
Efficient Resettably Secure Two-Party Computation

Tobias Nilges

Dept. of Computer Science, Aarhus University

Abstract

In 2000, Canetti, Goldreich, Goldwasser and Micali (STOC’00) proposed the notion of re-
settable zero-knowledge, which considers the scenario where a malicious verifier can reset the
prover and force it to reuse its random tape. They provided a construction that resists such
attacks, and in the following, the notion of resettability was considered in various other scenar-
ios. Starting with resettably-sound zero-knowledge, over general resettable computation with
one resettable party, to protocols where all parties are resettable.

Most of these results are only concerned with the feasibility of resettable computation, while
efficiency is secondary. There is a considerable gap in the round- and communication-efficiency
between actively secure protocols and resettably secure protocols. Following the work of Goyal
and Sahai (EUROCRYPT’09), we study the round- and communication-efficiency of resettable
two-party computation in the setting where one of the two parties is resettable, and close the
gap between the two notions of security:

• We construct a fully simulatable resettable CRS in the plain model that directly yields
constant-round resettable zero-knowledge and constant-round resettable two-party com-
putation protocols in the plain model.

• We present a new resettability compiler that follows the approach of Ishai, Prabhakaran
and Sahai (CRYPTO’08) and yields constant-rate resettable two-party computation.

1 Introduction

Resettability of cryptographic protocols was first investigated in the context of zero-knowledge pro-
tocols by Canetti et al. [CGGM00]. They observed that an adversarial verifier in a zero-knowledge
proof can break the zero-knowledge property of the protocol if he is able to reset the prover. Reset
attacks are therefore a stronger form of active attacks, where the adversary can force the honest
party to reuse the same random tape for several protocol executions. This type of attack is not
just of theoretical interest, but can occur in real scenarios where the prover program runs e.g. on a
smartcard. In such a case, it is not difficult for the verifier to cut the power to the smartcard, and
thereby reset it to its initial state.

Canetti et al. [CGGM00] showed that resettable zero-knowledge protocols exist, albeit with
poorer efficiency than “standard” zero-knowledge protocols. Inspired by this, Barak et al. [BGGL01]
considered the case of a resettable verifier in zero-knowledge protocols, i.e. the question whether
soundness of a protocol holds if the verifier can be forced to reuse its randomness. In standard
zero-knowledge protocols, such a resetting prover can basically employ the strategy of the simulator

1

and create false proofs, thereby breaking the soundness. As it turns out, the case of a resettable
verifier is “more challenging” in the sense that it requires an additional lever, namely non-black-box
simulation, to prove the security. Non-black-box simulation means that the simulator gets the code
of the verifier, instead of having only oracle access to it.

Finally, Deng et al. [DGS09] showed how to achieve simultaneously resettable zero-knowledge
protocols, i.e. both the prover and verifier are resettable.

Goyal and Sahai [GS09] were the first to consider resettability not just for zero-knowledge
protocols but for general two-party and multi-party computation protocols. They present a compiler
that transforms any semi-honest MPC protocol into a resettable one. Their general approach is
to use the passive-to-active transformation of Goldreich et al. [GMW87] and replace the zero-
knowledge proofs with resettable and resettably-sound variants. Later, Goyal and Maji [GM11]
even showed a SFE protocol where all parties are resettable, again using the GMW approach.
However, their result does not provide general two-party computation, they can only realize all
functions that do not behave like worst-case pseudoentropy generators. It was shown in [GKOV12]
that general two-party computation is actually impossible, if all parties are resettable.

Recently, there have been several results in the context of resettably-sound zero-knowledge
that reduced the computational assumptions [BP13, CPS13] and also the round-complexity of such
protocols [COP+14] to the same level as standard zero-knowledge proofs. For general resettable two-
party computation, however, there is a large gap with respect to both the communication complexity
and the round-complexity compared to non-resettable protocols. While constant-round [LP07]
and constant-rate [IPS08, GIP15] two-party computation protocols are known, for the resettable
setting the compiler of [GS09] requires O(κ) rounds of interaction, as does [GM11]. Regarding
the round- and communication efficiency of resettable computation, not much is known and one
might assume that a lower bound might be O(log κ) rounds, which is the best known construction
for resettable zero-knowledge (which is implied by resettable two-party computation). The only
constant-round constructions for resettable zero-knowledge are in public key models such as the
Bare Public Key model [CGGM00, DPV04, YZ07, DFG+11], the Weak Public Key model [MR01]
or the Upperboubded Public Key model [ZDLZ03]. So the obvious question is:

Is there an inherent gap between two-party computation and resettable two-party computation
regarding the round-complexity and communication complexity?

Here by resettable two-party computation we mean protocols where only one party is resettable
(i.e. we do not consider simultaneously resettable protocols). In the following we resolve this
question by providing round-efficient and communication-efficient resettable two-party protocols,
thereby essentially closing the gap.

1.1 Our Results

We observe that a lot of round-efficient resettably secure protocols already exist: there are non-
interactive protocols for both zero-knowledge and two-party computation (we are referring to non-
interactive secure computation (NISC) [IKO+11]). However, all these protocols live in the CRS-
hybrid model and thus do not yield improvements in the plain model. Our first contribution is a
construction of a resettable CRS in the plain model that is fully simulatable (using non-black-box
simulation techniques, which is inherent since resettable two-party computation implies resettably-

2

sound zero-knowledge). This allows us to use the non-interactive protocols in the plain model,
which implies several improvements over the current state of the art.

Constant-round resettable zero-knowledge argument of knowledge: We obtain the first
constant-round resettable zero-knowledge argument of knowledge in the plain model. To the
best of our knowledge, previously no constant-round construction has been achieved in the
plain model, regardless of the simulation technique.

Constant-round resettable two-party computation: The resettable CRS in conjunction with
NISC provides a simple and direct construction of a constant-round resettable two-party pro-
tocol.

While the above described resettable two-party computation protocol is round-efficient, it is based
on garbled circuits and thus typically incurs a large communication overhead. Considering typical
application scenarios of resettable computation, e.g. low bandwidth physical devices, this can be a
severe drawback.

Therefore, as our second contribution, we present a protocol compiler inspired by the IPS
compiler [IPS08] that combines two protocols with weak security guarantees in such a way that
the resulting protocol is resettably UC-secure. There are other approaches that potentially offer
communication-efficient and resettable 2PC, e.g. [GIP15], but we chose the IPS paradigm because
of its versatility. Nevertheless, we believe that some of our techniques can be applied to other
protocols in the literature and it might be interesting to compare the practical efficiency to our
approach.

We will now briefly sketch the approach of [IPS08] for the two-party case. Take an honest
majority protocol, e.g. [BOGW88, CCD88], where two clients provide the inputs for n servers
and which tolerates up to t corrupted servers. Now, use a passively secure two-party protocol
([GMW87, Yao86]) to implement each of the servers. Of course, an adversary can now cheat in the
passively secure protocol, and the servers’ computation is not correct, i.e. the server is corrupted.
Due to the honest majority setting, this is no problem as long as the adversary can only corrupt
up to t of the servers. The key technical ingredient in the IPS compiler is a means to enforce
this property, namely the setup of oblivious watchlists. A watchlist for a server is an encrypted
channel over which each party has to send all its inputs into the respective server. The IPS compiler
requires that before the emulation of the servers via the passively secure protocol, each party selects
a subset of the servers to be on its watchlist via an oblivious transfer (OT). Thus, both parties get
the complete view of some of the emulated servers, but each party does not know which servers
the other party chose. The watchlists allow the parties to verify that the emulation of the servers
was done correctly by the other party, and allows to aborts if an inconsistency is detected. With
a correct choice of parameters, this approach guarantees that at most t servers are corrupted if
no inconsistency is detected, and by the honest majority guarantee, this does not compromise the
security of the compiled protocol.

In comparison to the IPS compiler, our compiler does not live in the OT-hybrid model, but
requires a related primitive that we call deterministic randomized OT (dROT). Similar to the IPS
compiler, the outer protocol has to be secure only in the honest majority setting, while the inner
protocol must be secure in a slightly stronger model than the semi-honest setting. Using this
compiler, we achieve several improvements over previous results.

3

Constant-rate resettable computation: We present the first resettably secure protocol with
constant-rate communication (in the dROT-hybrid model). Our approach is the same as
in [IPS08] with some minor modifications to the outer protocols.

Non-interactive UC-secure computation from tamper-proof hardware: We can plug an
instantiation of our compiler directly into the construction of Döttling et al. [DMMQN13] to
obtain non-interactive UC-secure computation of resettable functionalities.

Compared to the generality of the IPS compiler we have to make some drawbacks. Unconditional
security with unbounded resets is not possible, because the resettable party only has a fixed amount
of randomness. Thus, computational assumptions are necessary to create enough randomness to
deal with an unbounded number of resets. Also, we require a slightly stronger security guarantee
from the inner protocol.

Our protocols are the first protocols that achieve resettably secure computation without (ex-
tensively) relying on resettable and/or resettably-sound zero-knowledge proofs.

1.2 Our Techniques

Resettable CRS in the plain model. The protocol for the CRS is quite simple and follows
the coin-toss protocol of Blum [Blu81]. The non-resettable party (called U, or user) commits to its
input, and sends the commitment to the resettable party (called S or smartcard in the following).
By deriving its own input via a PRF from the commitment, S ensures that resets will not influence
the CRS. Instead of decommitting to its input, U sends its input and proves its knowledge of a
decommitment (via a resettably-sound zero-knowledge proof).

This proof allows the simulator to change its input after receiving S’s input. In order to simulate
against U, we use a slightly modified variant of an extractable commitment and requires rewinding.
Resettable IPS compiler. At first sight it might seem unreasonable to assume that an OT-based
compiler can be made resettable, because OT cannot be resettable in the first place. The crucial
observation is that the IPS compiler only relies on random OT. For random OT, however, it is
possible to derive a resettable variant.

We call this OT deterministic randomized OT (dROT), and the idea is that the receiver first
sends a message which determines his choice bit. Based on this message, the sender derives his
random inputs into the OT. This guarantees that for each input, the messages of the sender change,
while the receiver still only learns one of the values. We present a simple adaptation of the OT
protocol of Peikert et al. [PVW08] that satisfies this notion and is constructed in the CRS-hybrid
model (thus the resettable CRS can be used to implement the protocol in the plain model).

We now show how we can realize a resettable version of the IPS compiler based on this primitive.
In particular, we have to find a way to setup a watchlists infrastructure in a resettably secure way.
First, assume that we simply use the dROT primitive to setup the watchlists deterministically. U
inputs its choices into dROT, and S gets as output the keys for the watchlists. Then, S uses the
random strings generated from the inputs in the watchlist selection to select its own watchlist, e.g.
by applying a PRF to the values. Now the watchlist choices of S are unknown to U, but there is
an attack that allows U to learn the choices: U simply corrupts a server and checks if S aborts.
If yes, then this server was on the watchlist. Using this approach, U can learn all servers that
S is watching, and cheat in the emulation of the other servers. The problem seems to be that
the watchlists are selected before the computation takes place. Indeed, looking at other resettable

4

protocols for e.g. zero-knowledge, it seems likely that the selection of the watchlist has to be public,
otherwise a resetting attack might always leak the input in the OT. However, this stands in stark
contrast to the approach of the IPS compiler.

We would thus like to fix the watchlists after the computation of the inner protocols, but this of
course leaks too much information to U. But indeed, this approach is a step in the right direction.
Instead of waiting until the end of the computation of the servers, we split the computation of the
inner protocols in two phases: the computation phase, and the output phase. S and U compute
the inner protocols in parallel, but only execute the computation phase. We require that the inner
protocol remains private (even against active cheating of U) until U learns an the output. This
holds for most passive secure protocols in the literature. Then, U commits to its views of the servers
(similar to the MPC-in-the-head approach of Ishai et al. [IKOS07]) and sends the commitments to S.
S deterministically derives a challenge from these commitments, and U has to unveil the challenged
commitments. Now, S can verify that the computation of the inner protocol was performed correctly
in much the same way that the non-resettable party U can. Only if this challenge is passed, the
output is computed.

Of course, all the randomness used by the compiled protocol has to be derived from the inputs
of U, and we therefore precompute the dROTs before the actual simulation of the outer protocol.
Once these precomputed values are available, we start a derandomization of the dROTs where U
uses his actual inputs in the computation of the inner protocols. At that point, all inputs of U are
fixed, and S can derive the randomness for execution of both the inner and the outer protocol.

Due to the modularity of our constructions, the security analysis of the plain model protocols
is very simple, compared to the complex analysis in [GS09] (due to concurrency issues). Along the
way, we also give a precise simulation [MP06], which was left as an open problem by [GS09].

1.3 Structure of the Paper

After introducing the necessary tools and definitions in the preliminaries, we first define a resettable
two-party UC-functionality in Section 3. After that we present the resettable CRS in Section 4.
Then we describe our solutions for constant-round protocols in Section 5 and the resettable IPS
compiler in Section 6

2 Preliminaries

Notation. We write x to denote a vector of elements x1, . . . , xn. For convenience, we let x ⊕ y
denote the component-wise XOR of x and y (for vectors of the same length). Typically, all messages
that the adversary sends is marked with an asterisk, e.g. a∗. Messages that the simulator obtains
or chooses are marked with a hat, e.g. ŝ. We use the standard cryptographic notions of negligible
and overwhelming functions, and denote a probabilistic polynomial time algorithm by PPT.

2.1 Universal Composability Framework

The universal composability (UC) framework was introduced by Canetti [Can01]. Protocols proven
secure in this framework have strong security guarantees with respect to their security when com-
posed with other protocols in arbitrary environments.

5

UC-security of protocols is argued by comparing the real protocol with in ideal implementation
of the functionality of the protocol. In particular, for every adversary in the real protocol there
has to exist an ideal adversary that only interacts with the ideal functionality, such that any
environment (coordinating the inputs of the parties in the real and ideal model) cannot distinguish
the executions.

We also consider JUC [CR03], a variant of UC that considers protocols that have a joint state
in form of a shared setup (e.g. a CRS or OTs). The JUC composition basically states that we
can analyze a single instance of a multi-instance protocol and derive security even for arbitrary
composition with other protocols.

2.2 Zero-Knowledge

We consider two notions of zero-knowledge argument systems. Let RL denote the witness relation
of a language L. Resettable zero-knowledge was first proposed by Canetti et al. [CGGM00] and
cover the case of a resettable prover.

Definition 1. A resettable zero-knowledge argument of knowledge system for a language L ∈ NP
consists of two PPT algorithms (P,V), where the prover P is resettable, and there exists two PPT
algorithms Sim and Ext such that

• Completeness: For every (x,w) ∈ RL,

Pr[〈P(w),V〉(x) = 1] = 1

• Soundness: For every x /∈ L and every resettable PPT P∗,

Pr[〈P∗,V〉(x) = 1] ≤ negl(()|x|)

• Zero-Knowledge: For every (x,w) ∈ RL and every PPT V∗, the distributions Real={ 〉P(w),V∗〈(x)}
and Ideal={ Sim(x,V∗)} are computationally indistinguishable.

• Proof of Knowledge: For every x ∈ L and every PPT algorithm P∗, there exists a negligible
function ν such that

Pr[Ext(x,P∗) ∈ wL(x)] > Pr[〈P∗,V〉(x) = 1]− ν

Resettably-sound zero-knowledge proofs are a variant of zero-knowledge systems, where the
verifier can be reset.

Definition 2. A resettably-sound zero-knowledge argument of knowledge system for a language
L ∈ NP consists of two PPT algorithms (P,V), where the verifier V is resettable, and there exists
two PPT algorithms Sim and Ext such that

• Completeness: For every (x,w) ∈ RL,

Pr[〈P(w),V〉(x) = 1] = 1

• Soundness: For every x /∈ L and every malicious PPT P∗,

Pr[〈P∗,V〉(x) = 1] ≤ negl(()|x|)

6

• Zero-Knowledge: For every (x,w) ∈ RL and every resettable PPT V∗, the distributions
Real={ 〉P(w),V∗〈(x)} and Ideal={ Sim(x,V∗)} are computationally indistinguishable.

• Proof of Knowledge: For every x ∈ L and every PPT algorithm P∗, there exists a negligible
function ν such that

Pr[Ext(x,P∗) ∈ wL(x)] > Pr[〈P∗,V〉(x) = 1]− ν

Recent constructions of resettably-sound zero-knowledge arguments based on one-way functions
can be found in [BP13, CPS13].

2.3 Commitments Schemes

A commitment scheme consists of two phases: the commit phase and the unveil phase. In the
commit phase, the sender commits to a value in such a way that the receiver cannot learn the
value. This property is called hiding. At the same time, in the unveil phase, the sender must not
be able to unveil a different value than the one he committed to, which is enforced by the binding
property.

We will use a non-interactive commitment that is perfectly binding, which can be based on any
one-way permutation, e.g. [Gol01].

2.3.1 Extractable Commitments

For our protocols, we need an extractable variant of such a commitment.

Definition 3. A commitment scheme ExtCom = (Commit,Open) is extractable, if there exists a
PPT algorithm Ext that, given black-box access to a malicious AS, outputs a pair (ŝ, τ) such that

• Simulation: τ is identically distributed to the view of AS at the end of interacting with an
honest receiver R in the commit phase,

• Extraction: The probability that τ is accepting and ŝ = ⊥ is negligible, and

• Binding: If ŝ 6= ⊥, then it is infeasible to open τ to any value other than ŝ.

Via the generic transformation shown in [PW09], any commitment can be made extractable.
We will present a short sketch of the construction.

The sender draws κ random values ri of size |s| and commits to both ri and ri ⊕ s using any
commitment scheme. These commitments (c0

i , c
1
i) are sent to the receiver, who in turn draws a

random challenge e = (e1, . . . , eκ) and sends it to the sender. The sender sends the decommitments
for c

ei
i to the receiver, who checks if the decommitments are correct.

To unveil, the sender simply sends his input s and all decommitments to the receiver, who can
check if all commitments are correct.

2.3.2 Extractable Commitments with Security Against a Resetting Sender

We will later additionally require that the extractable commitment remains binding even if the
receiver is resettable. This can be achieved by a very simple enhancement of the above protocol:
instead of sending a completely random challenge e, the receiver computes e ← PRF(c0, c1) (i.e.
using all commitments from the sender) and sends this pseudorandom challenge to the sender. The
security proof of the above protocol can be easily adapted to this modified protocol.

7

3 Resettably Secure Computation

Not all functionalities are meaningful in the setting of resettable computation. The ideal func-
tionality F res

2PC which is shown in Figure 1 allows—in principle—any function f , but functionalities
like OT are learnable by repeated queries, and security against reset attacks does not prevent this.
This problem was also addressed by Goyal and Sahai [GS09], since it is inherent to the setting. As
they point out, most functionalities that provide a cryptographic output, e.g. when the resettable
party holds as input a cryptographic key for a signature scheme, maintain their security also in the
resettable setting.

In the following we only consider the two party case between a resettable party S, the smartcard,
and a non-resettable party U, the user. The ideal functionality F res

2PC takes the inputs from both
parties and computes the output. An adversarial U is allowed to reset the computation, possibly
forcing S to execute f several times with the same input.

Functionality F res
2PC

Implicitly parametrized by a function f .

Input phase:

1. Upon receiving a message (sid, ssid, input,P, xP) from party P ∈ {S,U}, store (sid, ssid,P, xP) and
send (sid, ssid) to the adversary. Ignore any further messages (sid, ssid, input,P, x̂P) from P once
(sid, ssid,P, xP) has been stored.

Output phase:

2. Once both inputs (sid, ssid,S, xS) and (s̃id, ˜ssid,U, xU) with s̃id = sid and ˜ssid = ssid are stored,
compute (yS, yU) = f(xS, xU). Send (sid, ssid, y) to the adversary.

3. Upon receiving a message (sid, ssid, ack) from the adversary, send (sid, ssid, yS) to S and (sid, ssid, yU)
to U.

Reset (malicious U only:)

4. Upon receiving a message (sid, ssid, reset) from the adversary, delete the tuple (sid, ssid,U, xU) cor-
responding to sid and ssid and return to the input phase.

Figure 1: Ideal functionality for resettable two-party computation.

In the next section we show a very simple and efficient way to realize constant-round resettable
computation based on the resettable CRS from the previous section. Then we present our main
result, a modification of the IPS compiler, which allows constant-rate resettable computation.

4 Fully Simulatable Resettable CRS in the Plain Model

We present a plain model realization of a resettable CRS, i.e. a CRS that can be reset by an
adversarial user. The resettable CRS is straight-line simulatable against a corrupted smartcard,
while it requires rewinding to simulate against a corrupted user. This actually implies that the
CRS generation is concurrently secure, i.e. a malicious user that runs several copies of the protocol

8

at the same time (in an arbitrary manner) will not break the security of the protocol.
Of course, achieving straight-line simulatability does not come for free; we require that the

simulator gets the code of the corrupted S, i.e. we use a non-black-box simulation technique. In
the bigger picture, this is not a problem: in order to achieve resettable two-party computation
in the plain model, and thus in particular resettably-sound zero-knowledge (rsZK), non-black-box
techniques are necessary [BGGL01]. Another advantage of this approach is that we require this
possibly expensive step only once at the beginning of the protocols for the creation of a resettable
CRS.

4.1 Security Notion

Let us first define a natural simulation-based definition for a resettable CRS in the two-party case. It
is inspired by the simulation-based definition of resettable computation by Goyal and Sahai [GS09],
but applied to a specific functionality. We distinguish between an ideal model and a real model,
and show that any adversary in the real model can be emulated by a simulator in the ideal model.
Our definition is basically a special case of the real/ideal paradigm for multiparty computation.

Ideal: In the ideal model we have a trusted party F res
CRS (cf. Figure 2) that provides the CRS to

both parties. The functionality initially samples a random string via a random oracle. As
usual, parties can query the ideal functionality for the CRS, but an adversarial U is allowed
to change the CRS via a reset.

We denote by Ideal
Fres

CRS
A the output of the honest parties and the output of A after interacting

with F res
CRS.

F res
CRS

Let H be a random oracle that maps to strings of length `. Set CRS = H(1).

Query:

• Upon receiving a message (get,Pi,Pj) from Pi, send (crs,CRS) to Pi.

Reset (malicious U only):

• Upon receiving a message (reset, j), set the common reference string to CRS = H(j).

Figure 2: Ideal functionality for a resettable CRS.

Real: In the real model, the parties execute the protocol Πres
pCRS. Honest parties will follow the

protocol, while adversarial parties are allowed to deviate arbitrarily, in particular an adver-
sarial U is allowed to reset S at any point, forcing a restart of the protocol. We denote by

Real
Π

res
pCRS

B the output of the honest parties and the complete view of the adversary B after
the protocol execution.

Definition 4. We say that Πres
pCRS is a secure implementation of F res

CRS if for every PPT A cor-
rupting either player in the real model there exists a PPT S in the ideal model such that

Ideal
Fres

CRS
S ≈ Real

Π
res
pCRS

A

9

As noted in [GS09], this model translates to the multiple incarnation non-interleaving setting
as defined in [CGGM00]. This means that the security of Πres

pCRS in the single instance scenario
implies that the protocol remains secure even when U is allowed to interact with any number of
incarnations concurrently.

4.2 A Fully Simulatable Resettable CRS

We now describe a simple protocol that securely implements F res
CRS in the plain model according

to Definition 4. The protocol structure follows a simple Blum coin-toss [Blu81], where the user
commits to his random coins b and sends the commitment to S. In lack of a source of randomness,
S then uses a pseudorandom function to derive its own coins a. Now U can open the commitment
and send b to S. In order to make the protocol simulatable against S, U does not send the opening
information, but instead uses a resettably-sound zero-knowledge argument of knowledge to prove
the validity of the commitment. To simulate against U, we use an extractable commitment (the
extraction requires rewinding), which allows the simulator to obtain the value b before sending a.
Care has to be taken that the extractable commitment remains binding even if the sender can reset
the receiver. The construction sketched in Section 2.3.2 satisfies this requirement.

Protocol Πres
pCRS

Let ExtCom be an extractable commitment scheme and let (P,V) be a resettably-sound ZKAoK for the
language L = {(cb, b) | ∃db s.t. ExtCom.Open(cb, db, b) = 1}. Let ` be the desired length of CRS, and PRFk

be a pseudorandom function with key k that maps to strings of length `.

1. U: Draw a random b ∈ {0, 1}` and compute (cb, db)← ExtComr.Commit(b) and send cb to the S.

2. S: Compute a← PRFk(cb) and send a to U.

3. U: Send b to S. Start the prover P with witness db and input (cb, b). Forward messages between the
S and P.

4. S: Start the verifier V with input (cb, b) and forward the messages between U and V. If V accepts,
set CRS = a⊕ b and output CRS.

5. U: Compute CRS = a⊕ b and output CRS.

Figure 3: Protocol Πres
pCRS that realizes F̂ res

CRS in the plain model.

Theorem 1. The protocol Πres
pCRS securely implements F res

CRS with computational security.

Proof. Corrupted S. The simulation strategy of SS is straightforward (cf. Figure 4). The simulator
first commits to a random value b̂, and then learns the value a∗ from AS. Instead of proving the
correctness of the commitment cb̂, he first queries the ideal functionality FCRS for CRS and then
sets b = CRS⊕ a. Since the simulator gets access to the code of AS, he can use the non-black-box
simulator of the rsZKAoK to provide a false proof, i.e. he proves that the commitment contained
b instead of b̂.

We sketch the indistinguishability of the real protocol and the simulated protocol in a series of
hybrid experiments.

Experiment 0: This is the real protocol.

10

Simulator SS

1. Sample a random b̂ ∈ {0, 1}` and compute (cb̂, db̂)← ExtCom.Commit(b̂). Send cb̂ to AS.

2. Upon receiving a message a∗, query F res
CRS to obtain CRS. Compute b = CRS⊕ a∗ and send it to AS.

Construct a malicious verifier V∗ from AS that basically simulates the zero-knowledge step of AS.
Start the non-black-box simulator Sim on V∗ with input (cb̂, b). Use the output of Sim to continue

the simulation of AS and let ˆCRS be the output. Abort if ˆCRS 6= CRS.

Figure 4: Straight-line simulator against a corrupted S.

Experiment 1: Identical to Experiment 0, except that instead of starting the prover P with input
(cb, b) and witness db, S1 starts the non-black-box simulator Sim with input (V∗, cb, b) as
described in Figure 4.

Experiment 2: Identical to Experiment 1, except that S2 replaces b by b̂ = CRS ⊕ a. This
corresponds to the simulation of SS.

Computational indistinguishability of Experiments 0 and 1 follows directly from the computa-
tional zero-knowledge property of (P,V), while Experiment 1 and Experiment 2 are computationally
indistinguishable due to the computational hiding property of ExtCom.

Corrupted U. Against a corrupted AU, the simulator SU uses the black-box extractor of the
extractable commitment scheme to learn AU’s input b. It can then replace the value a such that
the resulting CRS fits the CRS from F res

CRS. A formal description of SU is shown in Figure 5.

Simulator SU

Setup a counter j = 1.

1. Upon receiving a message c∗b , check if a tuple (c∗′b , b̂
′, â′, j′) with c∗′b = c∗b and has been stored.

• If yes, set â = â′ and send (reset, j′) to F res
CRS.

• If not, set j = j + 1, send (reset, j) and (get) to F res
CRS to learn CRSj . Start the extractor Ext

with input (c∗b ,AU) to obtain b̂ and set b̂ = 0` if Ext outputs ⊥. Set â = CRSj ⊕ b̂.

Send â to AU.

2. Upon receiving a value b∗, start the verifier V with input (c∗b , b
∗) and abort if V aborts. Otherwise,

check if b̂ 6= b∗ and abort if that is the case. Store the tuple (c∗b , b̂, â, j).

Figure 5: Simulator against a corrupted U.

The following hybrid experiments show the indistinguishability of the simulated and the real
protocol.

Experiment 0: This is the real protocol.

Experiment 1: Identical to Experiment 0, except that S1 uses the extractor Ext of ExtCom on
input cb to learn a value b̂ and aborts if V accepts but b̂ 6= b∗.

Experiment 2: Identical to Experiment 1, except that instead of setting a = PRFk(cb), S2 com-
putes a as follows. If a tuple (c∗′b , b̂

′, â′, j′) with c∗′b = cb has been stored, set a = â′. Otherwise

11

draw a uniformly random CRS and set a = CRS ⊕ b̂. This corresponds to the simulation of
SU.

The computational indistinguishability of Experiments 1 and 2 follows directly from the fact
that (a) CRS is uniformly random, i.e. â is uniformly distributed, and (b) the output of PRFk is
pseudorandom. A distinguisher that distinguishes between both experiments can be used to break
the security of the PRF.

It remains to show that Experiment 0 and Experiment 1 are indistinguishable. This hold due
to the extractability of ExtCom and the soundness of (P,V). The only way to distinguish both
experiments is to provoke an abort of S1 for b̂ 6= b∗, otherwise both experiments are identically
distributed. Thus AU must convince the sender S of a different b∗ than the one extracted by S1.

Assume for the sake of contradiction that AU succeeds with advantage ε. We will construct a
malicious prover P∗ from AU that breaks the soundness of (P,V) with non-negligible probability.
Let m = poly(κ) be the number of times that AU invokes S.

P∗ chooses i ∈ [m] uniformly at random and then simulates the interaction of AU and S1 until
AU makes the i-th call. P∗ now announces the statement (c∗b , b

∗) to the verifier V̂ he interacts with
and redirects the prover messages that AU sends to S1 to V̂ instead. P∗ terminates after the proof
phase.

Since the commitment scheme ExtCom is statistically binding, there exists with overwhelming
probability only one value b̂ that can be hidden inside the commitment c∗b , and the extractor of
ExtCom will extract this value with probability 1 − ν, where ν is a negligible function. Thus, one
of the two statements that AU proves must be wrong.

We claim that P∗ succeeds in convincing V̂ of a false statement with probability at least ε
m − ν.

The probability that such a false statement occurs in Experiment 1 is at least ε, otherwise the
simulation would be identical. Since at most m statements are proven, P∗’s probability of hitting
the false statement via i is 1

m . Combined, P∗ proves a false statement with probability at least
ε
m − ν, which is non-negligible. This contradicts the soundness of the argument system (P,V).

Round complexity of Πres
pCRS. Using the protocol of [COP+14], the resettably-sound ZK argu-

ment of knowledge requires 4 rounds, while the extractable commitment requires 3 rounds [PW09].
Combined, this yields 9 rounds for the complete protocol. However, a more careful analysis shows
that we can actually collapse several rounds:

1. By deriving a directly with the challenge for the extractable commitment scheme using the
PRF, U can send b together with the responses to the challenge, saving two rounds;

2. The 4-round WiAoK used in the resettably-sound zero-knowledge system of [COP+14] is
generic, i.e. we can replace it by an input-delayed variant [LS91] where the statement does
not have to be fixed at the start of the protocol (at the cost of requiring OWP). We can thus
additionally send the first message of the zero-knowledge protocol with a and the challenge
for the extractable commitment.

Considering all these optimizations, the resulting protocol has only 5 rounds.

12

5 Constant-Round Resettable Functionalities

Combining the resettable CRS from the previous section with results from the literature, we directly
obtain constant-round protocols for several functionalities. The approach for all results presented
in this section is the same: establish the resettable CRS and start a non-interactive protocol in
the CRS-hybrid model that realizes the desired functionality. Then apply the standard technique
proposed by Canetti et al. [CGGM00] to make the complete protocol resettable, i.e. derive the
randomness for the non-interactive protocol from the transcript of the CRS generation via a PRF.

5.1 Constant-Round Resettable Zero-Knowledge Argument of Knowledge

As a first result, we obtain a constant-round resettable zero-knowledge argument of knowledge
(cf. Definition 1) by combining the resettable CRS with the non-interactive zero-knowledge proof
of knowledge by Rackoff and Simon [RS92]. Please note that the proof of knowledge property
of [RS92] is reduced to an argument of knowledge, since Πres

pCRS provides only computational security
and an unbounded prover could therefore manipulate the CRS.

Corollary 5 (of Theorem 1 and [RS92]). There exists a 6-round resettable zero-knowledge argument
of knowledge.

Since the resettable CRS relies on non-black-box simulation, so does the resulting argument
system. The impossibility result of Barak et al. [BLV03] for public coin resettable zero-knowledge
proofs (even from non-black-box simulation) does not apply, because the resulting protocol is
neither public coin nor a proof system. As far as we are aware, this is the first construction of a
constant-round resettable zero-knowledge argument of knowledge.

5.2 Constant-Round Resettable Computation

While there exists no real non-interactive (i.e. 1-round) two-party computation protocol, recently
the notion of non-interactive secure computation (NISC) [IKO+11] has been proposed. Overly
simplified, the idea of NISC can be summarized as follows: there exist 2-round OT protocols
(e.g. [PVW08], cf. Section 6.1.1) which can be combined with garbled circuits to yield a 2PC
protocol with minimal interaction, namely two messages. The first message of the OT is sent
by the receiver, fixing his input (possibly before a circuit has been chosen). Then, the sender
constructs a garbled circuit and replies to the first message with “OT-encryptions” of the labels,
and the garbled circuit. Thus, the receiver can obtain a valid set of labels, evaluate the circuit and
learn the result. Note that the sender of the circuit does not obtain a result.

Corollary 6 (of Theorem 1 and [IKO+11]). There exists a 7-round resettably secure two-party
computation protocol.

Again we can simply combine the resettable CRS with the NISC protocol, while the randomness
for the NISC protocol is derived from the transcript via a PRF. If it is necessary that both parties
obtain an output, they can simply execute the NISC protocol in both directions, at the cost of
one additional round. While the result of Ishai et al. [IKO+11] makes only a black box use of the
underlying primitive, the resettable CRS does not. Thus our plain model protocols (including the
result in Section 6.4) lose this desirable property in theory, but we want to highlight that the main
computation of the protocol still retains its efficiency.

13

6 Constant-Rate Resettable Computation

While the previously described protocols are very efficient with respect to the number of rounds,
the garbled circuit technique makes the protocols inherently inefficient with respect to the com-
munication complexity. It seems unlikely that this can be overcome without additional interac-
tion. Additionally, the garbled circuit approach of the NISC makes the evaluation of arithmetic
circuits rather inefficient, so in the following we describe a resettably secure variant of the IPS
compiler [IPS08] that solves these problems.

Let us give a very brief introduction to the general structure of our compiler. It will be presented
in the F̂dROT-hybrid model, as defined in the next subsection. The compiler itself consists of an
outer protocol Π in the client-server model, which implements the desired functionality, and an
inner protocol ρ, which is used to emulate the servers in Π. In the following we describe these
components and our requirements before presenting the actual compiler.

6.1 Tools

Our construction requires several tools. First and foremost, we need a special type of random
OT, where the sender in essence deterministically derives its inputs from an encoding of the choice
bits. We call this functionality FdROT for deterministic randomized OT. We first define the ideal
functionality, and then show how this functionality can be realized (in the FCRS-hybrid model).
Indeed, similar to [PVW08], we will actually implement the multi-session version F̂dROT of this
functionality. Additionally, we need a resettably UC-secure commitment. While there possibly are
resettable constructions that can be realized in the FCRS-hybrid model, we focus on a construction
that is directly built from F̂dROT.

6.1.1 Deterministic Randomized OT

Figure 6 shows the functionality F̂dROT, which is a special case of a deterministic randomized OT
protocol in the multi-session setting. The receiver sends his choice bit to the functionality. The
functionality derives two random values from the choice bit and the currently set tag and sends
them to the OT sender. If the sender is malicious, he can overwrite these values. The tag is included
to later allow different encodings of the choice bit in the protocol. Thus, an adversarial U is allowed
to change tag arbitrarily. Eventually, the receiver obtains the random value corresponding to his
choice bit.

In the following we give a brief sketch on how to realize F̂dROT. We first show that a simple
adaptation of the OT protocol of Peikert et al. [PVW08] realizes F̂dROT in the CRS-hybrid model.
Without going too much into detail, we give a short overview of the protocol. The main idea is
to use a so-called dual-mode cryptosystem that allows to encrypt messages under a public key,
which is derived from a CRS. The encrypter selects a branch, i.e. one bit, and if the public key was
created for the same branch, decryption is possible. All messages encrypted in the other branch
are statistically hidden.

In the protocol, the receiver starts by computing a key pair for his choice bit c. He sends the
corresponding public key to the sender, who derives his inputs r0, r1 from this public key based on
a pseudorandom function. He then uses the public key and encrypts both values under a different
branch, which allows the receiver to decrypt only one value correctly. A formal description is shown
in Figure 7

14

Functionality F̂dROT

Let H : {0, 1}∗ → {0, 1}2κ be a random oracle and tag a random value of size O(κ).

Choice phase:

1. Upon receiving a message (sid, ssid, receiver, c) from R, compute (r0, r1)← H(tag, c) and store the
tuple (sid, ssid, (r0, r1), tag, c). Send (sid, ssid) to the adversary.

2. Upon receiving a message (sid, ssid, ack) from the adversary, send (sid, ssid, (r0, r1)) to S and
(sid, ssid, rc) to R.

Input overwrite (malicious S only):

3. Upon receiving a message (s̃id, ˜ssid, overwrite, (r̃0, r̃1)) from the adversary with r̃0, r̃1 ∈ {0, 1}
κ,

check if there exists a tuple (sid, ssid, (r0, r1), c) with s̃id = sid and ˜ssid = ssid, which has not been
sent to the sender. If it exists, set r0 = r̃0 and r1 = r̃1.

Tag overwrite (malicious R only):

4. Upon receiving a message (s̃id, ˜ssid, tag, ˜tag) from the adversary, check if there exists a tuple
(sid, ssid, (r0, r1), tag, c) with s̃id = sid and ˜ssid = ssid, which has not been sent to the sender. If
it exists, compute (r′0, r

′
1)← H(˜tag, c) and replace the corresponding tuple.

Figure 6: Ideal functionality for deterministic randomized OT.

Protocol Π̂dROT

Both parties have access to FCRS. Let DM be a dual-mode cryptosystem according to [PVW08] and PRF
be a pseudorandom function that outputs strings of length 2κ.

1. R: Upon receiving input (sid, ssid, receiver, c), compute (pk, sk) ← KeyGen(CRS, c) and send pk to
S.

2. S: Compute (r0, r1) ← PRF(pk) and set yb ← Enc(pk, b, rb) for each b ∈ {0, 1}. Send (y0, y1) to R
and output (r0, r1).

3. R: Compute Dec(sk, yc) and output rc.

Figure 7: Protocol Π̂dROT that UC-realizes F̂dROT in the FCRS-hybrid model.

Lemma 7. Protocol Π̂dROT realizes F̂dROT in the FCRS-hybrid model, given that DM is a dual-mode
cryptosystem and PRF is a pseudorandom function.

Sketch. The simulation works basically identical to [PVW08], with a few minor changes. We refer
the interested reader to [PVW08] for a detailed proof and only sketch the simulator.

Corrupted R. The simulator selects a messy CRS and learns a trapdoor. He uses this trapdoor
to find the messy key, which in turn specifies the adversary’s choice bit c∗ (the choice bit is the
complement of the index of the messy key). The simulator inputs (sid, ssid, receiver, c∗) into FdROT

and obtains rc∗ . He then just computes yc∗ ← Enc(pk∗, c∗, rc∗) and y1−c∗ ← Enc(pk∗, 1− c∗, 0) and
sends them to the receiver. Due to the computational indistinguishability of the outputs of PRF
and H, the ideal and the real execution are indistinguishable by Z.

15

Corrupted S. The simulator selects a CRS in decryption mode and learns a trapdoor which
allows to decrypt both values y∗0, y

∗
1 that the adversary sent. He obtains the values r∗0 and

r∗1 and waits for the (sid, ssid)-message from F̂dROT. When he receives this message, he sends
(sid, ssid, overwrite, (r∗0, r

∗
1)) to FdROT and then sends (sid, ssid, ack). Indistinguishability follows

from the computational indistinguishability of a messy and a decryption CRS.

This construction can be used to create a k-out-of-n OT using standard techniques. First, a 1-
out-of-n OT can be constructed by e.g. replacing the normal 1-out-of-2 OT in the protocol of Naor
and Pinkas [NP05] with the above construction. Then, use e.g. the approach described in [IPS08]
to obtain a k-out-of-n OT from 1-out-of-n OT.

6.1.2 UC-secure commitments from FdROT

There are several UC-secure commitments that are proven secure in the FOT-hybrid model. Our
OT variant FdROT however is a bit more restrictive, in the sense that it only allows random inputs
from the sender, and no real derandomization (cf. Section 6.4). Additionally, since we require a
commitment that is secure even if the receiver can be reset, we cannot simply use an arbitrary
UC-secure commitment.

However, looking at protocols from the literature, we observe that e.g. the recent commitment
protocol of Cascudo et al. [CDD+15] can be easily modified to be used with FdROT, since the
protocol actually relies on random OT (and a PRF due to efficiency reasons, otherwise it is un-
conditionally secure). Additionally, the commitment in [CDD+15] has a non-interactive commit
and unveil phase, i.e. the sender just sends one message in both cases. As described above, this
provides security even against a resetting receiver. The setup phase of their protocol simply consists
of evaluations of an OT, which we replace with FdROT.

Let us briefly describe their protocol. During the setup phase, the receiver essentially learns
keys for a watchlist via the OTs. In order to commit, the sender encodes his message via an error
correcting code and sends the codeword masked by the keys to the receiver. Once he wants to
unveil, he sends the complete codeword, and the receiver can check that the codeword is consistent
with the values he received during the commit phase. The main idea behind the construction is
that the receiver does not learn enough about the codeword to decode it, thus the commitment is
hiding. On the other hand, if the sender wants to decommit to a different value, he must change a
lot of positions in the codeword, and he does not know which positions the receiver knows. This
ensures the binding property.

6.2 The Outer Protocol Π

We now start with the description of the major building blocks of the compiler. The outer protocol
Π is a protocol between n+ 2 parties , where n parties are the servers and the two clients provide
the input to the servers. The servers have no inputs and produce no outputs (except to the clients).
Let us briefly define a notion to “count” the rounds in the outer protocol. Basically, we only count
the client-server communication and ignore any communication between the servers.

Definition 8. We say that Π is a m-round∗ protocol if the clients sequentially provide m inputs
for the servers. Server-to-server communication can be arbitrary.

16

Many honest majority protocols realizing an SFE can be described as a 1-round∗ protocol: the
clients provide inputs to the servers, who (interactively) compute the function and then only send
the output to the clients. Of course, any reactive functionality requires more than 1 round.

Functionality: The protocol Π realizes a possibly randomized functionality F among the two
clients.

Security: We assume UC-security against static corruption of a client and adaptive corruption of
up to t servers, where t ∈ Ω(n). We assume active corruption of the servers and statistical or
computational security.

Protocol Structure: Our protocol structure essentially follows the structure in [IPS08], except
that we do not allow client-to-client messages. In most cases, outer protocols do not need
client-to-client communication, so this restriction is not too severe. The protocol proceeds in
rounds.

• Each client sends messages to the servers. Both clients and servers update their internal
state according to these messages.

• Each party reads the messages received in this round and adds them to its state. Honest
parties do not erase or manipulate the stored messages.

Each server Sj in Π maintains a state Σj . This state can be expressed as the combination of
all messages µji , which represent the messages that server j received from client i (the local

state), and an internal state σj . The function of the server π takes as input the current state
and the incoming messages wj from the clients and computes the updated state σj′ including
all messages mj that are output to the clients, i.e. (σj′,mj)← π(σj , µj ,wj). The local states
are updated by µj′i = µji ◦ (mj

i ,w
j
i).

6.3 The Inner Functionality G and the Inner Protocol ρ

We have the clients S and U play the role of the two clients in Π, but they will additionally
implement the servers Sj of Π via a secure two-party computation. Compared to the approach
in [IPS08], we have to be more careful both with regard to the security requirements of the inner
protocol and the way the servers are implemented.

Functionality: The clients S and U implement the servers Sj of Π via a secure two-party com-
putation protocol ρj . The server functionality that the clients will implement is denoted
G.

Security: In comparison to the IPS compiler, it is not sufficient in our case to rely on an adaptively
semi-honest secure inner protocol ρ because of the following technical problem. In the IPS
compiler, the simulator can always read all watchlists, and aborts if more than 1

3 of the
servers are corrupted (an honest party would also immediately observe this and abort, with
overwhelming probability). However, in our case, the check of the correct execution is done
later in the protocol, so in principle an adversary could corrupt all servers at one point in the
protocol, and our simulator would have to corrupt these servers in the outer protocol to start
a simulation of them. But this obviously does not work with the security requirement of the

17

outer protocol, where only 1
3 of the servers must be corrupted, i.e. by doing so the adversary

would be able to distinguish the simulation from a real protocol run.

Instead, we require that the inner protocol remains private even against an active adversary
(in the actively secure OT hybrid model), up to the point when he learns the result of
the computation. We call this notion semi-active security. While this notion seems to be
folklore, e.g. a similar requirement was previously used in [DGN10] to achieve covert security
from passive security, to the best of our knowledge the adversary model was never formally
defined.

The ideal functionality F sa
2PC (cf. Figure 8) is based on the standard notion of passively secure

two-party computation. However, we allow an adversary to select between passive corruption
and a restricted form of active corruption. In the passive case, he will obtain both the input
of the corrupted party and the output of the computation, which is the standard case for
passive corruptions. If he chooses to actively corrupt, he will additionally obtain the input
of the honest party, but only after the honest party allowed the delivery of the final result.
This is modeled via the deliver message in F sa

2PC. Please note that this notion is implied by
active security.

Functionality F sa
2PC

Implicitly parametrized by a function f .

Input phase:

1. Upon receiving a message (sid, input,P, xP) from party P ∈ {P1,P2}, store (sid,P, xP) and send (sid)
to the adversary. Ignore any further messages (sid, input,P, x̂P) from P once (sid,P, xP) has been
stored.

Output phase:

2. Once all inputs (sid,Pi, xPi
) are stored, compute y = f(xP1

, xP2
). Send (sid, result) to the honest

party.

3. Upon receiving a message (sid, deliver) from the honest party, send (sid, y) to the adversary.

4. Upon receiving a message (sid, ack) from the adversary, send (sid, y) to P1 and (sid, y) to P2.

Corrupt:

5. Upon receiving a message (sid, pas corrupt,C) from the adversary, send the input of the corrupted
party C (sid, xC) corresponding to sid to the adversary.

6. Upon receiving a message (sid, act corrupt,C) from the adversary, send the input of the corrupted
party C (sid, xC) corresponding to sid to the adversary. Additionally, after receiving the (deliver)
message from the honest party H, send (sid, xH) to the adversary.

Figure 8: Ideal functionality for semi-active two-party computation.

We shall briefly argue that most natural “passively secure” protocols actually satisfy this type
of security in the actively secure OT hybrid model:

• Garbled circuits [Yao86] provide active security against the receiver, i.e. one direction

18

is trivial. On the other hand, up to the point when the sender learns the label of
the receiver, any active cheating of the sender (e.g. using a wrong circuit) gives no
information.

• In the passively secure GMW protocol [GMW87], the computation phase ends with both
parties holding a share (and having seen only random shares during the computation),
which gives away nothing on the result. Only after the share reconstruction do the
parties learn the effects of their cheating.

We will later provide an additional example of a passively secure protocol that satisfies our
definition.

Protocol Structure: In order to chain several computation steps of a server in the outer protocol,
the different instances of ρ have to be correlated. Suppose for example we use garbled circuits
as an inner protocol, and want to chain two computation steps of a server in Π. Then, since
the adversary must not learn the result of the first computation step, the labels of the result
have to be used as input labels for the second computation step. Only after this step is
performed as well can the output be announced.

This type of input-output mapping is not unique to garbled circuits and can be performed
with at least the majority of passively secure protocols. In particular, this allows us to
implement server-to-server communication without having to reveal intermediate results by
simply routing the messages through the clients as inputs for the next round/computation
step.

In order to minimize the communication between the parties, we use the following optimiza-
tion of the inner functionality. If a computation by Π only relies on the local state µji , does

not affect the internal state σj and is deterministic, we call this a Type I computation. All
other computations are Type II computations. Observe that the client CP has µjP available,

as well as the inputs wjP and can therefore compute perform this evaluation of π locally and
send the result to the other client. Note, that this client-to-client communication is allowed,
because it is completely determined by messages from the inner protocol.

6.4 The Compiled Resettable Protocol

The compiled protocol φdROTΠ,ρ will provide resettable security for a party S against a resetting party
U. The compiler proceeds as follows. In a first step, U selects the k servers which it wants to have
on its watchlist. U inputs the choices into a k-out-of-n OT based on FdROT and obtains the blinded
keys for the watchlist channels, while S stores the keys for all servers. Both parties commit to their
watchlist keys, but do not announce them yet.

Then, all OTs for the inner protocols are precomputed with random inputs by U. Due to the
definition of FdROT, S receives its own random inputs from FdROT. These two steps are formally
described in Figure 9.

Now, both parties engage in a simulated execution of the servers of Π. A formal description
of the simulated execution of Π is shown in Figure 10. In a first step, the precomputed OTs are
derandomized, using a variant of the derandomization technique of Beaver [Bea95]. We cannot
directly use the normal derandomization procedure, because an adversary can learn both inputs
via resets in the protocol of [Bea95]. Instead, we again apply a PRF to the correction value z

19

Resettability Compiler φdROTΠ,ρ

Let ρ be an `-round semi-actively secure protocol with parties (PS,PU) and Π be an honest-majority protocol
with active security and clients (CS,CU) and servers (S1, . . . , Sn). Let COM be a UC-secure commitment
scheme.

Watchlist generation:
1. U: Draw a string s = (s1, . . . , sn) with HW (s) = k and input s into Fk n

dROT to obtain k random
values (α1, . . . , αk). Choose a random vector wU of sufficient length for the watchlists and compute
(cjU, d

j
U)← COM.Commit(wjU). Send cU to S.

2. S: Upon receiving α = (α1, . . . , αn) from Fk n
dROT, compute βi = PRF(αi) and set wS = α⊕ β. Use

wS for the n watchlists. Compute (cβ, dβ)← COM.Commit(β) and send cβ to U.

OT precomputation:
3. U: Sample e = (e1, . . . , et) with ei ∈R {0, 1} and send for each ei, i ∈ [t] (sid, ssid, receiver, ei) to

FdROT. Obtain t random strings rU = (r
e
1 , . . . , ret).

4. S: Upon receiving 2t strings rS =
(
(r1

0, r
1
1), . . . , (rt0, r

t
1)
)

from FdROT, store rS.

Figure 9: Watchlist setup and OT precomputation of φdROTΠ,ρ .

sent by U and then use this combined with the random strings obtained in the watchlist selection
and OT precomputation to fix the randomness of the outer protocol. Additionally, we derive the
randomness for the inner protocols from the randomness of the outer protocol. This ensures that
each new input in the outer protocol basically enforces a new random tape for S, which reduces
reset attacks to active attacks.

Once the OTs are derandomized, the parties execute the inner protocol for each server in parallel
up to the last round, which w.l.o.g. outputs the result of the computation. Due to the semi-active
security of the inner protocol, even active attacks do not result in a security breach. However, if
we would allow U to use the watchlists from the beginning of the protocol (as in [IPS08]), he would
learn outputs of the inner protocol, although the output phase of the inner protocol has not begun.
This would break the security of the inner protocol, and is the reason that both parties have to
commit to their views prior to the output phase.

Both parties send their view over the watchlists, which basically serve as a commitment to their
computation. Still, at this point neither party can access the watchlists, because the keys have not
been announced. In the last round of the inner protocol, S applies a PRF to all watchlists of U to
obtain his selection of watchlists. This challenge is sent to U, who has to unveil the keys for the
challenged watchlists. S verifies the consistency of the challenged watchlists and in turn announces
his own keys, so that U can check the consistency.

This approach guarantees that U cannot predict the challenge (e.g. by resetting) because each
change in the execution of the inner protocols leads to a new challenge. This mechanism provides
the same security as the watchlist in [IPS08], but is resettably secure. Once both parties agree that
the watchlists are consistent, the inner protocol can be completed such that the parties learn the
output.

We use the PRFs a bit sloppy in the formal description to keep the presentation clean. Assume
that each PRF has a random seed, and is chosen such that the output length fits the respective

20

application (if necessary by applying a PRG to the result). All seeds combined form the hard-coded
random tape of S.

Resettability Compiler φdROTΠ,ρ (cont’d)

Simulated execution of Π: Upon input (sid, ssid, input,U, xU), U draws rUΠ and rjU, j ∈ [n] uniformly

at random and starts the execution of CU with input (xU, r
U
Π). Let the output of CU be the messages

m1
U, . . . ,m

n
U to be sent to the servers.

1. U: Start the derandomization of the OTs for round i of ρj , j ∈ [n] according to the following protocol.
Let γj be the subset of OTs required by ρj in round i.

(a) U: Let e|γj be the subset of e corresponding to server j and round i, and c|γj be the actual

OT inputs (derived from mj
U and rjU). Set z|γj = e|γj ⊕ c|γj and send zi = (z1

|γj , . . . , zn|γj) to S.

(b) S: Upon receiving zi, compute rSΠ = PRF(zi,w, r) and rρ = PRF(zi, r
S
Π), where rρ =

(r1
ρ, . . . , r

n
ρ). Start CS with input (xS, r

S
Π) and let m1

S, . . . ,m
n
S be the output. For all j ∈ [n],

start ρj with input (mj
S, r

j
ρ). This yields γj tuples of OT inputs

(
(s1

0, s
1
0), . . . , (sγ

j

0 , sγ
j

1)
)
. For

l ∈ [γj], if zl = 0, set (s̃l0, s̃
l
1) = (sl0 ⊕ r

l
0, s

l
1 ⊕ r

l
1). If zl = 1, set (s̃l0, s̃

l
1) = (sl0 ⊕ r

l
1, s

l
1 ⊕ r

l
0).

Send (s̃0, s̃1)
γ
j for all j ∈ [n] to U.

(c) U: Upon receiving j tuples (s̃0, s̃1)
γ
j , use rU|γj to obtain scγj .

2. S: Continue the simulation of ρj , j ∈ [n] and forward all messages from PS to U. Send all inputs and
outputs of ρj over watchlist W j

S encrypted with wjS.

3. U: Start the execution of ρj , j ∈ [n] with input (mj
U, r

j
U) as party PU. Send all inputs and outputs of

ρj over watchlist W j
U encrypted with wjU and go back to Step 1 until i = `.

4. S: Compute ch = PRF(WU), where |ch| = n, HW (ch) = k and send ch to U.

5. U: Upon receiving ch, do for j ∈ [n]: if ch[j] = 1, set uj = (djU, w
j
U). Send u = (u1, . . . , uk) to S.

6. S: Upon receiving u, check for all j ∈ [k] if COM.Open(cjU, d
j
U, w

j
U) = 1 and check the consistency of

all watchlists W j
U, including consistency between watchlists. If the checks pass, send (dβ,β) to U.

Resume ρ and let oS be the output. Simulate CS with input oS and let yS be the output. Output
(sid, ssid, yS).

7. U: Check if COM.Open(cβ, dβ,β) = 1, and abort if not. Set wjS = αj ⊕ βj and check the consistency

of the watchlists W j
S . If no inconsistency occurred, resume ρ and let oU be the output. Simulate CU

with input oU and let yU be the output. Output (sid, ssid, yU).

Figure 10: Simulation of the outer protocol in φdROTΠ,ρ .

Theorem 2. Let F res
2PC be a 2-party functionality. Suppose Π is an 1-round∗ outer MPC protocol

realizing F with adaptive security, with n = Θ(4k) and t = Θ(k), for a statistical security parameter
k. Let G be the functionality as defined in Section 6.3 and ρ a protocol that securely realizes G in
the OT-hybrid model with semi-active security. Then the compiled protocol φdROTΠ,ρ securely realizes

F res
2PC in the FdROT-hybrid model with resettable security. φdROTΠ,ρ has communication complexity
O(CΠ + nrCρ), round complexity O(rΠrρ), and invokes FdROT O(nrΠqρ) times, where CΠ is the
communication complexity of Π, rΠ is the number of rounds in Π, Cρ is the communication plus
randomness complexity of ρ, and qρ is the number of invocations of FdROT in ρ.

Proof. Our proof is conceptually very similar to the proof of [IPS08]. We have to make some
adaptations regarding the simulation, in particular we require two different simulators for the two
parties due to the asymmetry of the parties.

21

Corrupted U. We will show that there exists a simulator SU (cf. Figure 11) for the protocol

φdROTΠ,ρ that essentially mimics the behavior of an adversary in the outer protocol Π, which corrupts
at most t parties. We can then use the UC simulator SΠ of Π to simulate the rest of the protocol.
In order to handle resets by AU, we simulate F for SΠ and forward its outputs to F res

2PC. In the
following let AU be the dummy adversary.

The simulator always uses the same random values for the corresponding input from AU so as
to simulate consistently if AU inputs the same value twice (e.g. after a reset). In order to maintain
good readability, this is shown only in Step 2 and omitted later. The same technique can be used for
every situation where SU needs to draw random values. In particular, every time that SU receives
a message from AU which it has not received before, it appends that message to the view. If some
time in the future a new message arrives with the same prefix, this implies an inconsistency in the
execution (independent of possibly wrong inputs, just due to the fact that all messages are derived
deterministically from the OT precomputation), and SU will in turn corrupt Ŝj .

We now have to show that no environment can distinguish a simulation of SU from an actual
protocol run of φdROTΠ,ρ . Additionally, we have to show that SU corrupts at most t servers in Π̂.
We argue that the simulation of SU is computationally indistinguishable from a real protocol run.
Sρ’s output is (computationally or statistically) indistinguishable from a protocol run of ρ. All
randomness used by S is pseudorandom and thus indistinguishable from the random values used
by SU. Further, AU cannot abort depending on the inputs due to the use of random inputs into
the OTs.

Experiment 0: This is the real protocol.

Experiment 1: Identical to Experiment 0, except that S1 uses new (but fixed) randomness in
each step.

Experiment 2: Identical to Experiment 1, except that S2 uses the extractor Ext of COM to learn
all keys ŵU and aborts of more than t

2 servers are corrupted.

Experiment 3: Identical to Experiment 2, except that S3 learns all OT inputs by simulating
FdROT.

Experiment 4.{1, . . . , n}: Identical to Experiment 3, except that S4 replaces all executions of ρj

with executions of Sjρ

Experiment 5: Identical to Experiment 4, except that S5 replaces all calls to Gj by directly
relaying the messages from Sj .

• Experiments 0 and 1 are computationally indistinguishable due to the security of the pseu-
dorandom function.

• Experiment 1 and Experiment 2 are indistinguishable due to the UC-security of COM and
the consistency checks. Since S2 succeeds with the extraction of all commitments with over-
whelming probability, the only possibility to distinguish both experiments is if AU manages
to corrupt more than t

2 servers without S aborting. An inconsistency occurs only if AU uses
a different value in an execution of ρ than the one announced over the watchlist. All incon-
sistencies are fixed once AU sends the message over the corresponding watchlist. If S asks AU

22

Simulator SU

Let SΠ simulate an instance of Π̂ with servers Ŝj . Simulate F for SΠ. All messages directed at servers are
actually sent to SΠ and then forwarded to the simulated servers. Responses from the servers are relayed to
AU. Whenever SΠ sends a message x to F , check if a tuple (x′, y) is stored with x′ = x. If yes, return y,
otherwise set x′ = x and send (sid, ssid, reset) to F res

2PC. Then send (sid, ssid,U, x) and obtain (sid, ssid, y).
Store (x′, y) and send y to SΠ.

1. Watchlist generation: Simulate Fk n
dROT for AU and learn ŝ = (ŝ1, . . . , ŝn). Store the values α̂ =

(α̂1, . . . , α̂n). Corrupt all servers Ŝj in Π̂ where ŝj = 1 and learn the corresponding inputs mj
H

of the honest parties. Draw a random vector β̂ uniformly at random and compute (ĉβ, d̂β) ←
COM.Commit(β̂). Use ŵ = α̂⊕ β̂ to encrypt the watchlists and send ĉβ to AU.

2. OT precomputation: Simulate FdROT for AU and learn ê. Store r̂ =
(
(r̂1

0, r̂
1
1), . . . , (r̂t0, r̂

t
1)
)
. If a

tuple (α̂′, r̂′, r̂′Π) exists with α̂′ = α̂ and r̂′ = r̂, set r̂Π = r̂′Π, otherwise sample a new r̂Π and store
the tuple (α̂, r̂, r̂Π).

3. Simulated execution of Π:

(a) Derandomization: for each server instance j ∈ [n], learn AU’s input ĉ|γj = z∗|γj ⊕ e∗|γj . From

this, derive the input (m̂j
U, r̂

j
U).

(b) Execution of ρj for all j:

• If ŝj = 1, i.e. server j is on a watchlist of AU, sample a random value rjH and execute an

instance of ρ with input (mj
H, r

j
H) honestly. Send all messages over watchlist W j .

• If ŝj = 0, start the simulator Sjρ with input (m̂j
U, r̂

j
U) learned during the derandomization.

Simulate Gj for Sjρ by relaying all messages to Ŝj . Forward the answer m̂j and simulate

W j accordingly.

(c) Consistency check: perform a consistency check by randomly selecting ĉh, HW (ĉh) = k and

send ĉh to AU. Let u∗ be the answer from AU. Check consistency according to φdROTΠ,ρ , and
abort if S would abort. Use the extractor for COM on input (c∗U) to learn all keys ŵU and check
all watchlists for consistency. If an unchecked watchlist j′ is not consistent, proceed as follows:

• Corrupt Ŝj′ and learn all inputs between Ŝj′ and the clients. Reconstruct the inputs of S
input into the simulated Gj from this.

• Let Sjρ corrupt all clients adaptively, and send all messages between Gj and the clients to

Sjρ.

• Sjρ outputs the current state of each client in ρj .

If more than t
2 views are inconsistent, abort. Send d̂β to AU.

(d) Output result: continue with the simulation of Sjρ for all j ∈ [n] with input m̂j obtained from

the (corrupted and uncorrupted) servers Ŝj .

Figure 11: Simulator against a corrupted U in φdROTΠ,ρ .

to open watchlist W j
U during the consistency check, it spots any inconsistency that is not an

OT input or output with probability 1. AU can only cheat by using a wrong value in an OT
and committing to a different value in this case. Then, AU is detected only with probability
1
2 .

23

A server can thus be corrupted at most with probability 1
2 , or if it is not challenged via ch.

Each server is challenged with probability k
n , and thus the probability that SU has can corrupt

more than t
2 servers without S aborting is bounded by (1− k

n)t/2 = 2Ω(k).

• Experiments 2 and 3 are identical since S3 simply simulates the OTs for AU.

• We show the indistinguishability of Experiment 3 and Experiment 4 in a series of n hybrids.
In the j-th experiment, we replace the simulations S1

ρ , . . . ,S
j−1
ρ and the corresponding func-

tionalities G1, . . . ,Gj−1 by sessions of ρ. Experiments j and j+ 1 differ exactly in one session
of ρ. In the (j + 1)-st experiment, Sjρ simulates the protocol as long as AU remains honest.

If there is an inconsistency in the committed views that does not lead to an abort, Sjρ gets

the state of S from SU and then executes ρj from S’s state adaptively. This is always possi-
ble, because the commitment COM on the watchlist keys is hiding, thus preventing AU from
learning results before the output phase of ρ commences. Thus, Experiments j and j + 1
continue identically from this point.

• Experiment 4 and Experiment 5 are identically distributed, because the simulated Gj behave
identical to Sj in Π̂, thus we can replace all Gj by Sj in Π̂.

Combined with the fact that AU obtains t
2 servers on the watchlist, we have that SU only

corrupts t servers in Π, thus the simulation of SΠ is indistinguishable for any distinguishing en-
vironment, and will correctly output the input of AU to F , which SU relays to F res

2PC. For each
reset of an adversary in the real protocol, this procedure is repeated, leading to correctly extracted
inputs for F res

2PC.
Corrupted S. We will show that there exists a simulator SS (cf. Figure 12) for the protocol

φdROTΠ,ρ that essentially mimics the behavior of an adversary in the outer protocol Π, which corrupts
at most t parties. We can then use the UC simulator SΠ of Π to simulate the rest of the protocol.
In the following let AS be the dummy adversary.

We now show that no PPT environment can distinguish an execution of Π from an execution of
φdROTΠ,ρ . In a first step, the simulator learns the seeds ŵ for all watchlists, i.e. he can see all of AS’s

inputs into the inner protocols ρj , j ∈ [n]. Additionally, SS learns all inputs into the inner protocol
by simulating FdROT to AS. We show in a series of hybrid experiments that the simulation of SS
is computationally indistinguishable from a real execution.

Experiment 0: This is the real protocol.

Experiment 1: Identical to Experiment 0, except that S1 uses the simulator Sim of COM to
equivocate all values in the commitment and sending d̂ instead of d to AU.

Experiment 2: Identical to Experiment 1, except that S2 learns all OT inputs by simulating
FdROT.

Experiment 3: Identical to Experiment 2, except that S3 uses the extractor Ext of COM to learn
all keys ŵ.

Experiment 4: Identical to Experiment 3, except that S4 aborts if more than t
2 servers are cor-

rupted during the protocol run.

24

Simulator SS

Let SΠ simulate an instance of Π̂ with servers Ŝj . Simulate F for SΠ. All messages directed at servers are
actually sent to SΠ and then forwarded to the simulated servers. Responses from the servers are relayed
to AS. Whenever SΠ sends a message x to F , send (sid, ssid,U, x) to F res

2PC and obtain (sid, ssid, y). Relay
y to SΠ.

1. Watchlist generation: Simulate Fk n
dROT for AS and learn α̂ = (α̂1, . . . , α̂n). Compute (ĉjU, d̂

j
U) ←

COM.Commit(ŵU) and send ĉU to AS. Start the extractor Ext of COM on c∗β to learn all values β̂

and set ŵj = α̂j ⊕ β̂j . During the simulation of Π, check the consistency of all watchlists.

2. OT precomputation: Simulate FdROT for AS and learn r̂S.

3. Simulated execution of Π:

(a) Derandomization: for each server instance j ∈ [n], draw a random string ẑ
γ
j and send it to AS.

From (s̃∗0, s̃
∗
1)
γ
j , learn AS’s input (ŝ0, ŝ1)

γ
j .

(b) Execution of ρj for all j: start the simulator Sjρ with inputs (m̂j
S, r̂

j
S) from the watchlist Wj .

Simulate Gj for Sjρ by relaying all messages to Ŝj and forwarding the answers m̂j .

(c) Consistency checks: Simulate all consistency checks that U would do, and abort if U aborts.
If an inconsistency occurs in any watchlist, and less than t

2 servers are corrupted, proceed as
follows, otherwise abort:

• Corrupt Ŝj′ and learn all inputs between Ŝj′ and the clients. Reconstruct the inputs of U
input into the simulated Gj from this.

• Let Sjρ corrupt all clients adaptively, and send all messages between Gj and the clients to

Sjρ.

• Sjρ outputs the current state of each client in ρj .

• Continue the simulation of Sjρ from this state.

(d) Output result: In the last round let ch∗ be the challenge of AS.

• Corrupt all servers Ŝj for which ch[l]∗ = 1, l ∈ [n]. For each such server j, learn the inputs
m̂j

H of the honest party, sample a random r̂jH and perform a correct execution of ρj with

inputs (m̂j
H, r̂

j
H) and (m̂j

S, r̂
j
S). Let τ j be the result.

• For each ĉjU, start the simulator for COM with input τ j to equivocate the respective

commitments to values d̃jU. Let ûji = (d̃jS, τ
j) be the decommitment to ĉjS.

Send û to AS. Continue with the simulation of Sjρ for all j ∈ [n] from their current states.

Figure 12: Simulator against a corrupted S.

Experiment 5.{1, . . . , n}: Identical to Experiment 4, except that S5 replaces all executions of ρj

with executions of Sj

Experiment 6: Identical to Experiment 5, except that S6 replaces all calls to Gj by directly
relaying the messages from Sj .

• Experiments 0 and 1 are indistinguishable due to the UC-security of COM, i.e. Sim will succeed
with overwhelming probability to equivocate the commitments.

• Experiment 1 and Experiment 2 are identically distributed since S2 simply simulates FdROT.

25

• Experiment 3 and Experiment 4 are indistinguishable by the same argumentation as above,
we can therefore bound the probability that SS has can corrupt more than t

2 servers without

U aborting by (1− k
n)t/2 = 2Ω(k).

• We show the indistinguishability of Experiment 4 and Experiment 5 in a series of n hybrids.
In the j-th experiment, we replace the simulations S1

ρ , . . . ,S
j−1
ρ and the corresponding func-

tionalities G1, . . . ,Gj−1 by sessions of ρ. Experiments 5.j and 5.j + 1 differ exactly in one
session of ρ. In the (j + 1)-st experiment, Sjρ simulates the protocol as long as AU remains
honest. If there is an inconsistency in the committed views that does not lead to an abort,
Sjρ gets the state of S from SU and then executes ρj from S’s state adaptively. Thus, Exper-
iments 5.j and 5.j + 1 continue identically from this point. An environment distinguishing
between both experiments can thus be used to break the semi-active (adaptive) security of ρ.

• Experiment 4 and Experiment 5 are identically distributed, because the simulated Gj behave
identical to Sj in Π̂, thus we can replace all Gj by Sj in Π̂.

It remains to show that the amount of corrupted servers is upper bounded by t. By the same
argumentation as above, since the challenge w∗ only requires k unveils, it follows by our choice of
parameters that at most t servers will be corrupted. Thus SΠ will send the correct value x to F ,
which means SS will input the correct value input into F res

2PC.

Remark. In the above described compiler, we assumed that ρ remains secure even if the parties
choose the randomness rjS, r

j
U maliciously. Let us briefly sketch how we can execute a “coin-toss

into the well” in the compiler to remove this assumption. For each server j, both parties draw a
random string sjS and sjU, respectively, and send it to the other party. Now the party P ∈ {S,U} is

supposed to use rjP ⊕ s
j
P. This step can be verified during the consistency checks of the parties.

6.5 Applications

6.5.1 Constant-Rate Resettably Secure Computation in the FdROT-hybrid model

By applying our compiler to results from the literature, we obtain constant-rate resettably secure
computation. Both of the following results are based on the same outer protocol (up to some
minor changes regarding the circuit type). As it is, we cannot directly use their outer protocols: in
both cases, the clients perform operations for each layer of the circuit. This means that the outer
protocol is not a 1-round∗ protocol and thus cannot be used with the compiler.

However, we argue that a simple transformation of the protocol leads to the correct structure
for our compiler. As indicated above, both clients perform verification steps for each layer of the
circuit. We propose that this verification be outsourced to two servers, and only the input sharing
is done by the clients. Since the original protocol is secure in the presence of a malicious client,
it will remain secure in case that the servers are corrupted. This transformed protocol is now a
1-round∗ outer protocol and can thus be used with our compiler.

Corollary 9 (of Theorem 2 and [IPS08]). Let C be a boolean circuit of size s and depth d for a
two-party functionality f . There exists a two-party protocol Π in the FdROT-hybrid model, whose
total communication complexity is O(s + poly(k, d, log s)) and which computationally UC-realizes
F res

2PC.

26

For this result, Ishai et al. [IPS08] propose the standard passively secure GMW protocol as
the inner protocol. As we sketched in Section 6.3, this protocol is also semi-actively secure and
thus the above corollary follows immediately. For our second result, we have to argue that the
inner protocol, which is proposed in [IPS09], is semi-actively secure given actively secure OT. We
will sketch this briefly here: in the protocol, two parties jointly compute a secret sharing of a
multiplication. One party creates a noisy encoding of its input and sends it to the other party.
This party now performs a multiplication with its own input, but does not directly send the result
to the first party. Instead, both parties engage in an OT where the first party chooses the noiseless
position of the codeword. From this, both parties can compute the shares.

Now, if the first party is corrupted, it can only choose the noisy encoding maliciously (remember
that we have an actively secure OT, in contrast to the original protocol). Thus, up to the point
when the OT outputs are delivered, the passive security of the protocol prevents the first party
from learning anything (it gets no feedback at all). Similarly, if the second party is corrupted, it
might choose inconsistent values for the multiplication. This leads to inconsistent shares, but until
a share is announced by the first party, there is also no feedback and due to the passive security
the second party learns nothing.

Corollary 10 (of Theorem 2 and [IPS09]). Let C be an arithmetic circuit of size s and depth d for
a two-party functionality f . There exists a two-party protocol Π in the FdROT-hybrid model, whose
total communication complexity is O(s+ kd) and which computationally UC-realizes F res

2PC.

6.5.2 Constant-Round Resettably Secure Computation

For completeness, we show how to obtain constant-round resettable two-party computation protocol
in the FdROT-hybrid model, which only requires black-box use of a one-way function. The result
directly follows from a modification of the constant-round protocol of Damg̊ard and Ishai [DI05],
which is presented in [IPS08]. In the original protocol of [DI05], the server uses a pseudorandom
generator to encrypt a message. Using this protocol directly as the outer protocol Π is not possible,
because this would require non-black-box use of the PRG in the inner protocol. Instead, Ishai et
al. [IPS08] propose a modification of the protocol where the computation of the PRG is delegated
to the clients. The resulting protocol is a 1-round∗ outer protocol and can therefore be used with
φdROTΠ,ρ .

Our compiler itself makes black-box use of a PRF, but both PRF and PRG can be constructed
in a black-box way from one-way functions. Combined, this yields:

Corollary 11 (of Theorem 2 and [DI05, IPS08]). There exists a constant-round two-party protocol
in the FdROT-hybrid model which makes black-box use of a one-way function and computationally
UC-realizes F res

2PC.

6.5.3 Non-Interactive UC-Secure Computation from Untrusted Resettable Tamper-
Proof Hardware

In combination with the results of Döttling et al. [DMMQN13], the compiler can directly be used
to obtain non-interactive UC-secure computation. They present a protocol based on resettable
tamper-proof hardware tokens that creates a resettable UC-secure CRS with two tokens. A sender
can simply store the program of S of the compiler φdROTΠ,ρ with its input on the tokens, and then
send the tokens to U.

27

Previously, in order to use their protocol, it was necessary to modify either a UC-secure com-
putation protocol in the FCRS-hybrid model like [CLOS02] such that it becomes resettable, or the
resettability compiler of [GS09] such that it can be based on a CRS.

Acknowledgement. We would like to thank Ivan Damg̊ard, Antonio Faonio, Jörn Müller-Quade
and Jesper Buus Nielsen for many helpful discussions. We also thank the anonymous reviewers for
their comments on an earlier draft of this paper.

References

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 97–109. Springer, Heidelberg, August 1995.

[BGGL01] Boaz Barak, Oded Goldreich, Shafi Goldwasser, and Yehuda Lindell. Resettably-
sound zero-knowledge and its applications. In 42nd FOCS, pages 116–125. IEEE
Computer Society Press, October 2001.

[Blu81] Manuel Blum. Coin flipping by telephone. In Allen Gersho, editor, CRYPTO’81,
volume ECE Report 82-04, pages 11–15. U.C. Santa Barbara, Dept. of Elec. and
Computer Eng., 1981.

[BLV03] Boaz Barak, Yehuda Lindell, and Salil P. Vadhan. Lower bounds for non-black-
box zero knowledge. In 44th FOCS, pages 384–393. IEEE Computer Society Press,
October 2003.

[BOGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for
non-cryptographic fault-tolerant distributed computation (extended abstract). In
20th ACM STOC, pages 1–10. ACM Press, May 1988.

[BP13] Nir Bitansky and Omer Paneth. On the impossibility of approximate obfuscation
and applications to resettable cryptography. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, 45th ACM STOC, pages 241–250. ACM Press, June 2013.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damg̊ard. Multiparty unconditionally
secure protocols (extended abstract). In 20th ACM STOC, pages 11–19. ACM Press,
May 1988.

[CDD+15] Ignacio Cascudo, Ivan Damg̊ard, Bernardo Machado David, Irene Giacomelli, Jes-
per Buus Nielsen, and Roberto Trifiletti. Additively homomorphic UC commitments
with optimal amortized overhead. In Jonathan Katz, editor, PKC 2015, volume 9020
of LNCS, pages 495–515. Springer, Heidelberg, March / April 2015.

[CGGM00] Ran Canetti, Oded Goldreich, Shafi Goldwasser, and Silvio Micali. Resettable zero-
knowledge (extended abstract). In 32nd ACM STOC, pages 235–244. ACM Press,
May 2000.

28

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally com-
posable two-party and multi-party secure computation. In 34th ACM STOC, pages
494–503. ACM Press, May 2002.

[COP+14] Kai-Min Chung, Rafail Ostrovsky, Rafael Pass, Muthuramakrishnan Venkitasubra-
maniam, and Ivan Visconti. 4-round resettably-sound zero knowledge. In Yehuda
Lindell, editor, TCC 2014, volume 8349 of LNCS, pages 192–216. Springer, Heidel-
berg, February 2014.

[CPS13] Kai-Min Chung, Rafael Pass, and Karn Seth. Non-black-box simulation from one-way
functions and applications to resettable security. In Dan Boneh, Tim Roughgarden,
and Joan Feigenbaum, editors, 45th ACM STOC, pages 231–240. ACM Press, June
2013.

[CR03] Ran Canetti and Tal Rabin. Universal composition with joint state. In Dan Boneh,
editor, CRYPTO 2003, volume 2729 of LNCS, pages 265–281. Springer, Heidelberg,
August 2003.

[DFG+11] Yi Deng, Dengguo Feng, Vipul Goyal, Dongdai Lin, Amit Sahai, and Moti Yung. Re-
settable cryptography in constant rounds - the case of zero knowledge. In Dong Hoon
Lee and Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages
390–406. Springer, Heidelberg, December 2011.

[DGN10] Ivan Damg̊ard, Martin Geisler, and Jesper Buus Nielsen. From passive to covert
security at low cost. In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS,
pages 128–145. Springer, Heidelberg, February 2010.

[DGS09] Yi Deng, Vipul Goyal, and Amit Sahai. Resolving the simultaneous resettability
conjecture and a new non-black-box simulation strategy. In 50th FOCS, pages 251–
260. IEEE Computer Society Press, October 2009.

[DI05] Ivan Damg̊ard and Yuval Ishai. Constant-round multiparty computation using a
black-box pseudorandom generator. In Victor Shoup, editor, CRYPTO 2005, volume
3621 of LNCS, pages 378–394. Springer, Heidelberg, August 2005.

[DMMQN13] Nico Döttling, Thilo Mie, Jörn Müller-Quade, and Tobias Nilges. Implementing
resettable UC-functionalities with untrusted tamper-proof hardware-tokens. In Amit
Sahai, editor, TCC 2013, volume 7785 of LNCS, pages 642–661. Springer, Heidelberg,
March 2013.

[DPV04] Giovanni Di Crescenzo, Giuseppe Persiano, and Ivan Visconti. Constant-round re-
settable zero knowledge with concurrent soundness in the bare public-key model. In
Matthew Franklin, editor, CRYPTO 2004, volume 3152 of LNCS, pages 237–253.
Springer, Heidelberg, August 2004.

[GIP15] Daniel Genkin, Yuval Ishai, and Antigoni Polychroniadou. Efficient multi-party com-
putation: From passive to active security via secure SIMD circuits. In Rosario Gen-
naro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II, volume 9216 of
LNCS, pages 721–741. Springer, Heidelberg, August 2015.

29

[GKOV12] Sanjam Garg, Abishek Kumarasubramanian, Rafail Ostrovsky, and Ivan Visconti.
Impossibility results for static input secure computation. In Reihaneh Safavi-Naini
and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 424–442.
Springer, Heidelberg, August 2012.

[GM11] Vipul Goyal and Hemanta K. Maji. Stateless cryptographic protocols. In Rafail Os-
trovsky, editor, 52nd FOCS, pages 678–687. IEEE Computer Society Press, October
2011.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May 1987.

[Gol01] Oded Goldreich. Foundations of Cryptography: Basic Tools, volume 1. Cambridge
University Press, Cambridge, UK, 2001.

[GS09] Vipul Goyal and Amit Sahai. Resettably secure computation. In Antoine Joux, editor,
EUROCRYPT 2009, volume 5479 of LNCS, pages 54–71. Springer, Heidelberg, April
2009.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sa-
hai. Efficient non-interactive secure computation. In Kenneth G. Paterson, editor,
EUROCRYPT 2011, volume 6632 of LNCS, pages 406–425. Springer, Heidelberg,
May 2011.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge
from secure multiparty computation. In David S. Johnson and Uriel Feige, editors,
39th ACM STOC, pages 21–30. ACM Press, June 2007.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on obliv-
ious transfer - efficiently. In David Wagner, editor, CRYPTO 2008, volume 5157 of
LNCS, pages 572–591. Springer, Heidelberg, August 2008.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation
with no honest majority. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 294–314. Springer, Heidelberg, March 2009.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party com-
putation in the presence of malicious adversaries. In Moni Naor, editor, EURO-
CRYPT 2007, volume 4515 of LNCS, pages 52–78. Springer, Heidelberg, May 2007.

[LS91] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge
proofs. In Alfred J. Menezes and Scott A. Vanstone, editors, CRYPTO’90, volume
537 of LNCS, pages 353–365. Springer, Heidelberg, August 1991.

[MP06] Silvio Micali and Rafael Pass. Local zero knowledge. In Jon M. Kleinberg, editor,
38th ACM STOC, pages 306–315. ACM Press, May 2006.

30

[MR01] Silvio Micali and Leonid Reyzin. Min-round resettable zero-knowledge in the public-
key model. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS,
pages 373–393. Springer, Heidelberg, May 2001.

[NP05] Moni Naor and Benny Pinkas. Computationally secure oblivious transfer. Journal
of Cryptology, 18(1):1–35, January 2005.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient
and composable oblivious transfer. In David Wagner, editor, CRYPTO 2008, volume
5157 of LNCS, pages 554–571. Springer, Heidelberg, August 2008.

[PW09] Rafael Pass and Hoeteck Wee. Black-box constructions of two-party protocols from
one-way functions. In Omer Reingold, editor, TCC 2009, volume 5444 of LNCS,
pages 403–418. Springer, Heidelberg, March 2009.

[RS92] Charles Rackoff and Daniel R. Simon. Non-interactive zero-knowledge proof of knowl-
edge and chosen ciphertext attack. In Joan Feigenbaum, editor, CRYPTO’91, volume
576 of LNCS, pages 433–444. Springer, Heidelberg, August 1992.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract).
In 27th FOCS, pages 162–167. IEEE Computer Society Press, October 1986.

[YZ07] Moti Yung and Yunlei Zhao. Generic and practical resettable zero-knowledge in the
bare public-key model. In Moni Naor, editor, EUROCRYPT 2007, volume 4515 of
LNCS, pages 129–147. Springer, Heidelberg, May 2007.

[ZDLZ03] Yunlei Zhao, Xiaotie Deng, Chan H. Lee, and Hong Zhu. Resettable zero-knowledge
in the weak public-key model. In Eli Biham, editor, EUROCRYPT 2003, volume
2656 of LNCS, pages 123–139. Springer, Heidelberg, May 2003.

31

	Introduction
	Our Results
	Our Techniques
	Structure of the Paper

	Preliminaries
	Universal Composability Framework
	Zero-Knowledge
	Commitments Schemes
	Extractable Commitments
	Extractable Commitments with Security Against a Resetting Sender

	Resettably Secure Computation
	Fully Simulatable Resettable CRS in the Plain Model
	Security Notion
	A Fully Simulatable Resettable CRS

	Constant-Round Resettable Functionalities
	Constant-Round Resettable Zero-Knowledge Argument of Knowledge
	Constant-Round Resettable Computation

	Constant-Rate Resettable Computation
	Tools
	Deterministic Randomized OT
	UC-secure commitments from FdROT

	The Outer Protocol
	The Inner Functionality G and the Inner Protocol
	The Compiled Resettable Protocol
	Applications
	Constant-Rate Resettably Secure Computation in the FdROT-hybrid model
	Constant-Round Resettably Secure Computation
	Non-Interactive UC-Secure Computation from Untrusted Resettable Tamper-Proof Hardware

