute the secret initial
state on the basis of O(2"/2) keystream bits in time and space ©(2"/2), where
n denotes the inner state length of the underlying keystream generator (KSG).
As the state initialization algorithm, which computes the initial state from a
given key/IV pair, is efficiently invertible for Trivium and Grain v1, knowing
the initial state immediately reveals the secret keyﬂ L1ZARD, on the other hand,
represents the first practical instantiation of the F'P(1)-mode introduced in [32],
which provides a method for designing stream ciphers in such a way that, for
packet mode scenarios, a beyond-the-birthday-bound security level of %n w.r.t.
generic TMD tradeoff attacks aiming at key recovery can be provedEI

The design of L1ZARD is closely related to that of Grain v1, which turned
out to be the most hardware efficient member of the eSTREAM portfolio and,
hence, can be considered as a benchmark for new hardware-oriented designs.
When compared to Grain v1, the major differences of L1ZARD are the smaller
inner state (121 bit vs. 160 bit), the larger key (120 bit vs. 80 bit) and the fact
that LiZARD introduces the secret key not only once but twice during its state
initialization. All of these modifications are a direct consequence of implementing
the F'P(1)-mode as explained in section Naturally, reducing the size of the
inner state also required to change the underlying feedback shift registers and,
for security reasons, to choose a heavier output function.

Note that, very recently, another line of research which also pursues the
goal of reducing the inner state size of stream ciphers has emerged. In 2015,
Armknecht and Mikhalev suggested Sprout [5], which has a Grain-like structure
and uses two 40-bit feedback shift registers. Compared to conventional stream
ciphers like Grain v1 (and also compared to LizZARD), the characteristic dif-
ference of Sprout is that the 80-bit key is not only accessed during the state
initialization but also continuously used as part of the state update during the
subsequent keystream generation phaseEI Even though Sprout was broken shortly
after publication (see, e.g., [40], [53], [24]), it has sparked interest in the under-
lying design principle and related ciphers like Fruit [28] have been suggested
since. Unfortunately, though being elegant in theory, continuously accessing the
secret key often comes at a heavy price in practice. For example, if the key is
stored in an EEPROM, the corresponding access times may significantly slow
down the operation speed of the KSG. This is particularly true if the key bits
are not accessed sequentially (as in the case of Sprout) but at random positions
(as in the case of Fruit)ﬂ Another drawback to continuously reading key bits

5 Even if the state initialization algorithm is not efficiently invertible, variants of such
TMD tradeoff attacks (e.g., aiming at some other inner state occurring during the
state initialization) can often be used to recover the secret key. See [32] for an example
of such an attack against Fjo.

" TMD tradoff attacks aiming at recovering some initial state still work for LIZARD,
but they do not allow to straightforwardly derive the underlying secret key (see
Sec. for details).

8 A similar idea was already used in [I9] for the fixed-key variant KTANTAN of the
block cipher KATAN.

9 In fact, Fruit needs to access six different, non-sequential key bits per clock cycle.

from an EEPROM is the associated increase in power consumption. This is es-
pecially true for low-cost RFID tags, where the power budget is often as low as
10 pW (cf. [36])B A way to circumvent the problem of continuously accessing
the key in the EEPROM might be to buffer it in volatile memory. This, however,
would significantly increase the hardware costs of the corresponding implemen-
tation due the additionally required flip-flops. On the other hand, in a scenario
where the key is fixed (e.g., via burning fuses), continuously accessing key bits
(in potentially random order) is clearly feasible. There, however, it might be
problematic that Fruit requires each key to be used with less than 2'® different
IVs, which places a strong limit on the lifetime of corresponding devices in a
fixed-key scenario. Finally, note that, unlike LIZARD, neither Sprout nor Fruit
offer provable security against TMD tradoff attacks aiming at key recovery.

We would like to point out that the above arguments by no means imply
that we reject the idea of stream ciphers that continuously access the secret
key. However, they illustrate the need for alternative ideas that allow to reduce
the size of the inner state even in scenarios where continuous key access is not
feasible.

LizARD was designed with low-cost scenarios like passively powered RFID
tags in mind. In particular, it outperforms Grain v1 in important hardware met-
rics like cell area and power consumption. Most notably, the estimated power
consumption is about 16 percent below that of Grain v1, making LIZARD partic-
ularly suitable for power-constrained devices. This shows that in scenarios where
plaintext packets of moderate length are to be encrypted under individual IVs,
the F'P(1)-mode provides an interesting alternative to conventional state initial-
ization algorithms of stream ciphers.

Structure of the paper: In section 2| we specify the components of LIZARD
(Sec. and describe how it is operated during state initialization (Sec.
and keystream generation (Sec. . Building on this, section |3| then provides
the corresponding design considerations. In particular, subsection [3.5| contains
a detailed explanation of the generic F'P(1)-mode and how it was implemented
for L1ZARD. Section |4 treats the cryptanalysis of LIZARD and in section [5| we
present the details of our hardware implementation along with a comparison of
the corresponding performance metrics between L1ZARD and Grain v1. Section [
concludes the paper and provides an outlook on potential future work. Test
vectors can be found in appendix [A]

2 Design Specification

The design of LIZARD is similar to (and was in fact inspired by) that of the
Grain family [33] of stream ciphers. In particular, the inner state of LIZARD is

0 For comparison, Ranasinghe and Cole state in [I8] that “[a] tag performing a read
operation will require about 5 pW — 10 puW, while a tag attempting to perform
a write operation to its E°PROM will require about 50 W or more.” Our entire
hardware implementation of LIZARD, on the other hand, has an estimated power
consumption of only 2.1 uW (cf. Sec. |5)).

distributed over two interconnected feedback shift registers (FSRs) as depicted
in Fig.

Jq fe { r

e s At ——]

B | NFSR2 ! By —4 S§ 1 NFSR1 | Si

A

a

Jm

Fig. 1. LiZARD in keystream generation mode.

Note, however, that while Grain uses one linear feedback shift register (LFSR)
and one nonlinear feedback shift register (NFSR), which, moreover, are of the
same length, L1ZARD uses two NFSRs of different lengths instead. The reasons
for this design choice will be explained in section [3] Like in Grain, the third
important building block besides the two FSRs is a nonlinear output function,
which takes inputs from both shift registers and is also used as part of the state
initialization algorithm.

In the following, we decribe the components of the cipher in detail (Sec.
and specify how it is operated during state initialization (Sec.[2.2]) and keystream
generation (Sec. . For the sake of clarity, subsections ontain only the
technical aspects of LizARD. Explanations of important design choices for our
construction are given separately in section [3] along with a discussion of the
security properties of the particular components (e.g., the algebraic properties
of the feedback functions).

2.1 Components

The 121-bit inner state of LIZARD is distributed over two NFSRs, NFSR1 and
NFSR2, whose contents at time ¢ = 0,1,... we denote by (S{,...,S%) and
(B{,...,Bty), respectively (cf. Fig. . Note that in LiZARD, NFSR1 replaces
the LFSR of the Grain family of stream ciphers.

NFSR1 is 31 bit wide and corresponds to the NFSR A;y of the eSTREAM
Phase 2 (hardware portfolio) candidate ACHTERBAHN-128/80 [27]. For non-
zero starting states, it has a guaranteed period of 23! — 1 (i.e., maximal) and is

defined by the following feedback polynomial:

fl(x):1+$6+1}11+(E13+.’IJ14+$16+(E25+.’IJ26+{L'29+$31

+ IEQIH + $10$14 + 1,101719 + I11I23 + 1,123:17 + $13$23

4 x9$10$11 + 1,93?111,23 4 .1791‘12.’1319 + .’1,‘9.’17121'27

4 .’[gl'lgng 4 £89(E19(E27 + 1’101'111'24 4 SUQZL'IOIL'H{EQS

+ .139],‘103312&319 T x9x10m12x27 + $9$10$133)23

—|—£U9{,C10{E19$27 + x10m11m23x24 +.’E10.’L'12.’E19$24

4 IlOI12{E24I27 4 I10$13$23I24 4 93101‘191‘24I27.

To avoid ambiguity, we also give the corresponding update relations for the
individual register stages of NFSR1:

Sitli= 8t forie{0,...,29},
St =Sl @ St St e SEa Sty @ St @ Sty @ Sk B Sk
@ SgSis © S350 © S1aS31 @ S14S1g © 17551 ® S5055
@ 5551555, © 5451955 ® 57530551 ® SgS1sShs
@ SgS505952 © S12S19S5s ® S50951 52 © 519751295,
© 5157519595, © 51512531555 © 51519551959
® 5755515551 @ 5755530531 ® 5751251053
© 55518551550 © 5550951522 © 515519521 S5a-

NFSR2 is 90 bit wide and uses a modified version of g from Grain-128a [48] as
its feedback polynomial. More precisely, fo squeezes the taps of g as follows to
fit a 90 bit register:

f2 (!L‘) _ 1-|—!L‘6 +£L'11 -|—£U41 +$66 -I-IL'QO —|—£U16£C30 -‘1-1'31{1,'87

+ IE32$U35 4 1:371,65 4 $48f£55 4 13741775 4 $78$80

+ 1‘181‘22.’1?28 + 37675(:68{1:70 + 3?7589&6103713.

Again, to avoid ambiguity, we also give the corresponding update relations
for the individual register stages of NFSR2:
Bitt:= Bi,, forje{0,...,88},
B = S{ @ B} @ B}, ® Bly & Bly ® BL, @ BiBly ® Bl B,
© Bi5Big © Bys Bss © Bis Bl © Bis Bis © BgoBry
© BjoB3o Bys @ By Bgs Brs © By Byo B, Bgs.

Note that the update relation for Bg;l additionally contains the masking bit S§
from NFSR1 (analogously to the Grain family).

The output function a : {0,1}*® — {0,1} builds on the construction scheme
introduced in [43] as part of the FLIP family of stream ciphers (see Sec. |3| for
details). For the sake of clarity, we define a through the output bit z; of LIZARD
at time t, which is computed as

Zt Zzﬂt@Qt@’E@ﬁ,

where

Ly := By ® B}, ® By, ® By, ® Bi; ® B, ® By,
Q, := B{B}, ® BiBt, ® Bi3Bj; ® BBk,

Ti := B ® B{B§, & By, Bi; By & B;Big BY) Bis
@ Bi3 BBty Bg, Bhs ® ByBi,Bss B3, Blr B
& B} BlgBS; B3 Bt Bl Big,

Ti == Shy © S§S1, @ S§Siy Bl @ 8154, Blg Bls.

2.2 State Initialization

The state initialization process can be divided into 4 phases. Phases 1-3 consti-
tute an instantiation of the F'P(1)-mode introduced in [32], which, in our case,
provides 80-bit security against generic time-memory-data (TMD) tradeoff at-
tacks aiming at key recovery. Phase 4 is a consequence of the necessity to make
sure that NFSR1 is not in the all-zero state after phase 3 (see below for details)E

Phase 1: Key and IV Loading. Let K = (Kj,...,Kj19) denote the 120-
bit key and IV = (IVp,...,IVs3) the 64-bit public IV. The registers of the
keystream generator are initialized as follows:

-

BO .— {Kj@IVj, for j € {0,...,63},

K; for j € {64,...,89},

K90, for i € {0,...,28},
S%:={ Kijo®1, fori=29,

1, for i = 30.

' In contrast to Grain, for LIZARD there are no weak key/IV-pairs leading to an all-zero
initial state of NFSR1 after state initialization, which would practically render our
maximum-period FSR NFSR1 ineffective during keystream generation (cf. Sec. [4.10).

L
T T Sé T T
S§ 1 NFSR1 | Sh

Vany
%)

oy
O+
Z,
=
w2
ool
[\
oy
®=
D

Zt

Fig. 2. LizARD in phase 2 of the state initialization.

Phase 2: Grain-like Mixing. Clock the cipher 128 times without producing
actual keystream. Instead, at time ¢t = 0,...,127, the output bit 2, is fed back
into both FSRs as depicted in Fig. To avoid ambiguity, we now give the
full update relations that will be used for NFSR1 and NFSR2 in phase 2. For
t=0,...,127, compute

Sttt =St forie{0,...,29},

Sitt =2 @ S;® Ss @ SL @ St Sty @ St, ® Sig ® Sy ® Sk
© SgS1s © SgS30 © 5159, ® 514519 @ S17S51 @ 55053
@ 53512552 © S3S19532 ® 57530531 © SgS1s S5
B 55530552 @ S12S19S52 @ 950531552 © 515751555,
@ 8557579551 © 51572551950 ® 5457955153
® 9755515551 © 57595550531 @ 9751557955,
© 55515551950 © 5550951520 © 515519521552

and

Bt .= Bi,, forj€{0,...,88},
Bi" := 2 ® S; @ B} @ B, @ Biy @ Bhy @ By @ ByBLy & B} B,
® Bi; Bl ® Bi;Bls ® Bi;Bly ® BisBls ® BiyBh,

© BiyBjy By ® By Bggs Bry © Bir Bgo By, Bgs,
where z; ;= Ly + Q¢ + T + ’YNZ is computed as described in subsection
Phase 3: Second Key Addition. In this phase, the 120-bit key is XORed in

a bitwise fashion to the inner state of the keystream generator, similar to how
it was introduced in phase 1. More precisely, the following update relations for

NFSR1 and NFSR2 constitute phase 3:
B* = B*® & K;, forje{0,...,80},

5129 — {S}2S@Ki+907 for i € {07729},
! 1, for ¢ = 30.

Note that, like in phase 1, the rightmost cell of NFSR1 is here again set to 1 in
order to avoid the all-zero state, which would practically render our maximum-
period FSR NFSR1 ineffective as, after phase 3, the only input to it will come
from its feedback function (i.e., for ¢ > 129, Sf“, i =0,...,30, is computed
as described in subsection . In contrast to phase 1, the key bit Kji9 is not
inverted in phase 3.

y fo y fi
_— e
T T St T T
Bt ' NFSR2 | Bl S5 ' NFSRI 'Sk

L L L

Fig. 3. LizZARD in phase 4 of the state initialization. The output function a is missing
as all output bits generated in this phase are discarded.

Phase 4: Final Diffusion. As pointed out previously, phases 1-3 constitute
an instantiation of the key loading and mixing steps of the F'P(1)-mode, which,
in our case, yields 80-bit security w.r.t. generic TMD tradeoff attacks aiming at
key recovery. Phase 4 is additionally required in order to obtain the necessary
diffusion w.r.t. the bit at the rightmost position of NFSR1, which was set to 1
in phase 3. We achieve this by stepping the whole KSG 128 times in keystream
generation mode as phase 4 (see Fig. [3)). Note that the 128 output bits produced
during phase 4 are discarded, i.e., they are not used as actual keystream.

Once more, to avoid ambiguity, we give the full update relations that will be
used for NFSR1 and NFSR2 in phase 4. For ¢t = 129,...,256, compute

Sitti= 8!, forie{0,...,29},
Siti= St St St @ St @ Sis @ Si; @ Sis ® Shy @ 545
@ S3Sis @ S3S50 @ 815551 @ 814519 © 517551 © 55055
© 545712555 ® 51519555 ® 57550551 © S5S15959
@ 55530552 © S12519532 B 830591532 ® 545751255,
@ 8157519551 © 5151255195, ® 5457955153
@ 5755515551 © 57595550551 © 57512519551
@ 5551595152 @ 5950521552 ® 51557955195,

and

Bt .= B, forje{0,...,88},
Bi' .= St @ B © BL, © Biy @ Bty © BL, © BLB., © B! B!,
® B};Bls ® Bj;Bls ® By B, & BisBlg © BBt

@ Bhy B3, B3 ® Biy Big Bry ® Biy By By, Bs.

See section [3.5] for further remarks on this design choice.

2.3 Keystream Generation

At the end of the state initialization, the 31-bit (initial) state of NFSR1 is
(58°7,...,5%7) and the 90-bit (initial) state of NFSR2 is (BZ*",..., BZ}"). The
first keystream bit that is used for plaintext encryption is zo57. For ¢ > 257, the
states (Sé“, ..., SE) and (Bé‘H, ce Bgl) and the output bit z; are computed
using the relations given in section Fig. [1] (see first paragraph of section
depicts the structure of LIZARD during keystream generation.

As Li1ZARD is designed to be operated in packet mode, the maximum size
of a plaintext packet encrypted under the same key/IV pair is 2'® bits and
no key/IV pair may be used more than once, i.e., for more than one packet.
Let X = (zo,...,2|x|-1) denote such a plaintext packet and let 2257, 2255 . .-
be the keystream generated for it as described before. Then the corresponding
ciphertext packet Y = (yo, . ,y‘X‘_l) can be produced via y; := x; ® 24257,
i=0,...,]|X| - 1IE| Decryption (given that the secret session key and the IV
are known) works analogously.

3 Design Considerations

In this section, we provide additional explanations w.r.t. our design, which were
omitted in section [2| for the sake of clarity. Based on several of the following
properties, we will then argue in section [d] why we believe that LIZARD resists
the currently known types of attacks against stream ciphers.

3.1 NFSRI1

As mentioned in section NFSR1 is 31 bit wide and corresponds to the NFSR
Az of the eSTREAM Phase 2 (hardware portfolio) candidate ACHTERBAHN-
128/80 [27]. We chose the NFSR A out of the set of all maximum-period NFSRs

12 Note that, though we use the terms plaintext/ciphertext packet here, LIZARD is really
a (synchronous) stream cipher. I.e., the keystream bits z257, 2258 . . . are generated in
a bitwise fashion (and independently of the plaintext/ciphertext) and, consequently,
the individual plaintext bits x; can be encrypted and then (in the form of y;) trans-
mitted as they arrive. (The same obviously holds for the decryption of the individual
ciphertext bits y;.)

used in Achterbahn due to the fact that the two NFSRs which would have offered
even slightly longer periods (namely, A;; and A;2) both use inconvenient taps
w.r.t. potential speedup measures (see Sec. for details). Moreover, we did
not choose one of the smaller maximum-period NFSRs of Achterbahn as (under
the condition that we want to keep the speedup option as decribed below) those
would have led to the situation that we would have had to use certain taps of
NFSR1 at the same time in its feedback function and in the output function. The
reason why we used the ACHTERBAHN design as a source for our NFSR1 in the
first place is twofold.

First, we wanted NFSR1 to have guaranteed period 23! — 1, as, in LIZARD,
NFSR1 replaces the maximum-length LFSR of the Grain familyH Unluckily,
apart from special cases like De Bruijn sequences, not much is known yet about
how to construct large NFSRs with maximum periodE However, due to the
restriction to packet mode (with a maximum of 2!® keystream bits per key/IV
pair), LIZARD actually does not need as large guaranteed periods as the Grain
family, which allowed us to replace the maximum-length LFSR of Grain by
a suitable maximum-length NFSR. The design document of ACHTERBAHN
provides a collection of such maximum-length NFSRs that have sufficient size to
be used in LIZARD.

The second reason for using A1g from ACHTERBAHN as our NFSR1 is its
hardware efficiency. Despite a comparatively large algebraic normal form, the
designers of ACHTERBAHN are able provide a compact hardware realization
of the feedback function consuming only 31.75 gate equivalents (GE) and having
logical depth three (see Sec. 5| for further details w.r.t. hardware complexity and
an explanation of corresponding units of measure like GE).

When operated in a self-contained manner (i.e., after phase 3 of the state
initialization), NFSR1 has a guaranteed period (for non-zero starting states) of
231 — 1. The following properties of A;9 of ACHTERBAHN (and, hence, also
of NFSR1 of LIZARD) were given in [27]: a nonlinearity of 61440, an order of
correlation immunity of 6, and a diffusion parameteIE of 61. Moreover, it is

13 Tt should be mentioned that in the design document of Grain v1 [34], it is stated
that “the LFSR guarantees a minimum period for the keystream and it also provides
balancedness in the output.” In fact, in the setting of Grain (and also L1ZARD), a large
guaranteed period of the internal state (composed of both FSRs) is necessary but
not sufficient for a large guaranteed period of the keystream, because we only know
that the period of the keystream divides the length of the corresponding internal
state cycle. The actual guaranteed keystream period of LizARD (as well as of the
Grain family) remains an open problem.

In fact, a De Bruijn sequence of length 2" can be generated with an n-bit NFSR.
Still, for simplicity, we also call our 31-bit NFSR1 with period 23! —1 mazimum-length,
in analogy to the case of LFSRs (where a period of 2" is obviously impossible to
achieve with an n-bit LFSR).

The diffusion parameter A was determined experimentally in [27] and denotes “the
minimum number of clock cycles needed in order to transform any two initial states
of the shift register A; of Hamming distance 1 into shift register states of Hamming
distance close to N;/2” (N; denotes the size of the shift register A;).

14

15

easy to see that the feedback function f; of NFSR1 is balanced and, thus (as it is
6th order correlation-immune), 6—resilientlE| Finally, the algebraic degree of f;
is 4.

3.2 NFSR2

NFSR2 is 90 bit wide and uses a modified version of g from Grain-128a [48)]
as its feedback polynomial. In contrast to NFSR1, the period of NFSR2 during
keystream generation is unknown because, due to the masking bit from NFSR1,
NFSR2 is actually a filter instead of a real NFSR (cf. corresponding remark for
the Grain family in [33]).

As described in section 2.1} fo of LIZARD squeezes the taps of g from Grain-
128a in such a way that the property of g that no tap appears more than once
is preserved in f. In consequence, several important properties of ¢ like its
balancedness, its resiliency of 4, its nonlinearity of 267403264 and its security
w.r.t. linear approximations carry over to fa (see [48] for further details regarding
the security of g of Grain-128a). The algebraic degree of f5 is 4.

3.3 Output Function a

An important question in FSR-based stream cipher design is how to share the
load of ensuring security between the driving register(s) and the output func-
tion. To compensate for the fact that the inner state of LIZARD is smaller than
that of Grain v1, we decided that the output function should have more inputs
and a larger algebraic degree instead. It builds on the construction scheme in-
troduced in [43] as part of the FLIP family of stream ciphers. More precisely,
the output function a of LIZARD can be written as the direct sum of a linear
function with seven monomials, a quadratic function with four monomials, a
triangular function with seven monomials, and another triangular function with
four monomials, where each tap of NFSR1 and NFSR2 appears at most once in
the full output function.

As a consequence, the output function of LIZARD is defined over 53 variables,
balanced, and has, according to lemmata 3-6 in [43], the following security prop-
erties: a nonlinearity of 4476506321453056 (= 251), a resiliency of 8, an algebraic
immunity of at least 7, and a fast algebraic immunity of at least 8. The algebraic
degree of a is 7.

If the content of NFSR1 at time ¢ should be known to the attacker (e.g., as part
of a guess-and-determine attack), the output function still depends on at least 43
variables and “gracefully degrades” into the direct sum of a linear function with
seven or eight (depending on the values of S§ and Si;) monomials, a quadratic
function with four or five (depending on the values of St and S%,) monomials,
and a triangular function with seven monomials, which again conforms to the
construction principle introduced in [43] and leads to the following worst-case

6 In Grain v1 as well as in Grain-128a, the feedback function of the LFSR (which is
replaced by NFSR1 in LIZARD) has resiliency 5.

security properties for that situation: a nonlinearity of 4317411672064 (~ 2%!), a
resiliency of 7, an algebraic immunity of at least 7, and a fast algebraic immunity
of at least 8.

While the choice of tap positions for state update functions is often already
restricted by the need to guarantee a certain period (e.g., as in the case of
NFSR1), the choice of tap positions for an output function is commonly less
substantiated. For example, the design documents introducing the members of
the Grain family (cf. [34], [48], [33]) mainly focus on the conceptual question
whether certain taps used in the output function should be from the NFSR or
the LFSR (and how many of each). The more concrete question of which tap
positions within each FSR are actually chosen for the output function is almost
exclusively discussed in the context of hardware acceleration or when it comes to
mitigate issues of previous versions arising from actual attacks (e.g., the attack
of Dinur and Shamir [22] on Grain-128, which lead to a change of tap positions
in the output function of Grain-128a [48]).

In the absence of canonical criteria for the selection of tap positions for Grain-
like constructions, we mainly resort to the concept of (full) positive difference
sets that was used by Goli¢ in [29] to assess the security of nonlinear filter
generators consisting of a single LFSR and a nonlinear output functionlzl As it
is not clear, however, to what extent these results apply in our case, we move
the corresponding discussion to appendix [B]

Another cryptanalytic result motivating our selection of tap positions for
the output function of LiZARD are attacks based on binary decision diagrams
(BDDs). A direct consequence of this type of attack against stream ciphers,
which was introduced by Krause in [37] and applied to Grain-128 by Stegemann
in [52], is that (roughly speaking) the distance between the smallest and the
largest tap index of a monomial should be large for as many monomials as
possible (see Sec. for further details).

3.4 Speedup Options

Our update relation for NFSR1 does not involve the five taps corresponding to
Ske, Sk, Sk, Sk, Sk in the generation of SiF!. Analogously, BLS' of NFSR2 is
computed without the involvement of B, By, BL;, Bis, Bty. These ten taps are
also not used in the output function of the cipher, which allows for a speedup
of the keystream generation (up to a factor of 6) simply by multiplying the
(comparatively cheap) hardware for the two feedback functions and the output
function. Grain-128a uses the same idea to allow for a speedup of up to a factor
of 32 (which is obviously not possible here as NFSR1 has only 31 register cells in
total).

3.5 State Initialization Algorithm

As pointed out in section the state initialization algorithm of LIZARD rep-
resents an instantiation of the F'P(1)-mode introduced in [32], which, in our

7 A similar approach was taken, e.g., for the NFSR-based stream cipher Espresso [23].

case, provides 80-bit security against generic time-memory-data (TMD) tradeoff
attacks aiming at key recovery (cf. Sec. [1.2).

In a nutshell, the generic F'P(1)-mode for stream ciphers can be described
as follows:

— Choose an appropriatﬁ keystream generator (KSG) of inner state length n
and an appropriate packet length R.
— Define the state initialization algorithm for packet ¢ as follows:
(1) Loading: Given the symmetric session key k € {0,1}" and the packet
initial value IV? € {0,1}", load IV* & k into the inner state registers of
the KSG, yielding the inner state g} ,, = IV’ & k.
(2) Mixing: Run an appropriate KSG-based mixing algorithnﬁ on qlo .4
yielding the inner state ¢
(3) Hardening: XOR k bitwise to this inner state ¢’ ,,,, yielding the initial
state qz?nit = aniwed @ k. .
— Starting with the initial state ¢;,;,, the keystream for packet 7 is generated
by the KSG in the traditional way.

The state initialization algorithm of L1ZARD as described in section [2.2] im-
plements the above scheme with some minor adaptions, which we will describe in
the following. Note that none of these modifications reduces the provable 80-bit
security against TMD tradeoff attacks provided by the F'P(1)-mode.

When compared to the generic scheme, the first obvious difference of L1ZARD
is that the IV length is now smaller than the key length. Even in the context of
packet mode, we currently do not see the need for IVs larger than 64 bit, hence,
this design choice was made to reduce the hardware costs of an implementation@
Observe that phase 1 of the state initialization of LiZARD (cf. Sec. could
equivalently be written as

B . JE @1V, for j € {0,...,63},
J K;®0, for j € {64,...,89},

K190 © 0, for i € {0,...,28},
SY = K191, for i = 29,
1, for i = 30,

18 «Appropriate” means that the keystream generator satisfies standard requirements
w.r.t. design goals like security and hardware efficiency. %n-security against TMD
tradeoff attacks is then added by the FP(1)-mode.

19 Such a mixing algorithm can, e.g., simply consist of repeatedly stepping the KSG in
keystream generation mode without producing output (cf. Trivium [I7]) or involve
more sophisticated measures like generating a piece of internal keystream that is
not output but instead loaded in parallel to the inner state registers of the KSG
as the initial state based on which the actual keystream is then generated (cf. the
Eo-cipher of the Bluetooth standard [51]).

20 Note that Grain v1 also uses 64-bit IVs. For extreme situations, where more than
264 packets need to be encrypted, L1zARD should be operated in a setting that allows
the use of session keys.

which (ignoring S9, for now, see below) can be interpreted as the loading phase
of the generic F'P(1)-mode under the restriction that the rightmost 56 bits of
the 120-bit IV (in the generic scheme) are fixed to (0,...,0,1). In the random
oracle model that was used to prove the %n—security of the FP(1)-mode against
TMD tradeoff attacks aiming at key recovery (cf. [32] and the citations therein),
such a restriction of the choice of IVs in fact means a limitation of an attacker’s
capabilities. Hence, the security claims for the generic F'P(1)-mode still hold for
Li1zARD (cf. Sec. . The reason for setting Sgg = Kq19 @ 1 is to avoid the
“sliding property” of Grain vl and Grain-128 that was pointed out in [20] (see
Sec. for further details).

Another difference compared to the generic scheme is that in LIiZARD, the
size of the inner state is one bit larger than the size of the key. This extension by
one bit is necessary because of the Grain-like, FSR-based structure of LIZARD.
More precisely, adding a 120-bit key to a 120-bit inner state in phase 3 could
result in a situation, where both FSRs get stuck in the all-zero state, leading to
an all-zero keystream for the corresponding packet. Extending the inner state to
121 bit and setting S32° := 1 prevents this. Again, in the context of the security
proof for the FP(1)-mode, a TMD tradeoff attack on LizARD (with 120-bit keys
and a 121-bit inner state) will have at least the same complexity as an attack
on the generic scheme with 120-bit keys and a 120-bit inner state.

The third notable difference between the generic F'P(1)-mode and the state
initialization of L1ZARD is the additional phase 4 (cf. Sec. in LiZARD. The
purpose of this phase is twofold. First, without it, due to setting S32% := 1 in
phase 3, one bit of the inner state of NFSR1 would be known to an attacker
during the first 31 steps of keystream generation. Though we do not consider
this an immediate threat (remember that the output function of LiZARD takes
53 inner state bits as input), it is nonetheless an undesirable property that we
feel should be avoided. The second motivation behind phase 4 (and, in fact, also
the reason for stepping the whole KSG in phase 4 instead of only stepping NFSR1,
which would have been sufficient to counter the first problem) is to avoid certain
related key/IV properties, which will be discussed in detail as part of section

E8

4 Cryptanalysis

Beyond question, the essential feature of a cipher is its security. In particular, new
schemes need to resist those attacks which weakened or even broke other ciphers
in the past. The term resist here refers to a certain security level targeted by the
designers, where the common approach is to require that no attack with a com-
plexity lower than that of exhaustive key search exists@ For L1zARD, we deviate
from this one-security-level-fits-it-all approach to allow for a hardware efficient

21 B.g., for Grain v1, the authors state: “The key size is 80 bits and the IV size is spec-
ified to be 64 bits. The cipher is designed such that no attack faster than exhaustive
key search should be possible, hence the best attack should require a computational
complexity not significantly lower than 2507 [34].

implementation in low-cost scenarios, where certain types of attack might be of
lesser importance than, e.g., strictly limiting factors like energy consumption.
More precisely, LiZARD offers 80-bit security against key recovery and 60-bit
security against distinguishing (both via TMD tradoff attacks, cf. Sec. . Due
to the key length of 120 bit, the time complexity of exhaustive key search is
even significantly higher than that of key recovery via TMD tradeoff attack (cf.
Sec. .

Note that LIZARD is only one of many cryptographic schemes that devi-
ate from the design paradigm key length = security level. Most prominently, in
asymmetric cryptography, key sizes significantly larger than the claimed security
level are generally accepted. A well-known example from the field of symmetric
cryptography is the lightweight authentication protocol by Hopper and Blum
[35] (commonly known as HB protocol) with its numerous variants (e.g., the
HB™ protocol of Juels and Weis [36]), some of which need key sizes of several
hundreds of bits to be operated securely (see [4] for further details).

Trading some security against distinguishing attacks in favor of hardware
efficiency seems a plausible option to us as there are many practical scenar-
ios where an attacker will know anyhow that he is dealing with an encrypted
data stream. Moreover, the fact that there is a distinguishing attack does not
mean that there are necessarily other, more practically relevant attacks of the
same complexity as well. Finally, we would like to point out that for prominent
lightweight block ciphers like PRESENT [I4] and KATANG4 [19], which both
have 80-bit key size and 64-bit block size, a complete code book can be built
with complexity lower than 289 without considering the ciphers broken@ In the
same spirit, we consider a TMD tradeoff-based distinguishing attack of time,
memory and data complexity 260 against LIZARD acceptable for many use cases.

In the following subsections, we will argue for several types of attacks against
stream ciphers (and the Grain family in particular) why we believe that LIZARD
will resist them.

4.1 Exhaustive Key Search

Based on experiment@ using the computer algebra system Magma, the number
of possible initial states (under an arbitrarily fixed IV) after phase 4 of the
state initialization is expected to be around 2?34, Consequently, an attacker
who knows a (sufficiently long) piece of keystream of some packet will need at
most around 21934 key guesses to find the corresponding initial state, which
then allows to generate the complete keystream of this packet. Note that in
Trivium and all members of the Grain family, for an arbitrarily fixed IV, the
state initialization realizes an injective mapping of the key space to the set of

22 In [19], also for KATAN32, which has 80-bit key size and 32-bit block size, an 80-bit
security level is claimed.

23 In our experiments, we assume that phase 2 of the state initialization of
LizARD realizes a random, bijective mapping of (Bg, ...,B%, 83, ..., Sgo) to
(B, .., B, S, .., S).

initial states. In our case, this property is lost due to the second key addition
and setting S32° := 1 in phase 3 of the state initialization. Still, around 2119-34
possible initial states for an arbitrarily fixed IV seems more than enough@
Moreover, only if the actual key was found by the attacker (and not just one
that produces the same initial state for the given IV), he will be able to decrypt
other packets as well.

In [20], an attack on Grain vl and Grain-128 (but not Grain-128a) was
introduced that allowed to reduce the cost of exhaustive key search by a factor
of two by making use of what the authors call the “sliding property” of those
ciphers. In subsection 4.8 we will explain how this sliding property was avoided
for LIZARD.

4.2 Time-Memory-Data Tradeoff Attacks

The vulnerability against TMD tradeoff attacks like those of Babbage [6] and
Biryukov and Shamir [I3] represents an inherent weakness of existing practical
stream ciphers. This yields the well-known rule that for achieving [-bit security
by a stream cipher (in the standard, non F'P(1)-type operation mode), one has to
choose an inner state length of at least 2[for the underlying keystream generator.
As a consequence, modern practical stream ciphers have comparatively large
inner state lengths (e.g., 288 bit for Trivium [I7] or 160 bit for Grain v1 [34]).

Keep in mind that, e.g., for Trivium and all members of the Grain family,
not only the state update function during keystream generation but also the
state initialization algorithm, which computes the initial state from a key/IV
pair, is efficiently invertible. As a consequence, if an attacker manages to recover
any inner state during keystream generation, he will also be able to recover the
corresponding initial state, and, by inverting the state initialization algorithm,
the underlying secret key. While computing the initial state from any of the
later inner states is also possible for LIZARD, the secret key cannot be computed
efficiently from the initial Stateﬂ This is due to the fact that LIZARD represents
an instantiation of the FP(1)-mode as described in section

As a consequence, for LIZARD, we have to treat the case of TMD tradoff
attacks aiming at key recovery and the case of TMD tradeoff attacks aiming at
recovering the initial state of some packet separately. In [32] (building on [38]), it
was shown that by using the F'P(1)-mode, one can reach %n—bit security against
TMD tradeoff attacks aiming at key recovery for a corresponding keystream

24 Remember that LiZARD is supposed to be a power-saving alternative to Grain v1,
whose key space has only size 2%°.

Note that even if the state initialization algorithm of conventional stream ciphers
like Trivium and Grain (i.e., keystream generators that, after loading key and IV
at time t = 0, operate without any further external input) would realize a one-way
function, one could still launch a TMD tradoff attack in order to recover the inner
state at t = 0, from which the key could then be derived. This attack would require
(9(2n/ %) sufficiently long keystream pieces generated under different IVs, where n
denotes the inner state length of the keystream generator. Due to the second key
addition in phase 3, this TMD tradoff attack variant will not work for L1ZARD.

25

generator with inner state length n. In the case of LizZARD, this means 80-bit
security against key recovery as argued in section

Using the classical TMD tradoff attack, an attacker could also try to recover
the initial state of some keystream packet generated by LiZARD. We will briefly
describe the two extreme cases of such an attack, both of which have time,
memory and data complexity (at least) 26°. In the first variant, an attacker
knows 121 keystream bits of each of approx. 260 keystream packets. A TMD
tradoff attack will then allow him to learn one of the corresponding 2° initial
states of these keystream packets, based on which he will be able to generate
the complete keystream of this packet. Note, however, that the attacker has no
control about which one of these 2°° keystream packets he will eventually be able
to generate completely. Moreover, the attacker must know at least 121 bits of
the respective keystream packet beforehand, i.e., he will not be able to generate
a keystream packet that was not part of his TMD tradeoff attack. In the second
extreme case, the attacker tries to keep the set of keystream packets used in his
TMD tradeoff attack as small as possible. This is achieved if he knows 121 + 217
(i.e., little more than half the maximum packet size of L1ZARD) keystream bits of
each of approx. 243 keystream packets. Then, a TMD tradeoff attack (still with
overall time, memory and data complexity 26°) will allow him to learn one of
the corresponding 23 initial states of these keystream packets, based on which
he will be able to generate the complete keystream of this packet. Again, the
attacker has no control about which one of these 243 keystream packets he will
eventually be able to generate completely and, to launch his attack, he must
know more than 2'7 keystream bits of each of those 2%3 packets.

As pointed out before, the security against TMD tradeoff-based distinguish-
ing attacks is not increased by implementing the F P(l)—modem Hence, for

LizARD, there is a distinguishing attack with time, memory and data complexity
260,

4.3 Correlation Attacks, Linear Approximations

In [34], the designers of Grain vl state: “Due to the statistical properties of
maximum-length LFSR sequences, the bits in the LFSR are (almost) exactly
balanced. This may not be the case for a NFSR when it is driven autonomously.
However, as the feedback g(z) is xored with an LFSR-state, the bits in the
NFSR are balanced. Moreover, recall that g(z) is a balanced function. Therefore,
the bits in the NFSR may be assumed to be uncorrelated to the LFSR bits.”
The same, in fact, applies to LIZARD, where (the maximum-length FSR) NFSR1
corresponds to Grain’s LFSR, NFSR2 corresponds to Grain’s NFSR and fo(x)
corresponds to g(z) (cf. Sec. and Sec. B.1}3.2).

In [43], Méaux et al. point out the importance of “good balancedness, non-
linearity and resiliency properties” of the filtering function in order to withstand

26 See [32] and the papers cited therein for further details w.r.t. security of the generic
FP(1)-mode against TMD tradeoff attacks aiming at distinguishing or key recovery.

correlation attacks [50] and fast correlation attacks [44]. As explained in sec-
tion [3:3] L1ZARD features a rather heavy output function to compensate for the
smaller inner state compared to the original Grain family. It is defined over
53 variables and has nonlinearity 4476506321453056, whereas the output func-
tion of Grain v1 is defined over 12 variables and has nonlinearity 1536 and the
output function of Grain-128a is defined over 17 variables and has nonlinearity
61440. The resiliency of LiZARD’s output function is 8 compared to 7 for that
of Grain v1 and Grain-128a, respectivelyﬂ

In [12], Berbain, Gilbert and Maximov present an attack on Grain v0 that
combines linear approximations of the NFSR’s feedback function and of the
output function in order to recover the initial state of the LESR given a sufficient
amount of keystream bits. Once the initial state of the LFSR is known, each
keystream bit can be expressed as a linear function in one or two (depending
on the LFSR state) bits of the internal bitstream of the NFSR, which allows to
efficiently recover the initial state of the NFSR using “a technique which consists
of building chains of keystream bits” [12]. Two variants (differing in the LFSR
derivation method) of this key recovery attackF_.g| against Grain v0 are described
n [12], the best of which has time complexity 2*3, memory complexity 242 and
data (i.e., keystream) complexity 238,

As possible countermeasures, Berbain, Gilbert and Maximov proposed the
following modifications [12]: “Introduce several additional masking variables
from the NFSR in the keystream bit computation”, “replace g by a 2-resilient
function”, “modify the filtering function h in order to make it more difficult to
approximate” and “modify the function g and h to increase the number of in-
puts”. The Grain designers revised their eSTREAM submission accordingly (in
particular, seven bits from the NFSR were added linearly to the output func-
tion) and suggested Grain v1 [34], for which the authors of [12] acknowledge
that “[t]his novel version of Grain appears to be much stronger and is immune
against the statistical attacks presented in this paper”.

For Grain-128a, the feedback function g of the NFSR was constructed with
the above attack in mind. The designers state: “The best linear approximation
of g is of considerable interest, and for it to contain many terms, we need the
resiliency of the function g to be high. We also need a high nonlinearity in

27 The resiliency of the output functions of Grain v1 [34] and Crain-128a [48] is not
specified explicitly in the respective papers. However, these values can be computed
rather easily: For Grain v1, the designers state that the function h, which is part of
the full output function, is balanced and correlation immune of the first order. Thus,
h is 1-resilient (but not 2-resilient as can be checked easily). By adding seven linear
monomials, whose tap positions are disjoint from those used in h, the resiliency of the
full output function of Grain vl increases to 7. (This can be shown using lemmata
3 and 4 from [43].) In Grain-128a, the function h is unbalanced and, hence, has
resiliency —1 according to Definition 5 in [43]. By adding eight linear monomials,
whose tap positions are disjoint from those used in h, the resiliency of the full output
function of Grain-128a increases to 7.

Remember that for the original Grain family, initial state recovery and key recovery
are equivalent due to the efficiently invertible state initialization algorithm.

28

order to obtain a small bias.” As a consequence, g was chosen such that it has
nonlinearity 267403264 and resiliency 4.

As explained in section the feedback function fo of NFSR2 in LIZARD
squeezes the taps of g of Grain-128a in a way that preserves its balancedness,
resiliency and nonlinearity. Moreover, in accordance with the above suggestions
from [I2] and the construction principle underlying g of Grain-128a (see previ-
ous paragraph), the output function of LIZARD has more than three times as
many inputs, a much higher nonlinearity and a higher resiliency than those of
Grain v1 and Grain-128a (cf. values at the beginning of this subsection) in order
to strengthen it against linear approximations.

Note that even if the initial state of NFSR1 of LiZARD (corresponding to the
LFSR in the original Grain family) could be recovered by means of linear ap-
proximation, the subsequent NFSR initial state recovery procedure for Grain v0
described in section 5 of [12] would not work against NFSR2 of LizARD. This is
due to the fact that the output function of LizARD will still contain at least ten
nonlinear monomials (of degrees 2,...,7) over bits from NFSR2 if the content
of NFSR1 should be known (cf. Sec. , making the aforementioned chaining
technique from [12] not applicable any more.

4.4 Algebraic Attacks

As pointed out previously, unlike for the members of the original Grain family,
the state initialization algorithm of L1ZARD is not efficiently invertible. Hence,
we would actually have to differentiate here between algebraic attacks aiming
at key recovery and algebraic attacks trying to recover the initial state of some
keystream packet. However, an attempt to express the observed keystream bits
as functions of the 120 key bits and then solve the corresponding system of
equations would require to include all state transitions down to ¢ = 0. Given
that both FSRs are nonlinear and considering the high algebraic degree of the
output function (which is used as part of the state update in phase 2 of the
state initialization), this is clearly more complex than expressing the observed
keystream bits as functions of the 121 bits of the initial state at ¢ = 257 and then
solving the corresponding system of equations. Consequently, for the remainder
of this subsection, we will focus on algebraic attacks that try to recover the
initial state of some keystream packet generated by LIZARD.

First of all, note that, to the best of our knowledge, no successful (i.e., having
complexity lower than 289 (Grain v1) or 212® (Grain-128a)) algebraic attacks that
can recover arbitrary initial states for Grain v1 or Grain-128a have been reported
so far’| Due to the smaller inner state of L1zARD, the number of variables of the

2% The currently best result seems to be an algebraic attack by Berbain, Gilbert and
Joux against a modified version of Grain-128, which requires 2''% computations and
239 keystream bits [TT]. They point out, however, that “[t]his attack is not applicable
to the original Grain-128”. Moreover, note that the required amount of keystream
bits (belonging to a single initial state) would not be available for LizARD due to
the maximum packet size of 2'® bits.

corresponding system of equations in such an attack would now in fact be lower.
This, however, is compensated for by the larger degree of the output function,
which is now 7 as compared to 3 for Grain vl and Grain-128a. As pointed
out in section L1ZARD’s output function builds on the construction scheme
introduced in [43] and has algebraic immunity of at least 7 and a fast algebraic
immunity of at least 8. In addition, now both FSRs are nonlinear and NFSR1,
which corresponds to the LFSR of the original Grain-family, has algebraic degree
4. Based on these properties, we expect that algebraic attacks against LiZARD
will not be efficient (i.e., will not have complexity lower than 280, which is that
of TMD tradeoff-based key recovery as described in subsection .

4.5 Guess-and-determine Attacks

The output function of LIZARD depends on 53 variables, compared to 12 in
Grain v1 and 17 in Grain-128a. As pointed out in in section [3.3] when guessing
the shorter NFSR1, the output function still depends on at last 53 variables and
has the following worst-case security properties: nonlinearity 4317411672064,
resiliency 7, algebraic immunity at least 7, and fast algebraic immunity at least
8@ Thus an algebraic attack on NFSR2 similar to the one in [11] will have large
enough complexity.

Note that guessing the content of NFSR1 at ¢ = 0 corresponds to guessing the
bits Kgg, ..., K119 of the secret key. An attack that guesses the content of NFSR1
at t = 257 (i.e., the respective part of the initial state) in order to recover to full
initial state will not automatically reveal the secret key because of the use of
the F'P(1)-mode, due to which the state initialization of LIZARD (in constrast
to the original Grain family) is not efficiently invertible@

4.6 BDD-based Attacks

In [37], Krause introduced the idea of using binary decision diagrams (BDDs)
to attack LFSR-based stream ciphers like A5/1 of the GSM standard or Ej
of Bluetooth [5I]. Stegemann later showed in [52], how this approach can be
transferred to NFSR-based stream ciphers like Trivum and Grain. In contrast
to TMD tradoff attacks or correlation attacks, which potentially require a lot
of keystream or ciphertext data, BDD attacks are short-keystream attacks in
the sense that only the information-theoretic minimum of keystream bits (i.e.,
often only few more than n bits of keystream for a keystream generator of inner

30 For comparison, the full output function of Grain v1 (Grain-128a) has nonlinearity
1536 (61440) and algebraic degree 3 (3).

31 More precisely, when considered individually, phase 2 and phase 4 of the state
initialization are obviously efficiently invertible. In particular, the knowledge of
(5357, A §37) (i.e., the NFSR1-related part of the initial state) is already sufficient
to efficiently recover (5329, ce §§9) (i-e., the content of NFSR1 after the second key
addition in phase 3). However, when treated as a whole, phases 1-3 (i.e., the state
transition from ¢ = 0 to ¢t = 129) cannot be inverted efficiently.

state length n) is required to recover the corresponding initial state. As pointed
out in subsection [£.2] for Trivium and all members of the Grain family, an
attack that recovers the initial state is equivalent to an attack that recovers
the underlying secret key as the state initialization of these stream ciphers is
efficiently invertible. For LiZARD, this is not the case due to the use of the
F P(1)-mode. Hence, for each keystream packet produced by LIZARD, a separate
BDD attack would be required to recover the corresponding initial state, which
would then allow to generate the remaining, unknown keystream bits of that
packet.

While we are currently not aware of any BDD attack faster than exhaustive
key search against any member of the Grain family, the major design consequence
of the BDD-related cryptanalytic results that Stegemann obtained for Grain-like
stream ciphers is that the maximum number of what he calls active monomials of
the feedback functions and the output function should be as large as possible (see
[52] for further details). In the setting of Stegemann, for Grain v1, the maximum
number of active monomials would be 0 for the LFSR, 6 for the NFSR and 5 for
the output function. For Grain-128a, the maximum number of active monomials
would be 0 for the LFSR, 3 for the NFSR and 3 for the output function. In
comparison, for LIZARD, the maximum number of active monomials would be
21 for NFSR1, 3 for NFSR2 and 10 for the output function a. Consequently, we
expect that, despite the smaller inner state, LIZARD will also perform sufficiently
well against BDD attacks.

4.7 Chosen-IV Attacks (Conditional Differentials, Cube
Distinguishers)

In [41], Lehmann and Meier studied the security of Grain-128a against dynamic
cube attacks and differential attacks. They came to the following conclusion: “To
analyse the security of the cipher, we study the monomial structure and use high
order differential attacks on both the new and old versions. The comparison of
symbolic expressions suggests that Grain-128a is immune against dynamic cube
attacks. Additionally, we find that it is also immune against differential attacks
as the best attack we could find results in a bias at round 189 out of 256.”
LizARD has 128 rounds in phase 2 of the state initialization, where the Grain-
like mixing is performed as described in section and further explained in
section On top of that, the key is added again in phase 3 of the state
initialization and, finally, the keystream generator is stepped 128 additional times
(now in keystream generation mode) before the first keystream bit is output.
Note that the inner state of LIZARD (121 bit) is smaller than that of Grain v1
(160 bit) and significantly smaller than that of Grain-128a (256 bit), whereas
the output function is more dense. It depends on 53 variables as compared to
12 in Grain v1 and 17 in Grain-128alZ The combination of a smaller state and
a more dense output function causes a faster diffusion of differentials and of the

32 The output function of LIZARD also has more nonlinear monomials (13) than
Grain v1 (8) and Grain-128a (5). Moreover, now both FSRs are nonlinear.

monomial structure for LIZARD. Therefore, we expect that L1ZARD is at least as
resistant against differential attacks and dynamic cube attacks as Grain v1 and
Grain-128a, which seem to be already sufficiently secure in that respect.

4.8 Related Key(/IV) Attacks, Slide Attacks

In [39], Kiigiik first pointed out a sliding property of the state initialization of
Grain v1, which was later formally published by De Canniere, Kiiciik and Preneel
in [20] as: “For a fraction of 272" of pairs (K, IV), there exists a related pair
(K*,IV*) which produces an identical but n-bit shifted key stream.” In the
same paper, the authors describe how this property can be exploited to speed
up exhaustive key search for Grain vl (and also for Grain-128) by a factor of
twol”%] As a reaction, the designers of Grain-128a changed the 22-bit constant
(1,...,1) that was used in state initialization of Grain-128 to (1,...,1,0).

For LizZARD, a speed-up of exhaustive key search by a factor of two would
actually be tolerable due to the key length of 120 bit together with the fact that
we aim for 80-bit security against key recovery. Still, we consider such a sliding
property undesirable as it might pave the way for other attacks. To avoid it, we
set 589 := K119®1 in phase 1 of the state initialization (cf. Sec. . As a result,
for a key/IV pair (K,IV), a related key/IV pair (K*, IV*) in the sense of [20]
would have to satisfy K{;5 = K119 1. This, however, would then lead to a bad
(i.e., inverted) key bit being added in phase 3 of the state initialization, where
Kis = Kj19 must hold for the attack to work. Note that, without inverting
K119 in phase 1 of the state initialization, LIZARD would in fact suffer from a
variant of the sliding property, despite the second key addition phase 3.

Another undesirable related key /IV property, which would arise out of using
the F'P(1)-mode with a Grain-like keystream generator, is avoided by phase 4
of the state initialization of LizARD. More precisely, given some key/IV pair
(K,IV) together with the corresponding keystream packet, an attacker might
know (or suspect) for some other keystream packet that it was generated under
the related key/IV pair (K', IV"), where K} = Ko®1, IV = IVa®1, K] = K for
0<i<79,i#2 and IV =1V, for 0 <i < 63, 7 # 2. Without phase 4 (i.e., if
2129 instead of zo57 was the first keystream bit used for plaintext encryption), the
attacker could immediately conclude that the first 11 keystream bits generated
for (K',IV’) are identical to the first 11 keystream bits z199, .. ., 2139 generated
for (K, IV). This is due to the fact that if K; ®IV; = K] &IV fori =0,...,63
and K; = K for i = 64,...,119, then the corresponding inner states of LIZARD
will be identical after phase 2 of the state initialization. In the above example,
where key bit Ky and IV bit IV; are flipped for K} and I'Vy, respectively, this
would lead to identical inner states after the second key addition at ¢ = 129
except the bit B3? of NFSR2, which would be flipped now as well. However, it
takes ten further steps of the keystream generator for this information to reach

33 In addition, they also suggest a related-key slide attack, for which they note: “As is
the case for all related key attacks, the simple attack just described is admittedly
based on a rather strong supposition.” [20]

a tap of the output function. While the described scenario might seem rather
far-fetched, we still wanted to avoid this kind of nonrandom behavior in order
to thwart other attacks that might make us of it. Moreover, as pointed out in

section phase 4 also became necessary due to setting S32° := 1 in phase 3.

4.9 IV Collisions

A consequence of setting Si3® := 1 in phase 3 of the state initialization of

LizARD (cf. Sec. is that what we call IV collisions can occur, i.e., two
key/IV pairs (K,IV) and (K, IV') with IV # IV’ can map to the same initial
state and, hence, result in identical keystream packets@ The implications of
this are twofold.

First, an attacker could try to exploit this fact to launch a distinguish-
ing attack. More precisely, if the corresponding oracle answers with identical,
sufficiently long keystream packets for two different key/IV pairs (K, IV) and
(K,IV"), where IV # IV’ then the attacker can distinguish the pseudo-random
from the random the scenario. However, as proved in appendix [C} the number
of such oracle queries necessary for finding a collision with probability > 1/2
exceeds 290, i.e., the complexity of this distinguishing attack is not lower than
that of the generic TMD tradeoff distinguishing attack mentioned in section[4.2]

Second, an attacker might get hold of a (partial) keystream packet x gen-
erated for the key/IV pair (K,IV) and a partial keystream packet y generated
for (K,IV’), where IV # IV’ If |z| > |y| > 121 and y fully coincides with the
corresponding part of x, then the attacker can conclude that, with high proba-
bility, both (partial) keystream packets x and y where generated based on the
same initial state. Consequently, he would now know a larger piece (i.e.,) of
the keystream packet for (K, IV’). However, the expected number of (partial)
keystream packets needed for finding such a collision is larger than 250 and the
attacker would have no choice w.r.t. for which one of these packets he would
obtain further keystream bits. Overall, this scenario has the same complexity as
the TMD tradoff-based initial state recovery attack described in section [£.2] and
seems even less realistic.

4.10 Weak Key/IV Pairs

In [54], Zhang and Wang introduced the notion of weak key/IV pairs for the
Grain family of stream ciphers. They use such pairs, which lead to an all-zero
initial state of the LFSR, to mount distinguishing attacks and initial state recov-
ery attacksﬁ In [48], the designers of Grain-128a point out: “We note that the
IV is normally assumed to be public, and that the probability of using a weak
key/IV pair is 27128, Any attacker guessing this to happen and then launching
a rather expensive attack, is much better off just guessing a key.” For Grain

31 For members of the original Grain family, such IV collisions are not possible.
3% Keep in mind that, for all members of the original Grain family, initial state recovery
is equivalent to key recovery as pointed out in section @

vl, which has 254 weak key/IV pairs among a total of 244 key/IV pairs, the
corresponding probability would be 278, leading to a similar conclusion.

In analogy to the definition of Zhang and Wang, weak key/IV pairs for
Li1zARD would lead to an all-zero initial state of NFSR1. This, however, is impos-
sible due to setting S33° := 1 in phase 3 of the state initialization (cf. Sec.
togther with the fact that, after phase 3, the only input to the maximum-period
FSR NFSR1 comes from its own feedback function.

Note that, without setting Si2? := 1 in phase 3 of the state initialization,
there would have been about 21%% weak key/IV pairs out of 2184 total key/IV
pairs for L1ZARD, leading to a probability of using a weak key/IV of 273!, Con-
sequently, without setting S32° := 1 in phase 3 of the state initialization, attacks
based on weak key/IV pairs might have posed a real threat to LIZARD.

5 Hardware Results

In 2004, the eSTREAM project was started in order to identify new stream
ciphers for two application profiles: “Profile 1 contains stream ciphers more
suitable for software applications with high throughput requirements. Profile 2
stream ciphers are particularly suitable for hardware applications with restricted
resources such as limited storage, gate count, or power consumption.” [45]

The competition ended in 2008 and, for profile 2 (hardware), the resulting
eSTREAM portfolio contained four ciphers, one of which was removed shortly
after due to new cryptanalytic results. After the latest review in 2012 [7], the
remaining three ciphers for profile 2 are still part of the portfolio: Grain vl1,
MICKEY 2.0 and Trivium.

In this section, we present the hardware results for our new stream cipher
LizARD and compare them to those of Grain v1. The reasons for focusing on
Grain v1 are twofold. First, it is a natural choice for comparison due to the close
structural relation between LIZARD and Grain v1 as explained in sections [2[and
Bl Second, and more importantly, Grain v1 turned out to be the most hardware
efficient member of the eSTREAM portfolio and, hence, can be considered as a
benchmark for new designsm

When comparing the hardware performance of ciphers, the first apparent
task is to specify which hardware is actually targeted. In the spirit of the afore-
mentioned requirements for profile 2 of the eESTREAM contest and in line
with corresponding papers like [25] and [30], we focus on application-specific
integrated circuits (ASICs) with standard CMOS librariesﬂ ASICs are an es-
sential component in radio frequency identification (RFID) technology, which,

36 This conclusion can be drawn from tables 1-4 and figures 1-3 in [30], where Good
and Benaissa evaluate the hardware performance of the phase-3, profile-2 candidates
of the eSTREAM competition. Note that, for the sake of comparability, we are
referring to the standard, non-parallelized implementations of the ciphers, which
(after initialization) produce one keystream bit per clock cycle.

37 The testing framework for eSSTREAM profile-2 candidates [10] additionally considers
low-cost FPGAs and a corresponding performance evaluation can be found in, e.g.,
[31] and [16]. However, as ASICs are certainly more common in ultra-constrained,

as Feldhofer puts it, “allows giving a digital identity to nearly every object in
the world” [25]. While especially low-cost RFID tags may be subject to severe
resource limits (see, e.g., [4]), in many cases, they still need to provide security
features like confidentiality or privacy. The two main restrictions imposed on
the design of cryptographic protocols for RFID tags are the circuit size and the
power budget. The circuit size strongly influences the manufacturing costs of an
RFID tag (see [] for details) and is commonly specified in gate eqivalents (GE),
where one GE corresponds to the area of a two-input drive-strength-one NAND
gate. The power consumption is crucial as low-cost RFID tags are usually pas-
sively powered (i.e., via an electromagnetic field radiated by the reader). Given
that the transmission power of an RFID reader is limited by factors like legal
regulations, the more power a tag consumes, the smaller the maximum reading
distance becomes. As done by Feldhofer in [25] for his comparison of low-power
implementations of Trivium and Grain, we will focus on these two values, cell
area and power consumption, in our comparison of LIZARD and Grain v1. In ad-
dition, we provide the delaﬂ of the respective circuits and the number of clock
cycles required to perform the state initialization in Tab. [1} Like Feldhofer, we
will not provide compound metrics (e.g., the power-area-time product given in
[30]) but leave the computation (as appropriate for the respective application
scenario) to the reader.

It is important to note that while the area requirement of cipher designs
can be compared over different standard cell libraries by using the measure gate
equivalents, “[pJower cannot be scaled reliably between different processes and
libraries” [30]. Consequently, it is inevitable to use the same design flow for all
implementations that are to be compared. As done by Good and Benaissa in
[31] and [30] in their hardware comparison of eSTREAM candidates, we use
Cadence tools for synthesis and ModelSim for generating switching activity.
While Feldhofer uses 0.35 ym and Good and Benaissa use 0.13 pm CMOS pro-
cess technology in the cited papers, we employ the UMCL18G212T3 (0.18 pm,

low-cost environments (targeted by LIZARD), we focus on this technology and leave
an FPGA-related evaluation of our new cipher as future work.

The critical path delay of the circuit determines the maximum clock frequency and,
hence, the maximum achievable throughput. However, for low-cost RFIDs, 100 kHz
is the commonly assumed clock frequency (see, e.g., [4], [25], [30]), which would
allow a delay of up to 107 ps. For comparison, the delay of our implementation of
LIZARD is 2474 ps, which corresponds to a maximum clock frequency of about 404
MHz. Also note that, though targeting low-cost devices, LIZARD can still be used in
scenarios where throughputs larger than 404 Mbit/s are required, simply by using
techniques like pipelining (as done for the stream cipher Espresso in [23]) in order to
reduce the delay or by implementing a parallelized version of Li1ZARD as described in
Sec. [3:4] Moreover, it is possible to instruct the synthesis tool to optimize for higher
clock speeds, which will lead to a circuit with smaller delay but, inter alia, higher
area requirements. However, to keep the comparison between LIZARD and Grain vl
as concise as possible, we only give the delays for the design flow targeting 100 kHz
clocks as these values already show sufficiently well that LIZARD is also suitable for
higher speed applications.

38

1.8 V) standard cell library that was also used by Poschmann in [47] for imple-
menting the block cipher PRESENTE Our results (see Tab. [1]) are obtained
via Encounter RTL Compiler RC12.22 and are based on the netlist generated
through the command synthesize -to_placed -effort high. Like Feldhofer
in [25], we target a 100 kHz clock and employ clock gating. The switching ac-
tivity for power estimation (recorded with ModelSim SE-64 6.5b and fed back
to RTL compiler) covers the generation of 10 kbit of keystream (as done in [31])
at a clock rate of 100 kHz and includes the state initialization of the compared
cipher modules. To improve the accuracy of the results, switching activity for 25
different random key/IV combinations is considered and the arithmetic mean of
the respective power estimations is computed@

As pointed out above, we had to implement not only our new cipher LIZARD
but also Grain vl in order to obtain a meaningful comparison of power con-
sumptions on the basis of the same design flow. Moreover, as LIZARD targets
low-power environments, we decided to serialize phases 1 (i.e., the initial key and
IV loading) and 3 (i.e., the second key addition) of its state initialization (see
appendix for details). This allows to take full advantage of the FSR-based
structure of the keystream generator by using simple D flip-flops (without addi-
tional costly features like scan, set/reset or enable functionality) for storing the
cipher’s inner state. Naturally, for reasons of fairness, we considered the positive
effects of serializing the key/IV loading for Grain v1 as well. The corresponding
values can be found in Tab. [I] along with those for the straightforward imple-
mentation of Grain v1l. We do not suggest to use non-serialized key/IV loading
for LiZARD and, hence, Tab. [1| only contains the hardware metrics for LIZARD
with phases 1 and 3 implemented as described in appendix [D.1}|*!]

Serializing parts of the state initialization comes at a price, however, as it
increases latency. In the case of L1ZARD, 240 additional clock cycles are required
for computing the initial state, based on which, subsequently, one keystream bit
per clock cycle is produced. We consider this increase tolerable considering that,
even with serialized key/IV loading, the state initialization (including module
reset) of LIZARD takes only 499 clock cycles, as compared to, e.g., 1153 clock
cycles for the straightforward (i.e., non-serialized) implementation of the state
initialization of the eSTREAM portfolio member Trivium. For Grain v1, serial-
izing the key/IV loading can be realized at the cost of only 80 additional clock

39 The main reason for choosing UMCL18G212T3 is that we have already used this
library in various projects and, hence, have most experience with it.

40 For all power values given in Tab. [1} the largest deviation of a single estimation from
the computed average was below one percent.

41 The reason for not describing phases 1 and 3 of the state initialization of LIZARD in
its serialized form in the first place in Sec. [2:2]is that we wanted the specification of
the algorithm to be as concise as possible. Moreover, the way we introduce LIZARD
in Sec. hopefully facilitates to understand the relation to the F'P(1)-mode as
described in Sec.

Design Area Power Delay Latency
[GE] W] [ps] [clk. cyc.]

Lizarp* 1161 2110 2474 499
Grain v1* 1268 2517 2155 241
Grain vl 1221 3578 2166 161

Table 1. Hardware results for a clock speed of 100 kHz. The symbol * indicates that the
respective implementation uses serialized key/IV loading. Latency represents the num-
ber of clock cycles needed to perform the state initialization. After state initialization,
all designs produce one keystream bit per clock cycle, corresponding to a throughput
of 100 Kbit/s.

cycles as the key and the IV can be shifted separately into the NFSR and the
LFSR, respectively, at the same time@

Tab. [l shows that the estimated power consumption of LIZARD during the
generation of 10 kbit of keystream (including state initialization) is about 16
percent lower than that of Grain vl with serialized key/IV loading. Moreover,
L1zZARD also allows to save on chip area and, hence, production costs.

At first glance, the reduction in chip area might seem surprisingly small,
considering that LIZARD’s inner state is about 25 percent smaller than that of
Grain v1. Remember, however, that LiZARD needs additional logic for loading
the (larger) key (twice) and, moreover, we chose a much heavier output function,
which is defined over 53 variables.

As a consequence of the larger key, L1IZARD would benefit more than Grain v1
from an “external” key source (like an EEPROM) that takes over the task of key
bit selection based on an index or supplies the key bits sequentially. However, for
reasons of fairness, we assumed the (from L1ZARD’s point of view) worst situation
that all key and IV bits are provided via separate wires to the respective cipher
modules, which then have to take care of key bit selection themselves. To avoid
ambiguity about the capabilities of the implementations which the values in
Tab. [1] are based on, we provide the interfaces of the respective modules along
with a short description in appendix

6 Conclusion

We presented LIZARD, a new lightweight stream cipher for power-constrained
devices like passive RFID tags. Its hardware efficiency results from combining a

2 Tn our non-serialized (i.e., straightforward) implementation of Grain v1, the key/IV
loading is performed as part of the module reset (which takes one clock cycle).
Hence, the state initialization takes 1 + 160 = 161 clock cycles. In the serialized
implementation, the key/IV loading of Grain v1 is performed in a separate stage,
which spans 80 clock cycles. Hence, the state initialization takes 1 + 80 4 160 = 241
clock cycles.

Grain-like design with the F'P(1)-mode, a recently suggested construction princi-
ple for the state initialization of stream ciphers, which offers provable %n—security
against TMD tradeoff attacks aiming at key recovery. LIZARD uses 120-bit keys,
64-bit IVs and has an inner state length of 121 bit. It is supposed to provide
80-bit security against key recovery attacks and 60-bit security against distin-
guishing attacks. LIZARD allows to generate up to 2'® keystream bits per key/IV
pair, which would be sufficient for many existing communication scenarios like
Bluetooth, WLAN or HTTPS.

Hardware implementations for L1ZARD and Grain v1 were created using the
same design flow in order to allow for a meaningful comparison of performance
metrics. The results show that LIZARD consumes about 16 percent less power
than Grain v1 at slightly reduced area requirements. This indicates that in sce-
narios where plaintext packets of moderate length are to be encrypted separately
under individual IVs, the F'P(1)-mode provides an interesting alternative to con-
ventional state initialization algorithms of stream ciphers.

As future work, we suggest to evaluate the performance of LIZARD on other
hardware platforms like FPGAs or microcontrollers. Moreover, it might be in-
teresting to investigate, whether, under the current security guarantees, even
more lightweight variants of L1ZARD are possible (e.g., by choosing a less heavy
output function). With respect to the generic F'P(1)-mode, it would be desir-
able to have key sizes of %n (instead of currently n) and still maintain provable
%n—security against TMD tradeoff attacks aiming at key recovery. One way to
achieve this could be to derive an n-bit FP(1)-mode key (or even two separate
n-bit keys for the respective phases of the state initialization) on-the-fly from
the actual %n—bit key, e.g., by using a component like the round key function of
the stream cipher Fruit.

Acknowledgement

We would like to thank Peter Fischer and Michael Ritzert, who provided us with
the necessary technical means and additional valuable information for creating
the hardware implementation of LIZARD.

References

1. IEEE Standard for Information Technology — Telecommunications and Information
Exchange Between Systems — Local and Metropolitan Area Networks — Specific Re-
quirements — Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications. IEEE Std 802.11-1997, pages i-445, 1997.

2. IEEE Standard for Information Technology — Telecommunications and Information
Exchange Between Systems — Local and Metropolitan Area Networks — Specific
Requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications: Amendment 6: Medium Access Control (MAC)
Security Enhancements. IEEE Std 802.11i-2004, pages 1-190, July 2004.

10.

11.

12.

13.

14.

15.

16.

17.

IEEE Standard for Information Technology — Telecommunications and Information
Exchange Between Systems — Local and Metropolitan Area Networks — Specific
Requirements — Part 11: Wireless LAN Medium Access Control (MAC) and Phys-
ical Layer (PHY) Specifications. IEEE Std 802.11-2012 (Revision of IEEE Std
802.11-2007), pages 1-2793, March 2012.

Frederik Armknecht, Matthias Hamann, and Vasily Mikhalev. Lightweight Au-
thentication Protocols on Ultra-Constrained RFIDs - Myths and Facts, pages 1-18.
Springer International Publishing, Cham, 2014.

Frederik Armknecht and Vasily Mikhalev. On Lightweight Stream Ciphers with
Shorter Internal States, pages 451-470. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2015.

S.H. Babbage. Improved ”exhaustive search” attacks on stream ciphers. In Security
and Detection, 1995., Furopean Convention on, pages 161-166, May 1995.

Steve Babbage, Julia Borghoff, and Vesselin Velichkov. D.SYM.10 - the eSTREAM
portfolio in 2012. eSTREAM: the ECRYPT Stream Cipher Project, 2012. http:
//www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdfl

Steve Babbage and Matthew Dodd. The stream cipher MICKEY 2.0 (eSTREAM).
Technical report, ECRYPT (European Network of Excellence for Cryptology),
2006. http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf.
Elad Barkan and Eli Biham. Conditional Estimators: An Effective Attack on A5/1,
pages 1-19. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

Lejla Batina, Sandeep Kumar, Joseph Lano, Nele Lemke, Kirstin Mentens, Christof
Paar, Bart Preneel, Kazuo Sakiyama, and Ingrid Verbauwhede. Testing frame-
work for eSTREAM Profile II candidates. eSTREAM, ECRYPT Stream Cipher
Project, Report 2006/014, 2006. http://www.ecrypt.eu.org/stream/papersdir/
2006/014 .pdf.

Coéme Berbain, Henri Gilbert, and Antoine Joux. Algebraic and Correlation At-
tacks against Linearly Filtered Non Linear Feedback Shift Registers, pages 184—198.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Come Berbain, Henri Gilbert, and Alexander Maximov. Fast Software Encryp-
tion: 13th International Workshop, FSE 2006, Graz, Austria, March 15-17, 2006,
Revised Selected Papers, chapter Cryptanalysis of Grain, pages 15-29. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

Alex Biryukov and Adi Shamir. Cryptanalytic time/memory/data tradeoffs for
stream ciphers. In Tatsuaki Okamoto, editor, Advances in Cryptology — ASI-
ACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 1-13.
Springer Berlin Heidelberg, 2000.

A. Bogdanov, L. R. Knudsen, G. Leander, C. Paar, A. Poschmann, M. J. B. Rob-
shaw, Y. Seurin, and C. Vikkelsoe. PRESENT: An Ultra-Lightweight Block Cipher,
pages 450—466. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

Marc Briceno, Ian Goldberg, and David Wagner. A pedagogical implementation
of A5/1, 1999. Available at http://www.scard.org/gsm/a51.html!

Philippe Bulens, Kassem Kalach, Francois-Xavier Standaert, and Jean-Jacques
Quisquater. FPGA implementations of eSTREAM phase-2 focus candidates with
hardware profile. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/024,
2007. http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf.

Christophe De Canniére and Bart Preneel. Trivium - specifications (eSTREAM).
Technical report, ECRYPT (European Network of Excellence for Cryptology),
2005. http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf.

http://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
http://www.ecrypt.eu.org/ecrypt2/documents/D.SYM.10-v1.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/mickey/mickey_p3.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/014.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/014.pdf
http://www.scard.org/gsm/a51.html
http://www.ecrypt.eu.org/stream/papersdir/2007/024.pdf
http://www.ecrypt.eu.org/stream/p3ciphers/trivium/trivium_p3.pdf

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

P. H. Cole and D. C. Ranasinghe. Networked RFID Systems and Lightweight Cryp-
tography: Raising Barriers to Product Counterfeiting. Springer Berlin Heidelberg,
1 edition, 2008.

Christophe De Canniére, Orr Dunkelman, and Miroslav Knezevié. KATAN and
KTANTAN — A Family of Small and Efficient Hardware-Oriented Block Ciphers,
pages 272—288. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009.

Christophe De Cannitre, Ozgiil Kiiciik, and Bart Preneel. Analysis of Grain’s
Initialization Algorithm, pages 276-289. Springer Berlin Heidelberg, Berlin, Hei-
delberg, 2008.

T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version
1.2. RFC 5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878,
6176, 7465, 7507, 7568, 7627, 7685, 7905, 7919.

Itai Dinur and Adi Shamir. Breaking Grain-128 with Dynamic Cube Attacks, pages
167-187. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011.

Elena Dubrova and Martin Hell. Espresso: A stream cipher for 5g wireless
communication systems. Cryptology ePrint Archive, Report 2015/241, 2015.
http://eprint.iacr.org/.

Muhammed F. Esgin and Orhun Kara. Practical Cryptanalysis of Full Sprout with
TMD Tradeoff Attacks, pages 67—85. Springer International Publishing, Cham,
2016.

Martin Feldhofer. Comparison of low-power implementations of Trivium and
Grain. eSTREAM, ECRYPT Stream Cipher Project, Report 2007/027, 2007.
http://wuw.ecrypt.eu.org/stream/papersdir/2007/027 . pdf.

Scott Fluhrer, Itsik Mantin, and Adi Shamir. Weaknesses in the Key Scheduling
Algorithm of RCY, pages 1-24. Springer Berlin Heidelberg, Berlin, Heidelberg,
2001.

B. M. Gammel, Rainer Gottfert, and Oliver Kniffler. Achterbahn-128/80. eS-
TREAM: the ECRYPT Stream Cipher Project, 2006. http://www.ecrypt.eu.
org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf.

Vahid Amin Ghafari, Honggang Hu, and Chengxin Xie. Fruit: Ultra-lightweight
stream cipher with shorter internal state. Cryptology ePrint Archive, Report
2016/355, 2016. http://eprint.iacr.org/2016/355.

Jovan Dj. Goli¢. Fast Software Encryption: Third International Workshop Cam-
bridge, UK, February 21-28 1996 Proceedings, chapter On the security of nonlinear
filter generators, pages 173-188. Springer Berlin Heidelberg, Berlin, Heidelberg,
1996.

Tim Good and Mohammed Benaissa. Hardware performance of eStream phase-I11
stream cipher candidates. eSTREAM: the ECRYPT Stream Cipher Project, 2008.
http://www.ecrypt.eu.org/stream/docs/hardware.pdf.

Tim Good, William Chelton, and Mohamed Benaissa. Review of stream cipher can-
didates from a low resource hardware perspective. eSTREAM, ECRYPT Stream
Cipher Project, Report 2006/016, 2006. http://www.ecrypt.eu.org/stream/
papersdir/2006/016.pdf.

Matthias Hamann and Matthias Krause. Stream cipher operation modes with
improved security against generic collision attacks. Cryptology ePrint Archive,
Report 2015/757, 2015. http://eprint.iacr.org/2015/757.

Martin Hell, Thomas Johansson, Alexander Maximov, and Willi Meier. New
Stream Clipher Designs: The eSTREAM Finalists, chapter The Grain Family of
Stream Ciphers, pages 179-190. Springer Berlin Heidelberg, Berlin, Heidelberg,
2008.

http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream/papersdir/2007/027.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://www.ecrypt.eu.org/stream/p2ciphers/achterbahn/achterbahn_p2.pdf
http://eprint.iacr.org/2016/355
http://www.ecrypt.eu.org/stream/docs/hardware.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
http://www.ecrypt.eu.org/stream/papersdir/2006/016.pdf
http://eprint.iacr.org/2015/757

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

Martin Hell, Thomas Johansson, and Willi Meier. Grain - a stream cipher for
constrained environments. eSTREAM: the ECRYPT Stream Cipher Project, 2006.
http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf.

Nicholas J. Hopper and Manuel Blum. Secure Human Identification Protocols,
pages 52-66. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

Ari Juels and Stephen A. Weis. Authenticating Pervasive Devices with Human
Protocols, pages 293-308. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.
Matthias Krause. BDD-Based Cryptanalysis of Keystream Generators, pages 222—
237. Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

Matthias Krause. Analyzing constructions for key-alternating pseudorandom func-
tions with applications to stream cipher operation modes. Cryptology ePrint
Archive, Report 2015/636, 2015. http://eprint.iacr.org/2015/636.

Ozgiil Kiiciik. Slide resynchronization attack on the initialization of grain 1.0.
eSTREAM, ECRYPT Stream Cipher Project, Report 2006/044, 2006. http://
WWW.ecrypt.eu.org/stream.

Virginie Lallemand and Maria Naya-Plasencia. Cryptanalysis of Full Sprout, pages
663—-682. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

Michael Lehmann and Willi Meier. Conditional Differential Cryptanalysis of
Grain-128a, pages 1-11. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

Yi Lu, Willi Meier, and Serge Vaudenay. The Conditional Correlation Attack: A
Practical Attack on Bluetooth Encryption, pages 97-117. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2005.

Pierrick Méaux, Anthony Journault, Frangois-Xavier Standaert, and Claude Car-
let. Towards stream ciphers for efficient FHE with low-noise ciphertexts. Cryptol-
ogy ePrint Archive, Report 2016/254, 2016. http://eprint.iacr.org/.

Willi Meier and Othmar Staffelbach. Fast correlation attacks on certain stream
ciphers. Journal of Cryptology, 1(3):159-176, 1989.

ECRYPT European Network of FExcellence for Cryptology. eSTREAM: the
ECRYPT stream cipher project, 2008. http://www.ecrypt.eu.org/strean/.

A. Popov. Prohibiting RC4 Cipher Suites. RFC 7465 (Proposed Standard), Febru-
ary 2015.

Axel Poschmann. Lightweight cryptography - cryptographic engineering for a
pervasive world. Cryptology ePrint Archive, Report 2009/516, 2009. http:
//eprint.iacr.org/2009/516.

Martin Agren, Martin Hell, Thomas Johansson, and Willi Meier. Grain-128a: A
new version of Grain-128 with optional authentication. Int. J. Wire. Mob. Comput.,
5(1):48-59, December 2011.

Bruce Schneier. Applied Cryptography (2Nd Ed.): Protocols, Algorithms, and
Source Code in C. John Wiley & Sons, Inc., New York, NY, USA, 1995.

T. Siegenthaler. Decrypting a class of stream ciphers using ciphertext only. /[EEFE
Trans. Comput., 34(1):81-85, January 1985.

Bluetooth SIG. Bluetooth core specification 4.2, 2014. https://www.bluetooth.
org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439.

Dirk Stegemann. FEaxtended BDD-Based Cryptanalysis of Keystream Generators,
pages 17-35. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

Bin Zhang and Xinxin Gong. Another Tradeoff Attack on Sprout-Like Stream
Ciphers, pages 561-585. Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.
Haina Zhang and Xiaoyun Wang. Cryptanalysis of stream cipher grain family.
Cryptology ePrint Archive, Report 2009/109, 2009. http://eprint.iacr.org/.

http://www.ecrypt.eu.org/stream/p3ciphers/grain/Grain_p3.pdf
http://eprint.iacr.org/2015/636
http://www.ecrypt.eu.org/stream
http://www.ecrypt.eu.org/stream
http://eprint.iacr.org/
http://www.ecrypt.eu.org/stream/
http://eprint.iacr.org/2009/516
http://eprint.iacr.org/2009/516
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
https://www.bluetooth.org/DocMan/handlers/DownloadDoc.ashx?doc_id=286439
http://eprint.iacr.org/

APPENDIX

A Test Vectors

Key (120 bit), IV (64 bit) and the corresponding first 128 keystream bits in
hexadecimal notation. To avoid ambiguity, note that, e.g., the key

0x01234FFFFFFFFFFFFFFFFFFFFFFEFFF
corresponds to
(Ko, ..., Ki19) = (0,0,0,0,0,0,0,1,0,0,1,0,0,0,1,1,0,1,0,0,1,...,1).
Similarly, for the keystream, the example
0x01000000000000000000000000000000

would mean that the first seven keystream bits (i.e., z257,...,29263) are zero,
followed by a one and 120 more zeros.

Key: 0x000000000000000000000000000000
IV: 0x0000000000000000
Keystream: OxE2FBO9F0D7467CC4998768E7FB2CB83C

Key: 0x0000000000000000FFFFFFFFFFFFFF
IV: OxFFFFFFFFFFFFFFFF
Keystream: 0x5A3663603CF477F4E11214DA858C10FC

Key: 0x0123456789ABCDEF0123456789ABCD
IV: OxABCDEF0123456789
Keystream: 0x9D8D1B31CDEFBD32F7D3069AF6CE74B5

B Output Function a: Tap Selection

As pointed out in section due to the absence of canonical criteria for the
selection of tap positions for Grain-like constructions, we mainly resort to the
concept of (full) positive difference sets that was used by Goli¢ in [29] to assess
the security of nonlinear filter generators consisting of a single LFSR and a
nonlinear output function: “for a positive integer A, call I" a Ath-order positive
difference set if A is the maximum number of pairs of its elements with the same
mutual difference (for A = 1, we get a full positive difference set)” [29].

In particular, the output function a of LIZARD has the following properties:

— The set
{1,3,9,13,16, 23,24}

of output function taps from NFSR1 is a 2nd-order positive difference set.
Moreover, no taps from NFSR1 are used at the same time for its feedback
function and the output function ™|

43 In Grain-128a, the feedback function of the LFSR (corresponding to NFSR1 in our
construction) and the output function do not share any taps, either.

APPENDIX

— No taps from NFSR2 are used at the same time for its feedback function and
the output function@

— The direct sum £; + Q; + T; uses ounly taps from NFSR2. (To maintain a
sufficient security level even when the content of the smaller NFSR1 is known
to the attacker, e.g., due to guessing; cf. Sec.)

— The set

{5,7,11, 30,40, 45,54, 71}

of the tap indices (all from NFSR2) of the linear monomials of £; + Q; + T;
is a full positive difference set.

— The set

{4,8,9,18,21, 37,44, 52,76, 82}

of the tap indices (all from NFSR2) of the quadratic monomials of £;+ Q;+T;
is a full positive difference set. One consequence of this is that each two bits of
the internal bitstream of NFSR2 can form at most once a quadratic monomial
together.

— The sets

{]4 —21],|8 — 82,]9 — 52|, |18 — 37|, |44 — 76|}

of differences between the two taps (all from NFSR2) of each quadratic mono-
mial in £; + Q; + T; and

{13 = 59|, |10 — 12|, |15 — 16], |25 — 53|, |35 — 42|}

of differences between the two taps (all from NFSR2) of each quadratic mono-
mial in the feedback function of NFSR2 are disjoint. Hence, even during
phase 2 of the state initialization, each two bits of the internal bitstream
of NFSR2 can form at most once a quadratic monomial together.

— None of the differences

{|4—21|,|8 — 82|,]9 — 52, |18 — 37|, |44 — 76}

between the two taps (all from NFSR2) of each quadratic monomial in £; +
Q;+7T; appears as a difference between two taps of a higher degree monomial

of £t + Qt + 7;
— Each of the sets
{34,67,73},
{2,28,41,65},
{13,29,50,64, 75},
{6,14,26,32,47,61},
{1,19,27,43,57,66, 78}
of tap indices (all from NFSR2) of the monomials of degree 3,...,7 of L; +
Q¢ + Ty is a full positive difference set. Consequently, each two bits of the

internal bitstream of NFSR2 never appear more than once as part of each
(i.e., the same) of those monomials.

4 In Grain-128a, the feedback function of the NFSR (corresponding to NFSR2 in our
construction) and the output function share only a single tap (called “b;495” in [48]).

APPENDIX

C Complexity of Finding IV Collisions

In order to show that the number of oracle queries necessary for finding an IV
collision with probability > 1/2 exceeds 259 as claimed in section we first
need to observe that, for an arbitrarily fixed key, each initial state can be the

result of at most two different IVs.
Let (K,IV) and (K,IV) with IV # IV be an IV collision, i.e., the corre-
sponding initial states

((Bg®,...,B&") . (S577,....8%7))

((ggm’ 3 .”35537) <5257,. 5257>)

for (K, v) coincide. Then

((B(%QQ’ o Bégg) (5129,. 5129)) ((3129) 7§é§9> (51297. S129>)

for (K,IV) and

must hold as phase 4 of the state initialization algorithm of L1zARD (cf. Sec. [2.2))
implements a bijective mapping over the set of all inner states. As the key is
(arbitrarily) fixed, we also know that

(B, B = (Bi*,.... B)
together with either
(5128 _ 5128) _ (g&zs 5128)

or

(5128 _ 5128) _ (gézs 5128)
must hold. The case

((3328, N 7Bégs) (5128’ _ 5128)) _ ((Eé%, o Eégg) 7 (50128 5128>> :

however, is impossible due to the fact that, like phase 4, phase 2 of the state
initialization algorithm also implements a bijective mapping over the set of all
inner states and, as IV # IV,

(B, ..., BY), (S0,...,5%)) # ((ég,...,f;gg) : (§g,...,§g0)).

This now also shows immediately that there cannot be a third key/IV combina-
tion (K, IV) with IV # IV # IV # IV that results in the same initial state as
the IV collision (K,IV) and (K, IV) because

128 755128 7&5128 # 5128

APPENDIX

is a contradiction.

How many oracles queries (K,IV?), i = 1,..., with IV*® # IVJ for i # j,
are now necessary in order to find an IV collision with probability 1/2?7 Based
on the above observations, we can model this as a simple urn problem. The urn
contains 2'2Y different pairs of ballﬁ (i.e., 212! balls in total) and the question
is how many balls need to be drawn (randomly and without putting them back)
in order to have at least one pair with probability 1/27

The probability p; that at attempt ¢ = 1,..., a pair is completed can be
upper bounded by .

i —
pi < 22— (j— 1)’

Consequently, the probability Pr[k] that after k attempts, at least one pair has
been found, can be upper bounded by

k

k .
1—1 k
Pr[k]gzpi:Zlef(ifl) <k omr g

i=1 i=1

For k < 290, we have Pr[k] < 1/2, which proves the claim[™]

D Implementation Details

D.1 Serialization of Phases 1 and 3 of LIZARD’s State Initialization

In our implementation of L1ZARD, phase 1 of the state initialization is distributed
over 121 clock cycles ¢ =0, ...,120 as follows:

ROt B, forje{0,...,88},
I Sye, for j =89,

GOt S?jrcl, for i € {0,...,29},
! Des for ¢ = 30,

where

K. IV, force{0,...,63},

K., for c € {64,...,118},
P =N Koe1, fore=119,
1, for ¢ = 120.

45 Each pair of balls corresponds to a different pair of inner states at ¢ = 128 fulfilling

((Bo™, ..., Bs3") , (S0™, ..., S50")) = ((Eé”, y .,Eéés) ; (§328, N 1)) :

. . . k i— E
46 Using the more precise estimate >y 21211_(11,_1) < fo s121—; dz, one can even show

that Pr[k] < 1/2 for all k < 2693,

APPENDIX

To avoid ambiguity, we point out that B](-)’121 = B?, j =0,...,89, and
53,121 =8%,i=0,...,30, where B? and S? are defined as explained in section

The initial content of the FSRs (i.e., B;)’O, 7 =20,...,89, and S?’O, 1=
0,...,30) is undefined and algorithmically irrelevant as, what effectively happens
here, is that the bitstring

Ko®IVy,...,Ke3® IVs3,Kea, ..., K118, K119 @ 1,1

is shifted into the KSGs driving registers “from the right” (in terms of Fig. [l|in
Sec. [2)).

Analogously, phase 3 of the state initialization is also distributed over 121
clock cycles ¢ =0, ...,120 as follows:

81297C+1 — leig)lac’ for j € {O7 .. ,88} s
J T8,%¢, for j = 89,

Gl20c+1 . Silf(i’c, for i € {0,...,29},
' . e, for i = 30,

where

3;29’0 = le.28 for j € {0,...,89},
1290 . _ 52.128 for i € {0,...,30},

B @K, force{o,... 119},
RARREE for ¢ = 120,

and Bj*® and S;** are defined as explained in section

Again, to avoid ambiguity, we point out that B;Qg’ = lezg, 7=0,...,89,
and 5329’121 =S1?9i=0,...,30, where B}QQ and S}?9 are defined as explained
in section

D.2 Module Interfaces

Listing 1.1. Verilog module port declaration for LIZARD.

module lizard (
input wire clk ,
input wire reset ,
input wire enable
input wire [0:119] key,
input wire [0:63] iv,
output wire keystreamBit ,
output wire keystreamFlag

E

APPENDIX

Listing 1.2. Verilog module port declaration for Grain v1.

module grainvl (

input
input
input
input
input

wire
wire
wire
wire
wire

clk ,
reset ,
enable ,
[0:79] key,
[0:63] iv,

output wire keystreamBit ,
output wire keystreamFlag

E

Listings and show the interfaces of the implemented cipher modules.
For Grain v1, the straightforward implementation and the variant with serialized
key/IV loading (denoted as Grain v1* in Tab. [1)) have identical interfaces.

The modules use synchronous reset (taking one clock cycle) and all operations
are triggered by the rising edge of the clock. By setting the enable flag low, the
respetive cipher module can be paused at any time during state initialization or
keystream generation. Setting reset high resets a module. Once reset is set low
again, state initialization begins. For all modules, it is assumed that key and IV
are available (via key and iv) until key/IV loading has finished. Once a cipher
module has completed state initialization and enters the keystream generation
phase, it changes keystreamFlag from low to high and outputs one keystream

bit per clock cycle via keystreamBit.

	LIZARD - A Lightweight Stream Cipher for Power-constrained Devices
	Introduction
	Design Specification
	Components
	NFSR1
	NFSR2
	The output function

	State Initialization
	Phase 1: Key and IV Loading.
	Phase 2: Grain-like Mixing.
	Phase 3: Second Key Addition.
	Phase 4: Final Diffusion.

	Keystream Generation

	Design Considerations
	NFSR1
	NFSR2
	Output Function a
	Speedup Options
	State Initialization Algorithm

	Cryptanalysis
	Exhaustive Key Search
	Time-Memory-Data Tradeoff Attacks
	Correlation Attacks, Linear Approximations
	Algebraic Attacks
	Guess-and-determine Attacks
	BDD-based Attacks
	Chosen-IV Attacks (Conditional Differentials, Cube Distinguishers)
	Related Key(/IV) Attacks, Slide Attacks
	IV Collisions
	Weak Key/IV Pairs

	Hardware Results
	Conclusion
	Test Vectors
	Output Function a: Tap Selection
	Complexity of Finding IV Collisions
	Implementation Details
	Serialization of Phases 1 and 3 of LIZARD's State Initialization
	Module Interfaces

