
Indiscreet Logs: Persistent Diffie-Hellman Backdoors
in TLS

Kristen Dorey
Western University, Canada

kdorey@uwo.ca

Nicholas Chang-Fong
Western University, Canada

nchangfo@uwo.ca

Aleksander Essex
Western University, Canada

aessex@uwo.ca

Abstract—Software implementations of discrete logarithm
based cryptosystems over finite fields typically make the as-
sumption that any domain parameters they are presented with
are trustworthy, i.e., the parameters implement cyclic groups
where the discrete logarithm problem is assumed to be hard.
An informal and widespread justification for this seemingly exists
that says validating parameters at run time is too computationally
expensive relative to the perceived risk of a server sabotaging the
privacy of its own connection. In this paper we explore this trust
assumption and examine situations where it may not always be
justified.

We conducted an investigation of discrete logarithm domain
parameters in use across the Internet and discovered evidence
of a multitude of potentially backdoored moduli of unknown
order in TLS and STARTTLS spanning numerous countries,
organizations, and protocols. Although our disclosures resulted
in a number of organizations taking down suspicious parameters,
we argue the potential for TLS backdoors is systematic and will
persist until either until better parameter hygiene is taken up by
the community, or finite field based cryptography is eliminated
altogether.

I. INTRODUCTION

Finite fields underly a number of cryptographic primitives
and protocols such as DH/DHE key exchange, DSA signatures,
ElGamal encryption, and others. DHE in particular, though in
steady decline over recent years, is still widely supported. In
contrast to elliptic-curve variants of these cryptosystems, it is
common for finite-field crypto implementations not only to
support custom groups, but accept almost any group param-
eters they are presented with. The potential consequences of
working in weak groups are well known: the discrete logarithm
problem is efficient when groups are of sufficiently low or
smooth order. Being able to ascertain the size and primality
of a group’s order, therefore, would seem it should be a
critical functionality. It is not. Checking each value in each
interaction at run-time is regarded as being too computationally
expensive, and all implementations of finite-field cryptography
we examined perform little or no validation whatsoever.

What this means is software implementations implicitly
trust that the given parameters form a cyclic group of suf-
ficiently large, non-smooth order. At first glance this seems a
reasonable assumption: the party with the private key typically
chooses these parameters, which are typically communicated
to the other party via an authenticated channel. We examine a
number of possible scenarios in which weakened parameters
could be maliciously injected for the purposes of creating a
persistent backdoor. There are a number of possible way for
these malicious parameters to be delivered, and we consider

two main possibilities: directly attacking the server or TLS
endpoint, or by attacking the software upstream. The first
scenario involves the attacker achieving some kind of privi-
leged access in the context of a potentially broader exploit,
which places weak DH parameters as payload on a server or
TLS endpoint (e.g., cloud load balancer). The second scenario
involves the attacker compromising the software itself, for
example by starting a malicious open-source software project,
compromising software update, or by slipping the modified
parameters into a closed-source commercial software produc-
t/appliance. Although the adversarial assumptions are strictly
stronger than an in-protocol attack on DH like Logjam [6], they
exhibit a number of desirable properties, and we find evidence
in the wild of their deployment.

Significance. We argue parameter injection is interesting for a
number of reasons:

• Efficient. Optimally weak parameters can be chosen
to allow near instantaneous recovery of DH shared
secrets;

• Pervasive. Attacks work on the examined implemen-
tations with no modification to existing source code—
at either end point;

• Surreptitious. Implementations provide little or no
means of validating parameters following their ini-
tial creation, and detecting weak parameters is a
potentially very computationally expensive process.
Community efforts to locate and draw attention to
suspicious parameters have been largely ad hoc.

• Deniable. The very existence of a backdoor can be
deniable. We uncovered a number of composite mod-
uli online and none of the organizations we contacted
were willing or able to prove the parameters did not
contain a backdoor, nor explain how the parameters
came to be used.

Summary of Results. We examined major implementations of
the finite field based discrete logarithms showing a systematic
vulnerability to weak groups and systematically bad parameter
hygiene. Some of these issues are well known. What may not
be as well known is the exact extent to which they occur.

Although DHE use is in steep decline, many servers and
clients still support it, and we discuss how TLS in particular is
vulnerable to DHE “downgrade” attacks, in which an adversary
that can exploit trapdoored parameters can force a DHE cipher-
suite to be selected if both parties support it. We conducted

an internet wide survey of DHE support uncovering hundreds
of TLS- and STARTTLS-enabled web and mail servers using
composite moduli with no smooth factors. These potentially
backdoored parameters were found across a range of proto-
cols, including HTTPS, SMTP, SMTPS, IMAPS, and POP3S,
spanning over 30 countries and a diverse set of organizations.
We disclosed the vulnerability to 17 companies, resulting in
a security advisory (CVE-2016-5774). We found thousands
more sites offering non-safe prime groups of unknown order,
and others using generators of partially smooth order, which
allowed us in some cases to recover large portions of the
private key. Interestingly, none of the organizations we spoke
to were willing or able to explain how composite moduli came
to be used in their DHE configurations, but we present several
possible attack vectors. We finish with a discussion of potential
mitigation strategies.

At worst, the conclusion of this study is that backdoored
DHE parameters are in use on the Internet today. More
troubling is that at best we cannot be certain, nor is there
a straightforward way to robustly prevent it.

The remainder of this paper is organized as follows. In § II
we discuss background and related work. In § III we examine
software implementations and discuss the mechanics of creat-
ing TLS backdoors, as well as how they can be exploited in
TLS and SSH. In § IV we present a survey of DHE parameters
in TLS and STARTTLS. In § V we discuss possible vectors of
attack for injecting weakened parameters. In § VI we report
on vulnerability disclosures we conducted with organizations
found using composite moduli. Finally in § VII-A we discuss
potential mitigation strategies.

II. BACKGROUND

A. Related Work

RSA Weaknesses. Although RSA does not use public domain
parameters like DL implementations, RSA is susceptible to
poor entropy in key generation. Both DL parameters validation
and RSA key generation are mature areas, but maturity does
not prevent weak implementations from occurring. Heninger
et al. [24] and Lenstra et al. [30] recently conducted indepen-
dent Internet-wide surveys of RSA keys. Both studies found
instances of insufficiently random RSA keys, leading to private
key recovery in some cases. The current TLS 1.3 draft [36]
has recommended removing RSA for key exchange due to
its security drawbacks, emphasizing the importance of proper
protocol implementations.

Ellipic Curve Backdoors. For elliptic curves, there has
been speculation for years that some NIST standard curves
contained backdoors [12]. This speculation has been re-
newed recently, as revelations by Edward Snowden suggested
that certain elliptic curve cryptography standards like the
Dual_EC_DRBG random number generator contained an ex-
ploitable backdoor. This type of backdoor mathematically
exists1, and is practically exploitable based on recent work
by Checkoway et al. [14].

General DL Attacks. General algorithms such as Baby-step
gGiant-step and Pollard’s P-1 can be applied to the discrete
logarithm problem. Given a generator g of prime order q and

1See United States Patent US8396213.

an element y = gx ∈ Gq , the value x can be recovered in
time O(

√
q) and space O(

√
q). An algorithm by Pohlig and

Hellman [35] provides better results if q is composite. Given
q = q1q2 . . . qk, the Pohlig-Hellman algorithm can compute
the discrete logarithm of y = gx, and therefore recover x, in
time

O

(k∑
i=1

√
qi

)
.

A variation of working in a group of smooth composite order
is to simply work in a group of small order. This small sub-
group attack is by Lim and Lee [32], with additional insight
provided by Anderson and Vaudenay [7] and Oorschot and
Weiner [41]. In § III, we show how small subgroup attacks
can be applied toward shared-secret recovery in TLS.

Number Field Sieve Attacks. In ephemeral DH key agree-
ment, forward secrecy is the process of generating indepen-
dent, per-connection keys so that an attacker would theoreti-
cally have to solve a new instance of the discrete logarithm
problem each time. Recently, Adrian et al. [6] showed that this
assumption does not always hold in finite field cryptography.
They demonstrated that an attacker could perform intensive
precomputation once for a specific group, and later perform
efficient discrete logarithms of independent instances in that
group. Their attack, called Logjam, used a modified version
of the generalized number field sieve (GNFS) to recover
ephemeral DH keys where 512-bit groups, or export-grade
parameters, were used.

Factoring 512-bit RSA moduli is becoming routine [40],
but computing discrete logarithms remains at least as hard as
integer factorization. Sieving in 2048-bit groups is currently
considered well outside the range of computational feasibility,
and DH moduli have been required by NIST [9] to be at least
2048 bits since 2013, (although this theory seems to differ
from the current practice in many cases).

Although Diffie-Hellman ciphersuites are still widely sup-
ported, they are chosen with increasing rarity which makes
NFS-based attacks largely infeasible. These attacks cannot
recover DH shared secrets that were never generated, and
they cannot force DH ciphersuites to be chosen if the DL
computation takes considerably longer than a typical TLS
handshake. For example, at 512-bit levels the implementation
of Adrian et al. took 70 seconds on average, compared to
a typical TLS handshake that takes less than one second.
Therefore despite the stronger adversarial assumptions required
by weakened or trapdoored moduli relative to GNFS-based
attacks, they can be parameterized to allow real-time recovery
of shared secrets—at any key length.

GNFS-Backdoored Moduli. As pointed out by Lensta [29],
Gordon [21], and others, basic validation would not be suffi-
cient to ensure the hardness of the discrete logarithm problem
if p was maliciously chosen to be “nice” in the context of a
GNFS attack. Here, a prime number could be constructed using
a polynomial of low-degree and constrained coefficients for the
purposes of greatly accelerating the GNFS sieving and descent
steps. Given only p, a verifier would need to deduce this
polynomial in order to establish the existence of a backdoor.
This process, however, is much more costly than the steps
outlined above, and is unrealistic at run-time.

https://www.google.com/patents/US8396213

However, there fundamentally exists an inverse relationship
between detectability and exploitability in this setting: the
lower degree the polynomial, the easier to compute the GNFS,
but also the more likely a verifier could discover the under-
lying polynomial and vice-versa. Although this relationship
deserves further study, there are much more efficient options
available unless covertness is critical to the attacker. Therefore
we restrict our discussion to the basic validation techniques
described in § III-B.

Diffie-Hellman Parameter Validation. The lack of DH pa-
rameter validation in TLS and SSH has been previously noted.
Bhargavan et al. [26] demonstrated triple handshake attacks on
TLS-DHE that relied on the use of non-prime groups which
went unchecked on the client end. In a follow-up paper [27]
the authors conduct small subgroup attacks on TLS, SSH, and
IKEv2 that exploit the lack of public key validation. Mavro-
giannopoulos et al. [33] defined a TLS attack used when a
server supports explicit elliptic Diffie-Hellman (ECDH) curves.
The attack is made possible through incorrect DH parameter
validation, as the client views the ECDH parameters as DH
parameters. Although recovery of the DH pre-master secret is
possible, this attack is very limited as explicit ECDH curves
are not supported in the majority of TLS implementations due
to their open-source nature.

Finally, recent concurrent but independent work by
Wong [43] also found examples of composite DHE moduli
over HTTPS in the wild. Our study, however, reports on
considerably more specimens across a wider range of proto-
cols. In addition, the exploitation by Wong required both the
client and server to prefer a DHE ciphersuite, which limits the
attack potential since current telemetry data indicates DHE key
exchanges account for 1% of TLS handshakes.2 In § III-G we
describe how an attacker can exploit backdoored parameters to
force a DHE ciphersuite to be selected if both parties support it.
Additionally we explain how one of the trapdoor constructions
he presents could be reversed in O(2

`
2) operations instead

of the expected O(2`). We also conducted a number of
vulnerability disclosures and discuss vendor responses in § VI.

III. DISCRETE LOGARITHM BACKDOORS

In this section we discuss aspects of creating and exploiting
weak or trapdoored DH parameters in TLS and OpenSSH.

A. Preliminaries

We briefly review some important properties of finite-field
based discrete logarithms. Let Gq be a cyclic group of order q.
An element 1 < x < p has order q if q is the smallest number
such that xq mod p = 1. Let p = qr + 1 for p, q prime, and
let g = hr mod p 6= 1 for some 1 < g, h ≤ p−1. We say g
generates Gq . By safe prime group we denote the case where p
is a safe prime, i.e., r = 2. Typically implementations choose
g ∈ Z∗

p, i.e., as having order p−1 as opposed to (p − 1)/2.
By non-safe prime group (also known as a Schnorr group,
or DSA group) we denote the case where r > 2, i.e. the
cyclic subgroup Gq of Z∗

p. Typically q << p allowing for
more efficient operations.

2https://telemetry.mozilla.org

Applications of the DLP over finite fields, such as Diffie-
Hellman, are defined by a set of domain parameters 〈p, q, g〉,
where p is the prime modulus, q is the group order, and g is
a generator of Gq . Let Gq be a cyclic group of large, prime
order. Given two elements g, y ∈ Gq the discrete logarithm
problem (DLP) is the problem of finding the unique value
0 ≤ x < q such that gx = y mod p, and is believed to be
computationally infeasible when q is of sufficiently large and
contains no small factors. The computational Diffie-Hellman
assumption states that given the values g, ga, gb ∈ Gq , it
should be computationally infeasible to compute gab. Finally,
the decisional Diffie-Hellman assumption states that given
g, ga, gb ∈ Gq , it is believed to be computationally infeasible
to distinguish between gab and a random element in Gq .

B. Validating domain parameters

Verifying the validity of the domain parameters is sufficient
to detect the kinds of weakened or backdoored parameters
considered by this paper. Most of the software implementations
we examined, however, skip one or more of the following
checks:

• Length: Check that |p| and |q| are sufficiently large
(i.e. |p|≥ 2048-bits, |q|≥ 224-bits as per current NIST
guidelines [10]);

• Primality: Check p and q are both prime;3

• Group Order: Check q|(p − 1). No mechanism is
provided in TLS to communicate group order [17],
[36];

• Group Membership: Check any asserted group ele-
ment i.e. generator g, public key, etc. is a member of
the group (i.e. m ∈ Gq). Specifically, check 1 < m <
p−1 and mq mod p = 1. Note m = p−1 is explicitly
excluded by the associated NIST standard [8], since it
always only has an order of 2, regardless of the choice
of p. Safe prime groups working in Z∗

p can omit the
exponentiation by the group size, since all elements
1 < m < p− 1 are part of this group.

C. Discrete Logarithm Implementations

Most finite-field based implementations of the discrete
logarithm cryptosystems we examined inherently treat domain
parameters as trusted. Many of the necessary checks (e.g.,
primality, group membership, etc) are done when the parame-
ters are generated, but at no point thereafter. For example, the
OpenSSL implementation of DSA does not check parameters
during key generation, signing, or verification and we were
able to construct accepting universal forgeries with maliciously
constructed parameters. This wouldn’t pose a problem in most
cases since usually the expectation is that the signer would
generate their own parameters (and, of course, DSA has gone
the way of the dinosaur anyway). But this strategy does not
always work out. One related example arose in OpenSSL
when using non safe-prime groups (i.e., X9.42 groups) in
Diffie-Hellman key exchanges where the server’s private key
was reused e.g., in static DH modes, or simply when, for
efficiency sake, exponents were reused across more than one

3Technically q only must contain a sufficiently large factor.

https://telemetry.mozilla.org

connection. By not checking the received client public value
was in the indented group (i.e., Gq), a malicious client could
partially or fully recover the server’s private key. This resulted
in CVE-2016-0701, and now OpenSSL performs a group
membership test of client public keys on the server side—
but only when an X9.42 group is ostensibly in use. In the
case of maliciously injected parameters, OpenSSL will still
successfully proceed with DH key agreements using composite
moduli, small groups, etc.

Many finite-field discrete logarithm implementations we
examined work in Z∗

p, as opposed to a prime order subgroup.
The trend seems to have begun with the Handbook of Applied
Cryptography (cf. Section 4.6.1 of [34]), and many implemen-
tations explicitly cite it. OpenSSL’s default DH parameters and
parameters generation utilities, for example, intentionally work
in Z∗

p, noting in a code comment that “actually there is no
reason to insist that ‘generator’ be a generator.4 It’s just as
OK (and in some sense better) to use a generator of the order-
q subgroup.” One reason that working in Gq is better than
working in Z∗

p is that the latter needlessly leaks a bit of the
private key: it is easy for anyone to check if the private key
was even or odd by checking respectively whether the public
key is a quadratic residue or not.

Nominally there is little risk to the CDH assumption
if p− 1 contains a sufficiently large factor and full length
exponents are used, i.e., the private exponent is also sampled
from Z∗

p, although Boneh et al. suggest related attacks in this
setting [13]. A major risk comes about when developers, in
the interest of performance, use short exponents (e.g., 160,
224, or 256 bits), and the Pohlig-Hellman attack may become
applicable depending on the subgroup structure.

But we argue working in Z∗
p is simply bad parameter

hygiene (why leak anything when you don’t have to?), and it
sets a bad precedent for developers who might be tempted to
apply this thinking to seemingly similar but subtly different
situations. For example, we found the libgcrypt, pycrypto
and bouncycastle implementations of Elgamal all by default
work in Z∗

p, which is conspicuous since it breaks the DDH
assumption and hence semantic security.

GPG, for example, uses libcrypt and the authors confirmed
their GPG public Elgamal encryption keys all leak one bit
of their respective private keys. Although this does not lead
directly to an attack because the plaintext in this setting is
(largely) a random value, it is both unnecessary and potentially
a sign of additional crypto wonkiness. For example, GPG
makes curious parameter choices and an Elgamal keypair at
the 2048-bit level consists of a prime in which p−1 consists
of a 340-bit private key in a 235-bit subgroup. Although many
of the applications using these libraries seem not to require
DDH, focusing instead on things like encrypting random
nonces, neither do the the libraries come with the caveat
that the implementations are not semantically secure as one
might nominally expect of an Elgamal implementation. This
is probably ok when encrypting a session key. This is not so
ok if the library were to be used as part of an implementation
of a cryptographic voting system encrypting ballot choices.
Finally we note the use of Z∗

p is not universal. In contrast to
the more ad hoc approach to parameter generation of many

4i.e., a generator of Z∗
p

implementations, standardized parameters such as the MODP
and Oakley safe-prime groups use generators that do not leak
a bit.

D. Trapdoors with Composite Moduli

Working in small subgroups is efficient from the attacker’s
perspective, but comes with two downsides: (1) others can
also exploit the weak group, and perhaps more importantly (2)
strong evidence exists that the parameters are compromised.
A more interesting scenario is to trapdoor the modulus such
that only the attacker can exploit it while making its very
existence a matter of speculation. In this setting the attacker
can a use composite (e.g., RSA style) modulus to construct
a trapdoor instance of the discrete logarithm problem. Let
n = pq for large primes p, q with φ = (p−1)(q−1). The idea
is to work in small subgroups of hidden and smooth order,
i.e., such that (p−1) and (q − 1) contain smooth factors. A
generator is then selected so as to have reasonably low order
modulo p and q respectively, allowing the person knowing the
factorization of n to solve several independent and efficient
discrete logarithms.

Wong [43] proposes p = 2p1p2+1 and q = 2q1q2+1 where
p1, q1 are both small (e.g., 40–55 bits), while p2, q2 are large
so as to generally prevent factorization. Let |p1|= |q1|= `.
A generator g is chosen with an order of bit length 2` i.e.,
where g has an `-bit order mod p and q respectively, and thus
computing a discrete logarithm modulo p and q takes on the
order of 2

`
2 operations each, using standard DL techniques.

With knowledge of the trapdoor, therefore, the attacker can
compute a discrete logarithm in 2

`
2+1 operations. Another

person without knowledge of the factorization, meanwhile,
would require 2` operations. This expectation, as it turns out,
is false as Corono et al. [15] showed in the context of Groth’s
cryptosystem [22]. Groth proposed a cryptosystem in which
`-bit primes p1, q1 form the randomizer space, and are chosen
to be small for efficiency. Groth proposed ` = 100, and hence
the order of the generator of the randomizer space is 2` bits.
Given this public value, Corono et al. demonstrated a clever
attack that recovers the factors of n in time O(2

`
2) instead

of the expected O(2`). Since Wong’s proposed trapdoor can
be viewed essentially as a version of Groth’s cryptosytem, the
trapdoor is similarly recoverable in O(2

`
2).

Thus for the trapdoor to be resistant to recovery, a generator
of larger order is needed. Let p = 2p1p2 . . . pk + 1 and
q = 2q1q2 . . . qk + 1 with pi, qi being randomly chosen `-bit
primes. ` is sized small enough that solving 2k discrete loga-
rithm instances in subgroups of approximately 2` is efficiently
computable, while sized large enough to prevent factorization
of n, and in turn, discovery of the trapdoor. Using Pollard’s
p−1 factorization method in this setting, n can be factored as
follows. Choose some a ∈ Zn. Let ρi be the i-th prime. For
each ρi < 2` :

1) Set a← aρi mod n
2) If gcd(a−1, n) 6= 1 and 6= n, output factor, otherwise

continue.

Factorization is guaranteed after all primes ρi < `b have
been exponentiated in, corresponding to approximately li(2`b)
modular exponentiations, where li(·) is the logarithmic in-
terval. Using an optimized GPU implementation, Henry and

Goldberg [25] suggest `b = 55 would be sufficient, requiring
1500 years of (non-paralellizable) wall-clock time to factor n,
while requiring less than two minutes to compute the discrete
logarithm with knowledge of the trapdoor. Of course a real
attacker must weigh the trade-off between their efficiency in
computing a discrete log, and the computational feasibility of
someone else recovering the trapdoor.

Plausible Deniability. One of the most desirable aspects of
this attack paradigm is the ability for an attacker to construct
a discrete-log trapdoor while maintaining plausible deniability.
It is easy to tell that a modulus is composite (when you’re
looking), but determining group structure without knowledge
of the factorization, and hence the likelihood of the existence
of a trapdoor, can be made to be computationally infeasible.
As we explain in § IV, none of the vendors we contacted about
the composite moduli we discovered were able or willing to
either confirm or deny the existence of a trapdoor—precisely
as an attacker might hope!

One possible explanation for the origin of a composite
modulus is that it was simply a random number chosen by
accident, or perhaps began as a prime and had a digit or two
flipped in an editor. In this case we would expect the resulting
value to have a distribution of factors similar to that of a ran-
dom composite number. We discussed setting n = pq for large
primes p, q, but this might arouse suspicion, beyond simply
being composite, because it would contain no small factors.
Small factors up to some bound b may be recoverable using
elliptic curve factorization, and the probability that a random
composite number is b-rough (i.e., contains no factors smaller
than b) could be used as evidence toward the determination
of the existence of a backdoor. One option would be for an
attacker to use an RSA modulus as before but multiply in a
sequence of naturally increasing factors up to bound b. We
leave a heuristic for creating convincing random-looking but
trapdoored moduli for future work.

E. Browsers Tests

We tested major web browsers to see to what extent
they would accept weak DHE parameters. We configured
OpenSSL’s s_server to accept only DHE ciphersuites and
serve custom generated Diffie-Hellman parameters. We wrote
a program to generate malicious DH parameters and encode
them in OpenSSL’s ASN.1 / pem format. We tested a number
of different composite moduli as well as non-safe prime groups
of low order.

Tested browsers include Chrome, Safari, Firefox, Internet
Explorer, and Microsoft Edge. At the time of testing all
browsers supported DHE ciphersuites, although at the time of
writing Safari had discontinued support for DHE, and Chrome
is planning to as well [11]. This is largely in response to the
difficulty in guaranteeing large moduli bit lengths following the
results of Logjam, which we discuss further in § VI. In each of
the remaining browser cases, the connection was successfully
established with weak parameters, or composite moduli and
no warnings were shown except in certain special cases. In
particular Chrome will generate an error when served short
moduli (even prior to the Logjam disclosure).

Interestingly browsers do perform a kind of limited pri-
mality test on the modulus and will reject even numbers.

When presented with an even modulus, most browsers would
generate an error, then switch to RSA for key exchange and
proceed with the connection. In all cases the browsers would
not accept obviously trivial values such as public keys or
generators equaling 1 or p−1, meaning they do defend against
working in the trivial group G2. The next smallest possible
subgroup is one of order 3, in which the server public key can
be either 1, g or g2. Working in this group will generate a
browser error approximately one third of the time (i.e., when
g = 1), but in the interest of reliability many browsers would
attempt the connection several more times and would succeed
with high probability, and no errors would be displayed to
the user. A 2-bit key is obviously an extreme example, and a
real attacker can make failure extremely unlikely by selecting a
slightly larger subgroup while still keeping discrete logarithms
computable in real-time.

As a concrete example we used the following parameters in
our browser test:

p = 22048 − 1557

g3 = 2(p−1)/3 mod p

Here p represents the largest 2048-bit prime and g3 is a gener-
ator of a subgroup of order 3, i.e., the smallest possible non-
trivial subgroup a browser would need to perform validation.
As an illustration in Figure 1 we show a successful con-
nection in Chrome with the server presenting the parameters
(p, g3, y = g3). In the developer tools Chrome warns that DHE
is deprecated, but does not notice the weak group. But how
could it? TLS contains no explicit field for communicating a
group’s order.

In summary, the browsers we tested were unable to defend
against a variety of weak parameters (small or smooth order),
as well as trapdoored groups involving composite moduli. The
limited forms of checking that are performed are interesting
from our perspective, as they constitute a kind of tacit ac-
knowledgment that parameter validation is important—just so
long as it is efficient.

F. Current Support for DHE

Many major web clients still support DHE, although Safari
has removed DHE support. Chrome is in the process of remov-
ing support but still supports it in the interest of interoperabil-
ity, connecting with DHE if it is the only key exchange mode
offered by the server. First it sends the ClientHello without
DHE ciphersuites, and if that fails it will re-attempt with DHE
ciphersuites added back in. The move away from DHE can
be seen as largely a response to Logjam and the complexity
of falling back to other ciphersuites when a client rejects
the server modulus on account of a lower than acceptable
bit length. Additional factors include the slower performance
relative to ECDHE, although this gap is exacerbated by the
predominance of safe-prime implementations using full-length
exponents. Based on the current market share DHE is still
supported in approximately 87% of browsers,5 though will
drop steeply to about 22% once Chrome removes support.
Based on our own survey approximately 26% of servers
support DHE over HTTPS (see § IV for more).

5https://www.w3counter.com/trends

https://www.w3counter.com/trends

Fig. 1. Two-bit Security in TLS. A successful DHE connection in Chrome using a generator of order 3. During this run the generator happened to equal the
public key, indicating the private key was congruent to 1 mod 3.

G. Forcing DHE in TLS

Based on current telemetry data, ciphersuites using DHE
for key exchanges currently account for approximately 1%
of TLS handshakes, limiting the potential for the attacker to
exploit weak groups passively. Fortunately for the attacker,
the message sequence of TLS makes it possible for someone
knowing the master secret to actively modify the handshake
to force DHE to be chosen if both parties support it. This is
in contrast to SSH, which is not vulnerable to an active attack
of this kind due to a differing message order (see § III-H).

The client initiates a TLS handshake providing a list of
supported ciphersuites. The man-in-the-middle modifies the
client hello removing all but DHE ciphersuites. The client
and server exchange keys as normal, except the attacker is
able to exploit the weak or trapdoored parameters to compute
the discrete logarithm of the client or server public values
and compute the pre-master secret gab, from which they can
compute the master secret. With a careful choice of parameters
the attacker can compute the discrete log in real-time. Finally
using the master secret, the attacker forges fake client- and
server-finished messages tricking the respective parties into
believing the other party only supported DHE ciphersuites,
and thus there was no other choice but to connect under DHE.
Furthermore, because the master secret is only a function of
the pre-master secret and the client- and server-random values,
both endpoints will derive the same master secrets, allowing
the attacker to continue passively eavesdropping the connection
from this point forward. This attack is illustrated in Figure 2.

H. Attack Limitations in SSH

The SSH protocol [45] specifies two fixed groups for
Diffie-Hellman exchange: the 1024-bit Oakley group 2 [23]
and the 2048-bit Oakley group 14 [28]. In major imple-
mentations of SSH, such as OpenSSH, these groups are
included directly in the source code, which would require
a code modification to exploit. An extension of SSH does
provide the option for a server to maintain its own list of
group parameters [19] and exchange them with the client at
connection time. Although the SSH standard calls specifically
for the use of safe prime groups [19], older OpenSSH versions
explicitly name Schnorr primes as an option6.

However in addition to SSH version restriction, an at-
tacker would also have to force DHE during the connec-
tion. OpenSSH now prefers elliptic curve Diffie-Hellman key
exchange; any two clients supporting ECDHE will connect
with that method. An attacker wishing for the parties to use
DHE instead would need to man-in-the-middle the handshake.

6http://man.openbsd.org/OpenBSD-4.3/cat5/moduli.0

However, owing to the message sequence in SSH, being able
to recover a DHE shared secret is not sufficient to man-in-the-
middle the connection and force DHE to be chosen.

In SSH, the client chooses its preferred key-exchange
method based on the server’s indicated support [45]. An
attacker could attempt to modify this initial server message,
but then the attack would fail at the end of the handshake when
the server provides a signed hash of the protocol messages it
saw during the handshake. At this stage the client would detect
that it saw a different sequence of messages than the server and
would abort the connection, and the attacker could not forge
this message without the server’s signing key, which is outside
our threat model. If either party does not support ECDHE,
but both parties support Diffie-Hellman group-exchange, then
they will connect under DH. DH is still widely supported, but
support for ECDHE was implemented as of OpenSSH 6.2 (ca.
2013).

I. Creating Valid-looking Moduli

A backdoored modulus may possibly remain undetected
for longer if the weak modulus at least looks valid, e.g., didn’t
end with an even digit. As a demonstration we played with the
OpenSSH \etc\moduli file and created a weak modulus.
The default OpenSSH moduli file consists of safe primes with
short generators like 2 or 5. Although the software does not
check group validity, an attack in the context of a version
update should allow the parameters to pass casual inspection.
The attacker’s goal is then to create parameters that also have
short generators (and thus are valid looking), but are still
efficient to solve. Schnorr groups are unlikely to have short
generators of small subgroups, and large generators (i.e. the
same length as the modulus) would be overtly suspicious.
Since OpenSSH does not verify the primality of the modulus,
we can instead work with smooth composite moduli. Here
discrete logarithms can be made to be efficiently solvable for
any generator of any subgroup.

As an example, we set p as the product of all primes up
to 1471, excluding 2 and 5 (so it’s not obviously prime from
inspection in base 2 or 10). This number is 2043 bits and has
231 factors. Multiplying it by 19 will bring the length to a
standard 2048 bits. In this case, one of the factors will be
192. Table I shows an example of a safe prime modulus and
our smooth composite modulus. The discrete logarithm of a
number relative to an arbitrary base (e.g., 2) can be computed
individually across each of the factors of p and reassembled
using the Chinese remainder theorem (CRT). The discrete log
in each of the subgroups can be pre-computed. Computing
a discrete log, therefore, can be reduced to 231 look-ups in
this dictionary, followed by a single CRT of 231 congruences.

http://man.openbsd.org/OpenBSD-4.3/cat5/moduli.0

ServerMitMClient
cr, [. . . ,DHE, . . .] cr, [DHE]

sr, DHE

certS , sign(cr | sr | p | g | ys = gb)

yc = ga

(ms, kc, ks) = kdf
(
(ys)a, cr | sr

)
(ms, kc, ks) = kdf

(
(yc)b, cr | sr

)
b = logg(ys), (ms, kc, ks) = kdf

(
(yc)b, cr | sr

)
finished(ms, viewC−M) finished(ms, viewM−S)

finished(ms, viewM−S′)finished(ms, viewC−M′)

authenckc (data)

authencks (data)

Fig. 2. Forcing DHE in TLS. A man-in-the-middle with the ability to exploit weak or trapdoored parameters can force the parties to select a DHE cipher
suite against their natural preferences.

Time Type Tests Tries Size Generator Modulus

20160522030737 2 6 100 2047 2 DB36277B45EA5615C782C08BF6A290A3D61E6B9690E4A147042113FC1BFC0AE
EC5FB0FF82FC1FEA86E273F667EC387FEF3421FFFC617A70C34B1987986C6B35C715713914AB75932A3D1942ECC0F
324D81BF00D59916B3BFDC7BA432AF5C5DFCF30BF4A2C80B8CA52A9B80E989D3A852BD81A8BD3ADC97497F43C6F0A
90882D9CFA165CF1F735C96428BF9BC32A58B71CF1D4FD48A6D2C616E91BB6E07C5CB0DF0C59DAF79D659C6E53007
843497BBEE5B341D27DE2E2543B8DFEB4DDAE6328EAD441C3F36509C1FA689FE494B0426ADCAF9E567A1C5A330168
9C5CCC55EC4002FAA5D254C2F3C0F8636BEA7019D1CD212B74EE4F273E0B9997720E8AEC5D76B

20160522030739 2 6 100 2047 2 8A4F17035FD10C065879FCC6C6632C15F18E15B6F88CAE2BA8C40D23E3DC2FD
68E8897E12F9FD6C3447B72C1595B2EF56C103162BB6C15AA64761C4258E56D47FE156832F6BB4273A106D2E6310A
9D5E54C497517A928A988A359FB0032BED2FEF690487F6AC6F0B3659A43643A316F601DE73E563F7BC2C37A67E751
DE1916B08FBE92FB9E32E35DC5FD051E9EBC4B2256BC4021DACD2CA816F46C7A5C5D1B298A259C925AB0DC404BCF7
2FDAF04C849DCA4C2F6576FCC586A5B942188312787D971D9BE6D70896A8E8458F3D75D6C8F97CE289688A175F699
B938DBFFC7A349D4130558794936E67C349EF96B83517CB647BADBF012E9BF1B4890E72B70849

TABLE I. OPENSSH MODULI FILE. ONE MODULUS IS A VALID SAFE PRIME (OSTENSIBLY) GENERATED BY DEVELOPERS. THE OTHER IS A SMOOTH
COMPOSITE ALLOWING EFFICIENT DISCRETE LOGARITHMS. OPENSSH WILL SUCCESSFULLY CONNECT WITH EITHER.

Implementing this in Sage we were able to compute discrete
logarithms in 4ms on a laptop.

IV. SURVEY OF DH PARAMETERS IN TLS

Methodology. In order to find potential backdoors in discrete
logarithm implementations, we collected Diffie-Hellman data
from two sources. For HTTPS, we downloaded Censys IPv4
scans [18] where only DHE ciphersuites were offered by the
client. For DHE-only scans in SMTP/S, POP3/S, and IMAP/S,
we ran our own zgrab7 scans. We investigated both non-
safe and composite DH moduli in HTTPS, and focused on
composite moduli only in SMTP/S, POP3/S, and IMAP/S.

A. Affected Protocols and Countries

Overall, there were over 500 IP addresses in 31 countries
using potentially backdoored composite moduli. A summary
of moduli properties and the affected protocols are seen in
Table II. Almost all of the moduli were one of two numbers: a
512-bit modulus used in SMTP or a 2048-bit modulus used in
HTTPS. This recycling of parameters suggests backdoor use,
as having the same backdoor in hundreds of IP addresses is
advantageous for an attacker. At the very least, this moduli
reuse proves that weak DH parameters are used in the wild

7https://github.com/zmap/zgrab

due to lack of DH parameter validation. Table II also shows
three moduli with nonstandard lengths of 4255-, 1102-, and
904-bits, indicating further carelessness in parameter choice.

To see the impact of these composite moduli, we investi-
gated each IP address’ location as seen in Table III. Nearly
all the composite moduli were used in HTTPS or SMTP, but
the HTTPS moduli were spread around the world while the
SMTP moduli were only located in China. In HTTPS, North
American and European countries were most heavily seen. The
location spread in HTTPS and the relative moduli abundance in
SMTP increases the likelihood that these moduli are backdoors
rather than random composites.

B. Web Server Backdoors

We first downloaded a Censys IPv4 scan to investigate DH
moduli in HTTPS. In April 2016, there were approximately
43M IP addresses in the HTTPS space, of which approxi-
mately 11M supported DH. Over 300,000 distinct DH moduli
were observed across some. We observed 5,783 unique non-
safe prime moduli across 1.6M IPs. We observed 9 unique
composite moduli across 289 IPs. We did a comparison to
ECDHE and found that of 32 million IPs, all used a standard
SECP curve, and that the sever public key was a valid point
on the curve. This, of course, is consistent with expectation.
Discovering composite DHE moduli, on the other hand, was

https://github.com/zmap/zgrab

Number Number
of IPs

Modulus
Size
(Bits)

Affected
Protocols

Modulus

1 265 512 SMTP da583c16...4774e833

2 242 2048 HTTPS c28992c5...d4681697

3 28 4255 HTTPS 4d494942...41674543

4 5 1102 POP3S 30818702...47020105

5 2 1024 HTTPS a7790db6...288a9773

6 2 1024 HTTPS cc17f2dc...8e073c6d

7 2 2048 HTTPS 8dd38f77...a8fdca8f

8 1 904 HTTPS 9ce85640...2220dc53

9 1 1024 IMAPS,
SMTP

98ea99db...ab2b1b33

10 1 1024 HTTPS d67de440...24218eb3

11 1 2048 HTTPS f5a3da75...f564c113

12 1 2048 SMTP,
SMTPS

ad85473c...3b2d764b

13 1 4096 HTTPS 9152ba0b...85fab358

TABLE II. THE FREQUENCY, AFFECTED PROTOCOLS, AND OTHER
PROPERTIES OF THE COMPOSITE DH MODULI USED IN THE WILD.

Affected Protocol Number of IPs Nationality

HTTPS 280

Austria, Bahrain, Bolivia, Canada,
Chile, Czech Republic, France,
Germany, India, Iraq, Israel, Italy,
Japan, Lebanon, Malaysia, Mex-
ico, Netherlands, Nicaragua, Pak-
istan, Poland, Romania, Saudi Ara-
bia, Singapore, South Korea, Spain,
Sweden, Taiwan, United States

IMAPS 1 Japan

POP3S 5 Ukraine

SMTP 267 China

SMTPS 1 Russia

TABLE III. COMPOSITE DHE MODULI BY PROTOCOL AND COUNTRY.

not.

Of the 5,783 distinct non-safe primes we found, 5,409
were unique to a single IP. 6 primes accounted for approx-
imately 99% of sites. The distribution of non-safe primes
is seen in Table IV. MODP groups were seen in 77% of
IP addresses using non-safe primes. Parameters used in the
sun.security.provider package by Java were seen in
11% of IPs using non-safe primes. This package has had
previous instances of misconfigured DH groups [6]. At the
time of writing AWS load balancers no longer offer DHE
ciphersuites following a security policy update.

Non Safe-Prime Groups With Safe-Prime Generators. Safe-
prime groups have the property that all values in the range
1 < g < p−1 are generators of groups of large order (either q or
2q), and that an arbitrary value in this range is an element of Z∗

p

with probability approaching P = 1
2 , meaning implementors

are free to pick just about any generator they wish, and often
opt for the smallest possible value (e.g., 2, 3, etc). Non safe-
prime groups, on the other hand, generally should be more
select in their choice of generator, especially when the order
of Z∗

p contains smooth factors. If a group element has an order
containing smooth factors, partial recovery of the private key

is possible. For a random non safe-prime group with an n-bit
modulus and m-bit prime order subgroup Gq , the probability
an arbitrary value is a generator of Gq is approximately 2n−m.
Thus we shouldn’t generally expect to see generators like 2 or
3 used in non safe-prime grousp. We can expect such groups
to leak more information about the exponent the 1 bit of some
safe prime groups.

Of the 1.5M IPs offering non safe-prime groups, we found
1,270 IPs using small generators. Generator values of 2 and
5 were most common but we also found cases of all prime
numbers up to 31, as well as even values like 4 and 6. Although
again this doesn’t directly break DHE so long as (a) the order
of the generator contains a large prime factor and (b) full-
length exponents are used. This is a precarious situation, since
the typical reason for using non safe-prime groups is precisely
for the purpose of using short exponents (e.g., X9.42 groups).
It also speaks to the notion of parameter hygiene in which
choices appropriate for one setting i.e., small generators of
safe prime groups, is mis-applied to another setting.

Composite DH Moduli. In HTTPS we found nine composite
moduli across 280 IP addresses. None of these were export-
grade; all were at least 904-bits in length. In May 2016, 46%
of these IP addresses chose a Diffie-Hellman ciphersuite by
default, meaning forcing DHE (as described in § III-G) is not
needed in those cases.

We then examined the public ownership information of the
affected IPs in public databases and by examining the content
of any public web pages. When the IP address owners and
webpage content differed, both companies were considered
identifiers for the IP address. For example, if one organization
was supplied software by another, the second organization
could have a logo displayed on the webpage. We decided to
focus on companies associated with multiple IP addresses or
with at least one active webpage. This left us with 21 compa-
nies: A1 Telekom Austria (A1), Amazon Web Services (AWS),
Banco de Crédito (BCP), Bloomberg, Blue Coat Systems,
Centre national de la recherche scientifique (CNRS), Deutsche
Reisebüro (DER) Touristik, ELITE, Expedia, Eyou.net, FTSE
Russell, JAMF Software, KDS, KPN, Nederlandse Spoorwe-
gen (NS), NH Hotel Group, Nordea Bank, Santa Clara Univer-
sity (SCU), TravelTainment Germany, United Parcel Service
(UPS), Universal Sompo General Insurance, and Universidad
Nacional de Educación a Distancia (UNED).

We completed vulnerability disclosures to companies with
at least one active webpage in HTTPS and which provided ap-
propriate contact information; these disclosures are discussed
in § VI. We also contacted the company with multiple affected
IP addresses in SMTP. Companies in the tourism industry, such
as TravelTainment and DER Touristik, accounted for about
50% of the IP addresses. The remaining companies were in
various industries like education and finance. Most companies,
noticeably those with more affected IP addresses, had an active
webpage.

To determine the longevity of composite moduli, we tested
the 280 IP addresses three times during the course of writing
to see if composite moduli were still used. In May 2016, 88%
of the IP addresses still used the same composite modulus
as before. Of the remaining 12% of IP addresses, about half
switched to a prime modulus and half no longer connected

Popularity Modulus (bits) Subgroup (bits) Source

76.9% 1024 160 MODP (RFC5114) [31]

11.3% 1024 160 Amazon Web Services

7.5% 768 160 sun.security.provider

3.2% 1024 160 sun.security.provider

0.3% 2048 224 MODP (RFC5114) [31]

0.1% 2048 224 sun.security.provider

~1% – – (others)

TABLE IV. THE DISTRIBUTION AND SOURCES OF NON-SAFE DHE
MODULI.

under Diffie-Hellman. In June 2016, these statistics remained
approximately constant. However, by August 2016, only 39%
still used the same composite modulus and 53% used a prime
modulus. The remaining 8% no longer connected under Diffie-
Hellman, almost the same amount from May and June 2016.
The decrease in composite moduli used could be attributed to
our vulnerability disclosures and, independently, Wong’s [43].
This assumption seemed to coincide with company responses,
as many companies changed from composite moduli to prime
as their primary response. Despite this, many composite mod-
uli remained in use over months, indicating backdoored DH
parameters could go unnoticed for long periods of time.

C. Mail Server Backdoors

Since Censys did not have DH scans for mail servers,
we run zgrab scans in July 2016 on SMTP/S, POP3/S, and
IMAP/S in TLS and STARTTLS looking for composite DH
moduli. We found 272 IP addresses with composite DH moduli
spread throughout IMAPS, POP3S, SMTPS, and SMTP. These
results doubled the total number of composite moduli found
showing the problem extends beyond HTTPS.

IMAPS. Although there was only one IP address in IMAPS
with a composite modulus, this IP address used the same
modulus in SMTP. This modulus is number 9 in Table II. The
address is linked to a transportation company in Japan, which
supports the trend of HTTPS companies that are not related to
security and thus provide an advantageous attack target.

POP3S. There were five IP addresses in POP3S that all used
the same composite modulus. This modulus is number 4 in
Table II. Although the company could not be determined
accurately, the range of IP addresses suggested that only one
Ukrainian company was involved.

SMTPS. Although there was only one IP address in SMTPS
with a composite modulus, this IP address used the same
modulus in SMTP. This modulus is number 13 in Table II. This
address is linked to a real estate company in Russia, which is
also an industry that provides an advantageous attack target.

SMTP. Almost all the composite moduli in mail protocols
were seen in SMTP. Out of 267 IP addresses with composite
moduli, 265 used the same composite modulus (number 1
in Table II). The remaining two were the IP addresses seen
already in IMAPS and SMTPS. The 265 IP addresses were
spread out across China, but all connected to an email service
provider called Eyou.net [1]. This company was also contacted
in the vulnerability disclosures described in § VI.

D. DH Moduli Factorization

While a well-implemented DHE trapdoor would not be
exploitable, we set about conducting what partial factorizations
of composite moduli we could. We used CADO-NFS and our
own custom implementation of Pohlig-Hellman/Pollard’s P-1
to recover, in many cases, numerous bits of a private key. We
factored the 512-bit composite SMTP modulus (number 1 in
Table II) revealing 5 factors:

114356381100738840153121389513746326020580788713898181372 \\
757840692493482634612304277048270052450717458185043187444 \\
98415461673127855611205755830392736507955

= 5 * 11 * 3130497666273667404271 * 132398438917079824212 \\
370893794766672908033 * 501650748974370233413468006002745 \\
013076943662195591458981539797641214671553476408791132267

We then factored (f −1) of each factor f revealing the
overall underlying group structure. The largest factor has
a 280-bit subgroup, which prevented us from performing a
complete discrete logarithm as the generator had order close to
p−1. We were, however, able to recover 129 bits of the private
key using Pohlig-Hellman. The servers we examined appeared
not to be using short exponents. If, however, a server did use a
short exponent such as 160-bits, this SMTP prime would make
an efficient trapdoor: the first 129-bits could be recovered as
described, and the remaining bits could be recovered from
the 280-bit subgroup using Pollard’s P-1 method in time
approximately 2

160−129
2 ≈ 216.

We conducted a partial factorization of the 904-bit com-
posite modulus (number 8 in Table II) and found a number of
suspiciously smooth factors:

5 * 23 * 474289 * 726101 * 72240863 * 48794510505931

* 70980749229449041 * 5093965413985867 * 2763354329179

* 1711955530550801 * 71015949150893819 * ...

This site used an improper generator of 4, which allowed us
similarly to recover 372 bits of the private key, though knowing
the full factorization would have allowed for greater recovery.
We also were able to conduct partial key recoveries in non
safe-prime groups with improper generators. In one improper
export-grade non safe-prime group we were able to recover a
full half of the private key (assuming a full-length exponent),
though obviously for export moduli, Logjam would be a more
efficient general attack strategy. With either short exponents
or knowledge of complete factorization, however, even more
efficient recovery is possible.

V. ATTACK VECTORS

The previous sections discussed the implications of a
regrouping attack and provided examples of potentially back-
doored DH moduli in the wild. We now propose three scenarios
that enable an attacker to position weak parameters for use
as a backdoor. If the target uses these parameters to perform
cryptographic operations (i.e. key generations, signatures, key
agreements, encryptions, etc.), the associated security guaran-
tees no longer hold. Since Diffie-Hellman group parameters are
infrequently modified, attacking them can lead to persistent
backdoors, even if the keys themselves are ephemeral. The
proposed threat vectors include dropping the parameters onto a
server, incorporating the parameters in an open-source project,
and installing the parameters on a network appliance that ships
to customers.

A. Attacking the Server

The most intuitive way to get backdoored parameters
in use is to install them at the source. First, the attacker
creates the weak parameters and chooses a target that supports
Diffie-Hellman ciphersuites. Second, the attacker injects these
parameters as a backdoor payload onto the desired server. This
step does require root access to the server, presumably in the
context of a broader exploit. Having root access enables other
attacks, such as stealing the server’s private RSA signing key.
This RSA attack would produce a similar outcome as the
backdoored moduli, as efficient man-in-the-middle attacks are
also possible for an attacker with the server’s RSA signing key.
However, obtaining and using the private RSA key has two
disadvantages. In many enterprise situations, the private RSA
key is stored on a hardware security module (HSM) attached to
the server [2]. Since HSMs are designed to provide additional
security to cryptographic keys, it would be difficult for an
attacker to steal a key stored on an HSM even with root access
to the server. The second disadvantage to using the private RSA
key is that it requires an active man-in-the-middle attack. An
active attack is also necessary to force DHE ciphersuites when
not preferred, but only during the handshake. However, as seen
in § IV-B, half the IP addresses that use composite moduli in
HTTPS prefer DHE ciphersuites. Therefore an attacker could
choose attack targets that prefer DHE ciphersuites, allowing
for passive eavesdropping. This type of passive attack is only
possible with backdoored moduli; using the RSA signing key
always requires an active attack.

Dropping the weak parameters onto the server requires no
source code modification and creates a persistent backdoor;
because of this, the backdoor may persist source code updates.
The lack of parameter validation explained in § III-B and
the examples of persistent composite moduli in § IV-B mean
that backdoored DH moduli could remain undetected for some
time.

B. Attacking the Application

The second threat scenario involves submitting the back-
doored parameters to an open-source project rather than at-
tacking the server directly. First, the attacker creates the weak
parameters and finds an open-source project that supports
Diffie-Hellman. Second, the parameters are submitted as a
patch to that repository. Once the repository accepts the
change, the persistent backdoor would then be installed for
users of that project. Conversely, the attacker could create a
new project that already contains the backdoored parameters.
Since the Logjam disclosure, many GitHub projects have been
updating their Diffie-Hellman parameters to remove 512-bit
moduli and modify 1024-bit moduli. This widespread change
could ironically provide a reason for an attacker to submit a
patch.

Socat, an open-source data transfer relay, recently pub-
lished a security advisory [38] that outlines a similar sce-
nario, and was one of the motivations behind Wong’s recent
paper [43]. Here a hard-coded 1024-bit composite DH mod-
ulus was discovered in the OpenSSL implementation. The
Socat commit logs show that the composite modulus was
introduced in January 2015 [37], and the security advisory
was published more than a year later in February 2016, and

the origin of the modulus remains unclear. Interestingly we
also found this modulus twice in the HTTPS space (See
modulus 6 in Table II). This gap between implementation and
detection indicates backdoored moduli can remain undetected
for a long time. The individual associated with the commit
deleted much of his Internet presence on the day the advisory
was published [44]. Attempts to factor the modulus suggest
that there are large factors, which could indicate a backdoor
configuration like those suggested in § III-D.

Survey of Open-source Projects. We surveyed the default
moduli of over a hundred open-source projects on Github
using search terms based on common DH byte array names
(e.g., dh1024_p, etc). Out of the 95 projects supporting
export grade 512-bit moduli, we found 16 distinct moduli,
of which one was found in 44 projects. The most common
modulus observed in Logjam was found in 9 projects. All
were safe primes. Across 120 projects supporting 1024-bit
moduli, there were 32 uniques. All the moduli were safe primes
except for two: one reused from OpenSSL,8 and a MODP
group with 160-bit subgroup [31]. For 2048-bit moduli, there
were 43 projects with 23 unique moduli. Similar to 1024-
bit moduli, the only 2048-bit modulus that was not a safe
prime was a MODP group with 256-bit subgroup [31]. For
3072-bit moduli, there were 3 unique safe primes spread over
4 projects. For 4096-bit moduli, there were 8 unique safe
primes spread over 28 projects. Although we didn’t find any
suspicious parameters in any of the Github projects, the Socat
example suggests both that starting a malicious open-source
project is one potential delivery vector, and that the ad hoc
nature of parameter checking would hinder detection.

C. Attacking the Network

The final threat scenario involves installing backdoored pa-
rameters onto a network appliance that is shipped to customers.
Network appliances such as load balancers and traffic shapers
are often used by companies to optimize application or network
performance. Load balancers optimize application performance
by distributing traffic across many servers, which decreases the
load on individual servers. This traffic can be application or
network traffic. Balancers also provide SSL termination so that
servers do not have to perform encryption and decryption [5].
Although this invites man-in-the-middle attacks, the servers
and balancer are often located on the same internal network
which decreases this possibility. Another network appliance is
traffic or packet shapers, which optimize network performance
by delaying less important network packets. Various applica-
tions can be shaped differently, a process called application-
based traffic shaping or deep packet inspection (DPI). Since
DPI allows users to look at layers 2 through 7 of the OSI
model, it is possible to view the ServerKeyExchange mes-
sage [39]. DPI also provides the possibility of packet payload
tampering [42].

This threat scenario requires the attacker to be a company
employee who creates the weak parameters. The employee
then installs the backdoored parameters onto the load balancing
network appliance sold by his company. Blue Coat’s Packet-
Shaper S-Series, a traffic shaping network appliance, can be
connected with another PacketShaper to provide load balancing

8https://github.com/openssl/openssl/blob/master/test/ssltest_old.c

https://github.com/openssl/openssl/blob/master/test/ssltest_old.c

capability [3]. The load balancer equipped with backdoored
parameters is then sold to a customer. The balancer sends
decrypted traffic to the chosen server, then encrypts the server’s
response and sends it to the client as usual. Therefore the
success of this scenario depends mostly on the trust placed
in the load balancer to securely encrypt and decrypt traffic.

VI. VULNERABILITY DISCLOSURES

As mentioned in § IV-B, we issued vulnerability dis-
closures to companies that were using composite moduli in
HTTPS. Security contact information for each company was
searched for in the HackerOne directory,9 although only one
company had such information. Only companies with at least
one active webpage were contacted, since blank webpages are
less relevant attack targets. Out of the 21 companies listed
in § IV-B, only 17 were contacted. Only 47% of the contacted
companies responded to our disclosure.

Blue Coat Systems was the first company contacted, and
we communicated on several occasions with a number of
high-ranking employees within the company on the matter.
A patch for the affected product, PacketShaper, was released
in June 2016. A few weeks later on July 12, 2016, a CVE
was released for this vulnerability under the label CVE-2016-
5774 [4]. This CVE has a high severity score in CVSS v3
but only a medium score in CVSS v2, as v2 emphasizes
percentage of impacted systems rather than level of impact like
v3. Therefore although composite DH moduli are not abundant
in the wild, these moduli have a high degree of impact on
affected systems. An interesting side effect of our disclosure
was that it inadvertantly uncovered a number of improperly
configured web-facing admin login pages, which allowed Blue
Coat to follow up with affected customers.

After disclosure, the other 16 companies were split into
three groups depending on the status of the vulnerability fix:
completed, partially completed, and not started. The vulner-
ability was fixed by 56% of these companies, although not
all responded to us and three had implemented fixes prior to
our disclosure. These independent solutions could have been
a result of Wong’s disclosures [43]. The solution implemented
by most companies involved changing the composite moduli
to prime, although one company simply removed its DHE
ciphersuites altogether. Of the 19% of companies who partially
completed the vulnerability fix, all are progressively changing
composite moduli to prime. The remaining 25% of companies
did not respond to our disclosure and have not modified their
Diffie-Hellman parameters. One of these companies had the
highest number of affected IP addresses by far. A language
barrier existed for some companies, which could have con-
tributed to this result.

None of the contacted companies were willing to provide
us with information on the source of the potentially back-
doored parameters. One company explained that its composite
modulus was attributed to cipher modifications made by the
company, but no specifics were given. Two others provided
broad information on their load balancing, but not in the
context of the specific vulnerability.

9https://hackerone.com/directory

VII. DISCUSSION

There is a growing consensus that Diffie-Hellman nego-
tiations are less secure than previously thought. Safari has
removed DHE ciphersuites altogether, and Chrome plans to
remove them in upcoming versions [11]. However, during
the time of writing Chrome continued to offer DHE cipher-
suites if all other ciphersuites offered were not accepted by
the server. The current TLS 1.3 draft [36] proposes using
named DHE groups [20], similar to the named ECDHE
groups currently used. These named DHE groups are used
in the supported_groups and key_share extensions.
Although named groups would not be susceptible to the kinds
of attacks described in this paper, they would not elimiate the
threat entirely: adapting the attack in § III-G a MitM could
modify the ClientHello message to force a downgrade from
TLS 1.3 to 1.2 and proceed with a weak or trapdoored group.

A. Mitigation Strategies

We propose four strategies for mitigating regrouping
attacks: deprecating Diffie-Hellman ciphersuites, verifying
Diffie-Hellman parameters correctly, using named DH groups,
or modifying the ServerKeyExchange message to sign all
previously seen messages.

Deprecate DHE. One option is to follow the example of
Safari and Chrome and deprecate finite field Diffie-Hellman
altogether. In our opinion, this option makes sense in certain
situations, but not as a general solution. As we saw with
Dual_EC_DRGB, there is a trade-off between trust and conve-
nience through standardization. With that in mind, Bernstein
et al. [16] added a new name to the standards of Alice and
Bob: Jerry, an authority who generates curve parameters such
that his attack cost is decreased. With the deprecation of RSA
key exchange coming in TLS 1.3, DHE ciphersuites represent
the only alternative key exchange method.

Verify parameters properly. Our preferred option would be to
simply implement the necessary domain parameter validation
to begin with. The first issue, however, is computational cost.
In order to verify that a generator or DHE public key has the
intended order, modular exponentiation must be performed at
runtime for each connection. Similarly p must be tested for
primality, and, importantly, if general Schnorr groups are to
be permitted, the TLS and SSH protocols must provide an
explicit means to communicate group order q. As we discussed
in § II-A, basic checking is not sufficient to prevent all attacks.

Use named parameters. A third solution is to develop stan-
dardized, named parameters like those in an ECC setting. The
RFC proposed by Gillmor [20] and supported in the TLS 1.3
draft [36] involves standardizing parameters in the FFC setting
to augment the MODP groups. As we see in ECC, named
parameters are a feasible mitigation strategy used in the real
world. One issue of restricting moduli to only safe primes
is performance: private key lengths are 10 times larger than
NIST recommended minimum standards. One performance
optimization Gillmor suggests is to compromise by using safe
prime groups with short, DSA-like exponents.

Modify ServerKeyExchange message. The final solution is
to modify the ServerKeyExchange message so that all previ-
ously exchanged messages are also signed. The MitM attack

https://hackerone.com/directory

from § III-G works because the ServerKeyExchange message
only signs the DH parameters, server random, and client
random. If the list of ciphersuites suggested in ClientHello
and the chosen ciphersuite in ServerHello were also signed,
then the ciphersuite tampering would be discovered upon
receiving the ServerKeyExchange message. This solution was
also proposed by Mavrogiannopoulos et al. [33] to prevent
their cross-protocol attack.

VIII. CONCLUSION

In this paper we demonstrated a serious, systematic prob-
lem with real-world discrete logarithm implementations. A
lack of parameter validation allows attackers to use weak
or trapdoored groups to create persistent DHE backdoors in
TLS. Hundreds of IP addresses in the wild were found to use
potentially backdoored moduli, and both web and mail servers
were equally affected, leading us in some cases to recover
significant portions of the private key even without knowledge
of the trapdoor. We proposed several threat scenarios that
would enable an attacker to inject backdoored parameters.
Vulnerability disclosures were completed to over 15 companies
worldwide resulting in CVE-2016-5774. This study found
evidence to suggest trapdoored DHE parameters are in use
on the Internet today. Minding our Ps and Qs, it would seem,
has proven more elusive that previously thought.

IX. ACKNOWLEDGEMENTS

Anonymized for review. The authors wish to thank Jeremy
Clark, Jakub Dalek, Ian Goldberg, Adam Senft, and Greg
Zaverucha for their helpful input. This work was supported
in by the National Science and Engineering Research Council
of Canada (NSERC) Discovery Grant and Canada Graduate
Scholarship programs.

REFERENCES

[1] “Company Overview of Eyou.net,” 2016. [Online]. Avail-
able: http://www.bloomberg.com/research/stocks/private/snapshot.asp?
privcapId=113374953

[2] “Hardware security module,” 2016, https://www.ibm.com/support/
knowledgecenter/SS9H2Y_7.5.0/com.ibm.dp.doc/hsm2.html.

[3] “Standby Feature with High Availability Clusters,” 2016.
[Online]. Available: https://bto.bluecoat.com/packetguide/11.6/Content/
PDFs/standby.pdf

[4] “Vulnerability Summary for CVE-2016-5774,” 2016. [Online]. Avail-
able: https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-5774

[5] “What is an SSL Load Balancer?” 2016. [Online]. Available:
https://www.nginx.com/resources/glossary/ssl-load-balancer/

[6] D. Adrian, K. Bhargavan, Z. Durumeric, P. Gaudry, M. Green, J. A.
Halderman, N. Heninger, D. Springall, E. Thomé, L. Valenta, B. Van-
derSloot, E. Wustrow, S. Zanella-Béguelin, and P. Zimmermann, “Im-
perfect forward secrecy: How Diffie-Hellman fails in practice,” in 22nd
ACM Conference on Computer and Communications Security, Oct.
2015.

[7] R. Anderson and S. Vaudenay, “Minding Your P’s and Q’s,” in ASI-
ACRYPT, 1996, pp. 26–35.

[8] E. Barker, L. Chen, A. Roginsky, and M. Smid, “Recommendation
for Pair-Wise Key Establishment Schemes Using Discrete Logarithm
Cryptography,” Tech. Rep., 2013.

[9] E. Barker and A. Roginsky, “Transitions: Recommendation for Transi-
tioning the Use of Cryptographic Algorithms and Key Lengths,” Tech.
Rep., 2011.

[10] ——, “Transitions: Recommendation for Transitioning the Use of
Cryptographic Algorithms and Key Lengths,” Tech. Rep., 2015.

[11] D. Benjamin, “Intent to Remove: DHE-based ciphers,” 2016,
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/
sVq6r0i-CZM.

[12] D. J. Bernstein and T. Lange, “Security dangers of the NIST curves,”
2013. [Online]. Available: http://www.hyperelliptic.org/tanja/vortraege/
20130531.pdf

[13] D. Boneh, A. Joux, and P. Nguyen, “Breaking plain elgamal and plain
rsa encryption,” in Asiacrypt, 2000.

[14] S. Checkoway, M. Fredrikson, R. Niederhagen, A. Everspaugh,
M. Green, T. Lange, T. Ristenpart, D. J. Bernstein, J. Maskiewicz,
and H. Shacham, “On the Practical Exploitability of Dual EC in TLS
Implementations,” USENIX Security Symposium, 2014.

[15] J.-S. Coron, A. Joux, A. Mandal, D. Naccache, and M. Tibouchi,
Cryptanalysis of the RSA Subgroup Assumption from TCC 2005, 2011,
pp. 147–155.

[16] D. J. Bernstein, T. Chou, C. Chuengsatiansup, A. Hülsing, , E. Lam-
booij, T. Lange, R. Niederhagen, and C. van Vredendaal, “How to
manipulate curve standards: a white paper for the black hat,” 2014,
http://bada55.cr.yp.to/bada55-20150927.pdf.

[17] T. Dierks and C. Allen, “The TLS Protocol Version 1.0,” Jan. 1999.
[18] Z. Durumeric, D. Adrian, A. Mirian, M. Bailey, and J. A. Halderman,

“A search engine backed by Internet-wide scanning,” in Proceedings of
the 22nd ACM Conference on Computer and Communications Security,
Oct. 2015.

[19] M. Friedl, N. Provos, and W. Simpson, “Diffie-Hellman Group
Exchange for the Secure Shell (SSH) Transport Layer Protocol,” 2006.
[Online]. Available: https://tools.ietf.org/html/rfc4419

[20] D. Gillmor, “Negotiated Finite Field Diffie-Hellman Ephemeral
Parameters for TLS,” 2015. [Online]. Available: https://tools.ietf.org/
html/draft-ietf-tls-negotiated-ff-dhe-10

[21] D. M. Gordon, “Designing and detecting trapdoors for discrete log cryp-
tosystems,” in ADVANCES IN CRYPTOLOGY– CRYPTO ’92. Springer-
Verlag, 1993, pp. 66–75.

[22] J. Groth, “Cryptography in subgroups of z*n,” in TCC, 2005.
[23] D. Harkins and D. Carrel, “The Internet Key Exchange (IKE),” 1998.

[Online]. Available: https://tools.ietf.org/html/rfc2409
[24] N. Heninger, Z. Durumeric, E. Wustrow, and J. A. Halderman, “Mining

your Ps and Qs: Detection of widespread weak keys in network
devices,” in Proceedings of the 21st USENIX Security Symposium, Aug.
2012.

[25] R. Henry and I. Goldberg, “Solving discrete logarithms in smooth-order
groups with cuda,” in SHARCS, 2012.

[26] A. P. Karthikeyan Bhargavan, Antoine Delignat-Lavaud, “Verified con-
tributive channel bindings for compound authentication,” in NDSS,
2015.

[27] C. F. A. P. P.-Y. S. Karthikeyan Bhargavan, Antoine Delignat-Lavaud,
“Triple handshakes and cookie cutters: Breaking and fixing authentica-
tion over tls,” in IEEE Symposium on Security and Privacy, 2014.

[28] T. Kivinen and M. Kojo, “More Modular Exponential (MODP)
Diffie-Hellman groups for Internet Key Exchange (IKE),” 2003.
[Online]. Available: https://tools.ietf.org/html/rfc3526

[29] A. Lenstra, “Constructing trapdoor primes for the proposed dss,”
École polytechnique fédérale de Lausanne, Tech. Rep. EPFL-REPORT-
164559, 1991.

[30] A. K. Lenstra, J. P. Hughes, M. Augier, J. W. Bos, T. Kleinjung, and
C. Wachter, “Ron was wrong, whit is right,” Cryptology ePrint Archive,
Report 2012/064, 2012, http://eprint.iacr.org/2012/064.

[31] M. Lepinski and S. Kent, “Additional Diffie-Hellman Groups
for Use with IETF Standards,” 2008. [Online]. Available: https:
//tools.ietf.org/html/rfc5114

[32] C. H. Lim and P. J. Lee, “A Key Recovery Attack on Discrete Log-
based Schemes Using a Prime Order Subgroup,” Crypto, vol. 1294, pp.
249–263, 1997.

[33] N. Mavrogiannopoulos, F. Vercauteren, V. Velichkov, and B. Preneel,
“A cross-protocol attack on the TLS protocol,” ACM Conference on
Computer and Communications Security, pp. 62–72, 2012.

[34] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied
Cryptography. CRC Press, 1997.

http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=113374953
http://www.bloomberg.com/research/stocks/private/snapshot.asp?privcapId=113374953
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.5.0/com.ibm.dp.doc/hsm2.html
https://www.ibm.com/support/knowledgecenter/SS9H2Y_7.5.0/com.ibm.dp.doc/hsm2.html
https://bto.bluecoat.com/packetguide/11.6/Content/PDFs/standby.pdf
https://bto.bluecoat.com/packetguide/11.6/Content/PDFs/standby.pdf
https://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-5774
https://www.nginx.com/resources/glossary/ssl-load-balancer/
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/sVq6r0i-CZM
https://groups.google.com/a/chromium.org/forum/#!topic/security-dev/sVq6r0i-CZM
http://www.hyperelliptic.org/tanja/vortraege/20130531.pdf
http://www.hyperelliptic.org/tanja/vortraege/20130531.pdf
http://bada55.cr.yp.to/bada55-20150927.pdf
https://tools.ietf.org/html/rfc4419
https://tools.ietf.org/html/draft-ietf-tls-negotiated-ff-dhe-10
https://tools.ietf.org/html/draft-ietf-tls-negotiated-ff-dhe-10
https://tools.ietf.org/html/rfc2409
https://tools.ietf.org/html/rfc3526
http://eprint.iacr.org/2012/064
https://tools.ietf.org/html/rfc5114
https://tools.ietf.org/html/rfc5114

[35] S. C. Pohlig and M. E. Hellman, “An Improved Algorithm for Comput-
ing Logarithms over GF(p) and Its Cryptographic Significance,” IEEE
Transactions on Information Theory, vol. 24, no. 1, pp. 106–110, 1978.

[36] E. Rescorla, “The Transport Layer Security (TLS) Protocol
Version 1.3,” 2016. [Online]. Available: https://tools.ietf.org/html/
draft-ietf-tls-tls13-14

[37] G. Rieger, “FIPS requires 1024 bit DH prime,”
2015. [Online]. Available: http://repo.or.cz/socat.git/commitdiff/
281d1bd6515c2f0f8984fc168fb3d3b91c20bdc0

[38] ——, “Socat security advisory 7 - Created new 2048bit DH modulus,”
2016. [Online]. Available: http://www.openwall.com/lists/oss-security/
2016/02/01/4

[39] W. G. Sanchez, “SLOTH Downgrades TLS 1.2
Encrypted Channels,” 2016. [Online]. Available:
http://blog.trendmicro.com/trendlabs-security-intelligence/
sloth-downgrades-tls-1-2-encrypted-channels/

[40] L. Valenta, S. Cohney, A. Liao, J. Fried, S. Bodduluri, and N. Heninger,
“Factoring as a service,” Cryptology ePrint Archive, Report 2015/1000,
2015, http://eprint.iacr.org/2015/1000.

[41] P. C. van Oorschot and M. J. Wiener, “On diffie-hellman key agreement
with short exponents,” in EUROCRYPT, 1996.

[42] N. Vratonjic, J. Freudiger, J.-P. Hubaux, and M. Felegyhazi, “Securing
Online Advertising,” Tech. Rep., 2008.

[43] D. Wong, “How to backdoor diffie-hellman,” Cryptology ePrint Archive,
Report 2016/644, 2016, http://eprint.iacr.org/2016/644.

[44] ——, “Socat? What? (timeline of events),” 2016, https://github.com/
mimoo/Diffie-Hellman_Backdoor/tree/master/socat_reverse.

[45] T. Ylonen, “The Secure Shell (SSH) Transport Layer Protocol,” 2006.
[Online]. Available: https://tools.ietf.org/html/rfc4253

https://tools.ietf.org/html/draft-ietf-tls-tls13-14
https://tools.ietf.org/html/draft-ietf-tls-tls13-14
http://repo.or.cz/socat.git/commitdiff/281d1bd6515c2f0f8984fc168fb3d3b91c20bdc0
http://repo.or.cz/socat.git/commitdiff/281d1bd6515c2f0f8984fc168fb3d3b91c20bdc0
http://www.openwall.com/lists/oss-security/2016/02/01/4
http://www.openwall.com/lists/oss-security/2016/02/01/4
http://blog.trendmicro.com/trendlabs-security-intelligence/sloth-downgrades-tls-1-2-encrypted-channels/
http://blog.trendmicro.com/trendlabs-security-intelligence/sloth-downgrades-tls-1-2-encrypted-channels/
http://eprint.iacr.org/2015/1000
http://eprint.iacr.org/2016/644
https://github.com/mimoo/Diffie-Hellman_Backdoor/tree/master/socat_reverse
https://github.com/mimoo/Diffie-Hellman_Backdoor/tree/master/socat_reverse
https://tools.ietf.org/html/rfc4253

	Introduction
	Background
	Related Work

	Discrete Logarithm Backdoors
	Preliminaries
	Validating domain parameters
	Discrete Logarithm Implementations
	Trapdoors with Composite Moduli
	Browsers Tests
	Current Support for DHE
	Forcing DHE in TLS
	Attack Limitations in SSH
	Creating Valid-looking Moduli

	Survey of DH parameters in TLS
	Affected Protocols and Countries
	Web Server Backdoors
	Mail Server Backdoors
	DH Moduli Factorization

	Attack Vectors
	Attacking the Server
	Attacking the Application
	Attacking the Network

	Vulnerability Disclosures
	Discussion
	Mitigation Strategies

	Conclusion
	Acknowledgements
	References

