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Abstract. In this paper, we revisit the security result of an authenticated key exchange
(AKE) protocol recently proposed in CT-RSA 2016 by Chen, Mu, Yang, Susilo and Guo (we
refer to this scheme as the CMYSG scheme). The security of the CMYSG scheme is shown in
a new (stronger) challenge-dependent leakage-resilient eCK (CLR-eCK) model that captures
(bounded) leakage from both the long term secret key of the parties as well the (per-session)
randomness of the parties involved in an AKE protocol even after the challenge/test session.
In this model, they proposed a generic framework for constructing one-round AKE protocols.
The main tool employed in their construction is a (extended) 2-smooth projective hash proof
system. The security of their protocol is reduced to the security of the underling hash-proof
system, the existence of pseudo-random functions (PRF) and π-PRFs, collision-resistant hash
functions and the Decisional Diffie-Hellman (DDH) hardness assumption. However, we dis-
prove their security result and show that the security of the CMYSG protocol is incorrectly
reduced to that of the DDH assumption. We then re-prove the security of the CMYSG scheme
in the CLR-eCK model under the Gap Diffie-Hellman (GDH) hardness assumption in the ran-
dom oracle model. Our security analysis continues the troubled past of the make-and-break
efforts of constructing leakage-resilient AKE protocols and also leaves open the construction
of CLR-eCK secure AKE protocol in the standard model.

Keywords: Authenticated Key Exchange, DDH, GDH, CLR-eCK, leakage-resilient, cryptanalysis,
random oracle

1 Introduction

Until the 1970s, cryptography was generally viewed as a “dark art” practiced by secret government
agencies and a few eccentric amateurs. In developing a strong foundation for modern cryptography, a
central task is to decide on the “right” definitions for security of various types of protocols. Provable
security is the paradigm in modern cryptography that bridged this gap by transforming cryptogra-
phy from being a dark art to a science. The “provable security” paradigm roughly states that: A
cryptographic scheme A is secure in the security model B provided a set of assumptions C hold.
These assumptions are generally based on hard mathematical problems that admit no “efficient”



algorithms for solving them till date or can be based on the security of some underlying primitives
such as an encryption scheme or pseudo-random permutations etc. This not only gives us a way to
prove security of the proposed cryptographic schemes or primitives from a theoretical perspective
but also gives confidence on the soundness of the constructions from a practical standpoint. Given
that this is fascinating enough, this approach also has its own limitations. In particular, there has
been instances of provably-secure cryptosystems which were later shown to be insecure in practice
and/or in theory for various reasons (see [CBH05, PYG08, NLP+11, YPGH11]). In this paper we
add one more scheme in this questionable list, namely the work of [CMY+16]. This gives rise to a
natural question: Do the cryptographic schemes with security proofs provide security guarantees as
claimed?

Authenticated key exchange (AKE) protocols allow two parties to establish a common shared
secret key with each other over an insecure network. Besides it also allows both the parties to
mutually authenticate (implicit or explicit) each other with the assurance that the shared secret
key is known only to them. AKE protocols have been widely deployed in many real-world appli-
cations for securing communication channels and they form a central component in many network
standards, such as IPSec, SSL/TLS, SSH. Bellare and Rogaway [BR94] gave the first formal in-
distinguishability based security definition for AKE (referred to as BR model). Over the past two
decades few variants of the BR model were proposed capturing powerful classes of attacks and
stronger security guarantees like the Canetti-Krawzyck (CK) model [CK01] and the extended CK
(eCK) models [LLM07]. The eCK model is now the de-facto standard for AKE security analysis
since it captures more realistic and powerful attack scenarios like Key Compromise Impersonation
(KCI), ephemeral-KCI attacks, weak perfect forward secrecy (wPFS), maximal exposure attacks
(MEX) etc. We refer the reader to Cremers et al. [Cre11] for a detailed comparative analysis of
these security models.

However, in all these models the adversary has well-defined (restricted) interface with which it
interacts with this primitive (treated as mathematical objects). The security of the AKE protocols
hold only in this idealistic setting as long as the adversarial access is limited to that defined in
the security model. However in the real-world implementation much more information may leak
un-intentionally due to side-channel attacks which includes timing measurements, power analysis,
fault injection attacks, electromagnetic measurements, microwave attacks, memory attacks and
many more [KJJ99, Koc96, HSH+09]. Leakage-resilient cryptography was introduced to deal with
this problem from a theoretical standpoint. It guarantees the security of the cryptosystems even in
the face of such side-channel attacks. In the last few years the area of leakage-resilient AKE has
been studied each under different assumptions and under different leakage models. Recently, Chen,
Mu, Yang, Susilo and Guo [CMY+16] gave a general framework for designing leakage-resilient AKE
protocols under the challenge-dependent eCK (CLR-eCK) model which is considered to be more
powerful than the sate-of-the-art security models for analyzing leakage-resilient AKE protocols.
More precisely, their model captures leakage not only from the static secret keys of the honest
parties involved in the AKE protocol, but also captures partial leakage from the (session-specific)
ephemeral randomness of the parties. Besides, it also captures after-the-fact or challenge-dependent
leakage where the adversary still has access to the leakage oracle even after the challenge/test session.
We notice that the CLR-eCK model is particularly modified from the extended Canetti-Krawczyk
(eCK) model [LLM07]. At a high level, they use pseudo-random functions, 2-smooth projective
hash functions and strong randomness extractors in their protocol for computing the ephemeral
public key and session key to obtain security in the presence of key leakage. The security of the
CMYSG scheme is done by reducing it to the security of the underlying cryptographic building
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blocks (namely smooth projective hash functions, PRFs and strong randomness extractors) and
the Decisional Diffie-Hellman (DDH) hard problem without random oracles. However, in this work
we refute their claims and show that the security of the CMYSG scheme is incorrectly reduced to
the DDH problem. In fact our analysis shows the inconsistency of the security proof even in the
eCK model which also automatically implies the flaw in the proof of the AKE protocol in (stronger)
CLR-eCK model also. We fix the flaw and re-prove the eCK security of the CMYSG in the random
oracle (RO) model based on the Gap Diffie-Hellman (GDH) assumption. Our result may not directly
translate into a direct real world attack against the protocol in [CMY+16]. However, our result
points out the inconsistency in their proof and fixes it by rigorously re-proving its security unlike
the original paper. It is straightforward to extend our modified security proof of the CMYSG scheme
in the CLR-eCK model. Our analysis re-iterates the difficulty of constructing leakage-resilient AKE
protocols in stronger leakage models. We hope that further constructions of future leakage-resilient
AKE protocols avoids these subtle flaws.

2 Related Works

The first construction of leakage-resilient AKE was given by Alwen, Dodis and Wichs [ADW09]
from an entropically-unforgeable digital signature scheme secure under chosen-message attacks in
the RO model. They considered a leakage-resilient security model (BRM-CK) by extending the CK
model to the setting of Bounded-Retrieval model (BRM). However, it required 3 passes and also
does not capture challenge-dependent leakage.

Moriyama and Okamoto [MO11] introduced a notion of λ-leakage resilient eCK (LR-eCK) se-
curity which is an extension of the eCK security model with the notion of λ-leakage resilience
introduced in [AGV09]. They constructed a 2-pass AKE protocol in this model without random
oracles. However, their model did not capture challenge-dependent leakage as in [ADW09].

Alawatugoda et al. [ASB14] first modeled after-the-fact leakage or challenge-dependent leakage
(it is named as ASB model) for AKE in both the bounded and continuous leakage setting and
gave a somewhat generic construction of a two-pass AKE in the model. However, they could not
instantiate their generic construction in the ASB continuous leakage model due to non-availability
of the underlying continuous leakage-resilient cryptographic primitive in the literature.

In an attempt to solve the mentioned open problem, Alawatugoda et al. introduced the Continu-
ous After-the-Fact Leakage (CAFL) model [ABS14] which is a weaker variant of the ASB continuous
leakage model in terms of the freshness conditions of the model. They proposed a generic construc-
tion of a 2-pass AKE protocol and proved its security formally in the CAFL model. However, both
these protocols were later shown to be insecure in their respective models and the security claims
were also invalidated in subsequent works. The protocol of [ASB14] was shown to be insecure in the
ASB model and the security proof was also shown to be flawed [YL16]. The protocol of [ABS14]
was also shown to be completely insecure in the CAFL model by Toorani [Too15] who gave an
ephemeral-KCI attack on their protocol. This invalidates the formal security proofs in [ABS14]. In
fact this was shown to be insecure in the eCK model also.

3 Preliminaries

In this section we provide some basic notations, definitions and tools needed.
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3.1 Notations

Throughout this work, we denote the security parameter by λ. We assume that all the algorithms
take as input (implicitly) the security parameter represented in unary, i.e., 1λ. For an integer n,

we use the notation [n] to denote the set [n]
def
= {1, . . . , n}. For a randomized function f , we write

f(x; r) to denote the unique output of f on input x with random coins r. We write f(x) to denote
a random variable for the output of f(x; r), over the random coins r. For a set S, we let US denote
the uniform distribution over S. For an integer r ∈ N, let Ur denote the uniform distribution over
{0, 1}r, the bit strings of length r. For a distribution or random variable X, we denote x← X the

action of sampling an element x according to X. For a set S, we write s
$←− S to denote sampling s

uniformly at random from the S. We use negl(λ) to denote a function that vanishes faster than the
inverse of any polynomial, i.e., it denotes the set of negligible functions µ(λ) = λ−ω(1). We denote
an ensemble X as a collection of distributions {Xλ}λ∈N. We sometimes drop the subscript λ when
clear from context and write x← X instead of x← Xλ to denote sampling an element x from Xλ.

Definition 1. (Statistical Distance). The statistical distance between two random variables X
and Y over a finite domain Ω denoted by ∆(X,Y ) is defined as:

∆(X,Y ) =
1

2
Σw∈Ω | Pr[X = w]− Pr[Y = w] | .

We say that two variables are ε-close, and write X ≈ε Y , if their statistical distance is at most ε,
i.e., ∆(X,Y ) ≤ ε.

We write X ≡ Y to mean that X and Y are identically distributed.

Definition 2. (Computational Indistinguishability). Let Xn and Yn be two probability distri-
butions over the finite set {0, 1}n. We say that X and Y are computationally indistinguishable if
for all PPT algorithm A, there exists a negligible function ε(n) such that for every n ∈ N, we have:

| Pr[t← Xn : A(t) = 1] − Pr[t← Yn : A(t) = 1] |≤ ε(n).

We denote Xn ≈c Yn to mean Xn and Yn are computationally indistinguishable.

3.2 Entropy and Randomness Extraction

We begin with some definitions and then state an useful result.

Definition 3. (Min-Entropy). The min-entropy of a random variable X, denoted as H∞(X)

is defined as H∞(X)
def
= -log(maxx Pr[X = x]). This is a standard notion of entropy used in

cryptography, since it measures the worst-case predictability of X.

Definition 4. (Average Conditional Min-Entropy). The average-conditional min-entropy of

a random variable X conditioned on a (possibly) correlated variable Z, denoted as H̃∞(X|Z) is
defined as

H̃∞(X|Z) = - log
(
Ez←Z [maxx Pr[X = x|Z = z]

)
= - log

(
Ez←Z [2H∞(X|Z=z)]

)
.

This measures the worst-case predictability of X by an adversary that may observe a correlated
variable Z.
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The following bound on average min-entropy was proved in [DORS08].

Lemma 1. [DORS08] For any random variable X, Y and Z, if Y takes on values in {0, 1}l, then

H̃∞(X|Y, Z) ≥ H̃∞(X|Z)− l and H̃∞(X|Y ) ≥ H̃∞(X)− l

Definition 5. (Randomness Extractor). We say that an efficient randomized function Ext: X×S →
Y is an (υ, ε)-extractor if for all (correlated) random variables X, Z such that the support of X is

X and H̃∞(X|Z) ≥ υ, we get (Z, S,Ext(X;S)) ≈ε (Z, S, UY), where S is uniform over S, and UY
denotes the uniform distribution over the range of the extractor Y.

3.3 Pseudo-Random Functions

Definition 6. (Pseudo-random functions). A function family F associated with seed space

{Seedk}k∈N, domain {Domk}k∈N, and range {Rngk}k∈N. Formally, for any Σ
$←− Seedk, σ

$←− Σ,

D $←− Domk, R $←− Rngk, Fλ,Σ,D,Rσ defines a function which maps an element of D to an element of
R. That is, Fλ,Σ,D,Rσ (ρ) ∈ R, for any ρ ∈ D. We say F is a pseudo-random function (PRF) family
if

{Fλ,Σ,D,Rσ (ρi)} ≈c {RF(ρi)}.

for any (ρi ∈ D) adaptively chosen by any polynomial time distinguisher, where RF is a truly

random function. That is, for any ρ ∈ D, RF(ρ)
$←− R.

Definition 7. (π-PRF). Roughly speaking, a pseudo-random function with pairwise-independent
random sources (π-PRF) refers to a pseudo-random function family that if a specific key σ is
pairwise-independent from other keys, then the output of function with key σ is computationally
indistinguishable from a random element.
Formally, let ZΣ be a set of random variables over Σ, and IΣ be a set of indices regarding Σ such
that there exits a deterministic polynomial-time algorithm, fΣ : IΣ → ZΣ which on input the index
i ∈ IΣ outputs σi ∈ ZΣ. Consider the random variables {σij}j=0,··· ,q(λ) = {fΣ(ij)}j=0,··· ,q(λ), where
ij ∈ IΣ and q(λ) a polynomial function of λ. We say that σi0 is pairwise independent from other
variables σi1 , · · · , σiq(λ)

if for any pair of (σi0 , σij ) (j = 1, · · · , q(λ)), for any (x, y) ∈ Σ2, we have

Pr[σi0 → x ∧ σij → y] = 1
Σ2 . Define F̃ = Fλ,Σ,D,Rσij

(ρj), for ij ∈ IΣ, ρj ∈ D. We say that F is a

π-PRF family if

{F̃(ρj)} ≈c {R̃F(ρj)}.

for any {ij ∈ IΣ, ρj ∈ D} (j = 1, · · · , q(λ)) adaptively chosen by any polynomial time distinguisher

such that σi0 is pairwisely independent from σij (j > 0) where R̃F is the same as F̃ except that

R̃F(ρ0) is replaced by a truly random value in R.

3.4 Smooth Projective Hash Functions

The paradigm of smooth projective hash functions (SPHF) was originally introduced by Cramer
Shoup [CS02] for constructing a practical CCA-secure public key encryption. In this section we
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describe an extended version of smooth projective hashing as will be required for the construction
later on.

A SPHF requires the existence of a well-defined domain X and an NP language L underlying
it, where the elements of L form a proper subset of the domain X , i.e., L ⊂ X . Informally, a
projective hash family is a family of keyed hash functions associated with two types of keys: the
primary hashing key hk and a projective key hp, which can be seen analogous to private and
public keys respectively. The hashing key hk can be used to evaluate the hash function on every
point of its domain; whereas the projection key hp can be used to compute the hash function on
a “special subset” of the domain, namely, the valid words that belong to the language L. The
correctness of such a hash proof system guarantees that: when computed on a word W ∈ L,
both functions should lead to the same result: Hash(hk, params,L,W, aux) with the hashing key,
public parameters params, some auxiliary information aux and ProjHash(hp, params,L,W,w, aux)
with the projection key and a witness w for the fact that W ∈ L (since this is a valid word),
along with params and aux. Apart from these, we also need another word generation algorithm
WordG(param,L, w), that generates a word W ∈ L using the witness w. Of course, for an invalid
word W ∈ X \ L there does not exist such a witness, and the smoothness property states that the
hash value Hash(hk, param,L,W ) for such an invalid word is independent of hp. To summarize, a
SPHF has the property that the projection key uniquely determines the hash value of any word
in the language L but gives almost no information about the hash value of any point in X \ L.
An important property that is used in all the applications of such families is that it is hard to
distinguish members of the special subset L from non-members of the set X \ L. This is called the
hard subset membership property.
Syntax. A SPHF over a language L ⊂ X , onto a set Y, is defined by six polynomial-time algorithms:

– SPHFSetup(1λ): The setup algorithm takes as input the security parameter λ (in unary) and
outputs the public parameters params and the description of the underlying NP language L.

– HashKG(params,L): Generates the hashing key hk for the language L.

– ProjKG(hk, params,L, ): Derives the projection key hp from the hashing key hk.

– WordG(param,L, w): Takes as input a witness w, and generates a word W ∈ L.

– Hash(hk, params,L,W, aux): Takes as input the hashing key hk and a word W , along with some
auxiliary information aux, and outputs the hash value hv ∈ Y.

– ProjHash(hp, params,L,W,w, aux): Takes as input the the projection key hp and a word W ∈ L,
along with the witness w, auxiliary information aux, and outputs the hash value hv′ ∈ Y.

A (extended) SPHF = (SPHFSetup, HashKG, ProjKG, WordG, Hash, ProjHash) should satisfy the
following properties:

1. Correctness: Let W = WordG(param,L, w), then ∀ hk and hp, we have:

Hash(hk, params,L,W, aux) = ProjHash(hp, params,L,W,w, aux).

2. Smoothness: For any W ∈ X \ L, the following two distributions are perfectly indistinguish-
able:

µ1 = {(L, params,W, hp, aux, hv) |hv = Hash(hk, params,L,W, aux)},

µ2 = {(L, params,W, hp, aux, hv) |hv $←− Y}.
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Definition 8. (2-smooth SPHF). For any W1,W2 ∈ X \ L and auxiliary informations aux1 and
aux2, such that (W1, aux1) 6= (W2, aux2), we say an SPHF is 2-smooth if the following two distri-
butions are perfectly indistinguishable:

µ1 = {(L, params,W1,W2, hp, aux1, aux2, hv1, hv2) |hv2 = Hash(hk, params,L,W2, aux2)},

µ2 = {(L, params,W1,W2, hp, aux1, aux2, hv1, hv2) |hv2
$←− Y},

where hv1 = Hash(hk, params,L,W1, aux1).

Definition 9. (Hard Subset Membership problem). As a computational problem we require
that the subset membership problem is hard, which means that for random valid word W0 ∈ L, and
a random invalid word W1 ∈ X \L, the two words W0 and W1 are computationally indistinguishable.
This is formally captured by defining the advantage function AdvSM

SPHF,A(λ) of an adversary A as:

AdvSM
SPHF,A(λ) =| Pr

W0
$←−L[A(params,X ,L,W0) = 1]−Pr

W1
$←−X\L[A(params,X ,L,W1) = 1] |,

where params, X , and L are generated using SPHFSetup(1λ). We define the subset membership to
be (tSM, εSM) hard if for all tSM-time adversaries the above advantage AdvSM

SPHF,A(λ) is at most εSM.

3.5 Complexity Assumptions

In this section, we present a brief overview of the hard problem assumptions.

Definition 10. Computation Diffie-Hellman Problem (CDH) - Given (g, ga, gb)
$←− G3 for

unknown a, b ∈ Z∗p, where G is a cyclic prime order multiplicative group with g as a generator and

p the order of the group, the CDH problem in G is to compute gab.

The advantage of any probabilistic polynomial time algorithm A in solving the CDH problem in G
is defined as

AdvCDH
A = Pr

[
A(g, ga, gb) = gab | a, b ∈ Z∗p

]
.

The CDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage
AdvCDH

A is negligibly small.

Definition 11. Decisional Diffie-Hellman Problem (DDH) - Given (g, ga, gb, h)
$←− G4 for

unknown a, b ∈ Z∗p, where G is a cyclic prime order multiplicative group with g as a generator and

p the order of the group, the DDH problem in G is to determine whether h
?
= gab or a random

group element.

The advantage of any probabilistic polynomial time algorithm A in solving the DDH problem in G
is defined as

AdvDDH
A = |Pr

[
A(g, ga, gb, gab) = 1

]
− Pr

[
A(g, ga, gb, h) = 1

]
| a, b ∈ Z∗q |.

The DDH Assumption is that, for any probabilistic polynomial time algorithm A, the advantage
AdvDDH

A is negligibly small.
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Definition 12. Gap Diffie Hellman Assumption (GDH). Given (g, ga, gb)
$←− G3 and access

to a Decision Diffie Hellman (DDH) oracle DDH(·, ·, ·) which on input ga, gb and gc outputs True

if and only if c = ab, the Gap Diffie Hellman problem is to compute gab ∈ G.
The advantage of an adversary A in solving the Gap Diffie Hellman problem is defined as

AdvGDH
A = Pr

[
ADDH(·,·,·)(g, ga, gb) = gab

]
.

The Gap Diffie Hellman assumption holds in G if for all polynomial time adversaries A, AdvGDH
A is

negligible.

4 eCK security model for AKE

In this section we describe the extended Canetti-Krawzyck (eCK) security model for AKE proposed
by Lauter, LaMacchia and Mityagin [LLM07]. The original Challenge-Dependent Leakage-Resilient
eCK (CLR-eCK) model introduced in [CMY+16] builds on top of the eCK model and considers
bounded leakage from both the static secret keys of parties and session-specific randomness. How-
ever, for our analysis we do not need the CLR-eCK model. The eCK model is enough to show our
result, which in turn automatically implies the relevance of our results in the CLR-eCK model as
well. Hence, for simplicity, we specify the eCK model here. While emulating the real world capabilites
of an active adversary, we provide an execution environment for adversaries, similar to the approach
initiated by Bellare and Rogaway [BR94] and later further investigated in [LLM07,JKSS12,YS12].

4.1 Execution environment

In the execution environment, we fix a set of ` honest parties {ID1, · · · , ID`}`∈N, where IDi (i ∈
[`]) denotes the identity of a party chosen uniquely from some identity space IDS (note that
we are not in the identity-based setting). Each identity is associated with a long-term key pair
(skIDi , pkIDi) ∈ (SK×PK) for authentication. We also assume that the certification authority (CA)
issues a certificate that binds the long term public key to the party. Note that these identities
are also lexicographically indexed via variable i ∈ [`]. Each honest party IDi can sequentially and
also concurrently execute the protocol multiple times with different intended partners. This is
characterized by a collection of oracles {πsi : i ∈ [`], s ∈ [d]}, for d ∈ N. Oracle πsi behaves as party
IDi carrying out a process to execute the s-th protocol instance (session), which has access to the
long-term key pair (skIDi , pkIDi) and to all other public keys. Moreover, we assume each oracle πsi
maintains a list of independent internal state variables with semantics listed in Table 1.

All these variables corresponding to each oracle are initialized with empty string which is denoted
by the symbol Ø in the following. At some point, each oracle πsi may complete the execution always
with a decision state Φsi ∈{accept, reject}. Furthermore, we assume that the session key is assigned
to the variable Ks

i (such that Ks
i 6= Ø) iff oracle πsi has reached an internal state Φsi = accept.

4.2 Adversarial Model

An adversary A is a PPT Turing Machine taking as input the security parameter 1λ and the public
information (e.g. generic description of above environment), which may interact with these oracles
by issuing the following queries.

8



Table 1. Internal states of oracles.

Variable Description

ψsi
storing the identity and public key of its

intended communication partner e.g., (IDj , pkIDj ))

Φsi denoting the decision Φsi ∈{accept; reject}
ρsi denoting the role identifier ρsi ∈ {Initiator(I),Responder(R)}
Ks
i recording the session key of the session πsi

stsi
storing the ephemeral keys that allows to be revealed, e.g.

the randomness used to generate ephemeral public key

sT si recording the transcript of messages sent by oracle πsi
rT si recording the transcript of messages received by oracle πsi

1. Send(πsi ,m): The adversary can use this query to send any message m of his own choice to
πsi . The oracle will respond the next message m∗ (if any) to be sent according to the protocol
specification and its internal states. Oracle πsi would be initiated as initiator via sending the

oracle the first message m = (>, ĨDj) consisting of a special initialization symbol > and a value

ĨDj . The value ĨDj is either the identity IDj of intended partner or the empty string Ø. After
answering a Send query, the variables (ψsi , Φ

s
i , ρ

s
i ,K

s
i , st

s
i , rT

s
j ) will be updated depending on

the specific protocol.

2. RevealKey(πsi ): Oracle πsi responds with the contents of variable Ks
i .

3. EphemeralKeyReveal(πsi ): Oracle πsi responds with its ephemeral secret keys (i.e. per-session
randomness of the oracle).

4. Corrupt(IDi): The long-term secret key skIDi of party IDi is returned if i ∈ [l]; otherwise a failure
symbol ⊥ is returned.

5. EstablishParty(IDτ ): This query allows an adversary to register a public key on behalf of party
(IDτ ) (l < τ) to the system. Parties established by this query are said to be dishonest.

6. Test(πsi ): If the oracle has state Φsi = reject or Ks
i = Ø, then the oracle πsi returns some failure

symbol ⊥. Otherwise, it flips a fair coin b
$←− {0, 1}. If b = 0, it samples a random element K0

from key space K; if b = 1, it sets K1 = Ks
i . Finally, the key Kb is returned.

4.3 Secure AKE protocols

To formalize the notion that two oracles are engaged in an online communication, we define the
partnership via matching sessions.

Definition 13. (Matching Session). We say that an oracle πsi has a matching session to oracle
πtj , if πsi has sent all protocol messages and all the following conditions hold:

• ψsi = IDj and ψtj = IDi.

• rT tj = sT si and rT si = sT tj .

• ρsi 6= ρtj.
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If an oracle πsi has a matching session to oracle πtj , then πsi is said to be a partner oracle of πtj .

Correctness: We say an AKE protocol Π is correct, if two oracles πsi and πtj accept with matching
sessions, then both oracles hold the same session key, i.e. Ks

i = Kt
j .

Definition 14. (Session/Oracle Freshness). Let Π be a protocol, and IDi and IDj be two honest
parties, πsi be an accepting oracle with intended partner IDj . Meanwhile let πtj be an oracle (if it
exists) with intended partner IDi, such that πsi has a matching session to πtj . Then the oracle πsi is
said to be fresh if none of the following holds:

1. A issued either a RevealKey(πsi ) or RevealKey(πtj) query (if it exists).

2. A issued both Corrupt(IDi) and EphemeralKeyReveal(πsi ) queries.

3. If πtj exists, A issued both Corrupt(IDj) and EphemeralKeyReveal(πtj) queries.

4. If πtj does not exist, A issued Corrupt(IDj).

Security Experiment EXPeCK
Π,A(1λ): On input security parameter 1λ, the security experiment

proceeds as a game between a challenger C and an adversary A based on an AKE protocol Π, where
the following steps are performed:

1. At the beginning of the game, the challenger C implements the collection of oracles {πsi : i ∈
[`], s ∈ [d]}, and generates ` long-term key pairs (skIDi , pkIDi) for all honest parties IDi for i ∈ [`]
where the identity IDi ∈ IDS of each party is chosen uniquely. C gives adversary A all identities
and public keys {(ID1, pkID1

), · · · , (ID`, pkID`)} as input.

2. A may issue polynomial number of aforementioned queries adaptively, namely A makes queries:
Send, EphemeralKeyReveal, EstablishParty, Corrupt and RevealKey.

3. At some point, A may issue a Test(πsi ) query on an oracle πsi during the game only once.

4. Amay continue to issue Send, EphemeralKeyReveal, EstablishParty, Corrupt and RevealKey queries
adaptively, provided the Test oracle remains fresh throughout the game.

5. At the end of the game, the A may terminate with returning a bit b′ as its guess for b of Test
query. Return 1, if b′ = b, otherwise return 0.

Definition 15. (eCK security). We say that an adversary A (t, ε)-breaks the security of a correct
AKE protocol Π, if A runs the AKE security game within time t, and the probability bound
|Pr[EXPeCK

Π,A(1λ) = 1]− 1
2 | ≤ ε holds for all adversaries A running within time t in the above security

experiment and for some negligible probability ε = ε(λ) in the security parameter λ. We refer
|Pr[EXPeCK

Π,A(1λ) = 1] − 1
2 | as the advantage AdveCK

Π (A) of the adversary A in the AKE protocol Π
in the eCK model.

5 The CMYSG CLR-eCK AKE protocol [CMY+16]

In this section we review the AKE protocol by Chen, Mu, Yang, Susilo and Guo [CMY+16] (i.e.,
the CMYSG scheme) (please see Table 2).
The CMYSG scheme makes use of the following cryptographic building blocks:

• Group G of prime order p and a random generator g.
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Table 2. CMYSG protocol Π [CMY+16]

IDA IDB

Long-Term Key Generation

hk
$←− HashKG(params,L) hk′ $←− HashKG(params,L)

hp
$←− ProjKG(hk, params,L) hp′ $←− ProjKG(hk′, params,L)

rA1

$←− {0, 1}t1(λ), rA2

$←− {0, 1}t2(λ) rB1

$←− {0, 1}t1(λ), rB2

$←− {0, 1}t2(λ)

lskA = hk, lpkA = (hp, rA1 , rA2) lskB = hk′, lpkB = (hp′, rB1 , rB2)

Session Execution

eskA
$←− {0, 1}u(λ), tA

$←− {0, 1}t3(λ) eskB
$←− {0, 1}u(λ), tB

$←− {0, 1}t3(λ)

l̂skA = Ext1(lskA, rA1) l̂skB = Ext1(lskB , rB1)

êskA = Ext2(eskA, rA2) êskB = Ext2(eskB , rB2)

(wA, x) = F̂l̂skA(eskA) + F̄êskA(rA1) (wB , y) = F̂l̂skB (eskB) + F̄êskB (rB1)

WA = WordG(param,L, wA), X = gx WB = WordG(param,L, wB), Y = gy

Erase all state except (eskA, tA,WA, X) Erase all state except (eskB , tB ,WB , Y )
(B,A,WA,X,tA)−−−−−−−−−−−−−−−−→
(A,B,WB ,Y,tB)←−−−−−−−−−−−−−−−−

Session Key Generation

Set sid = (A,B,WA, X, tA,WB , Y, tB) Set sid = (A,B,WA, X, tA,WB , Y, tB)

aux = H1(sid), KA1 = Y x aux = H1(sid), KB1 = Xy

KA2 = ProjHash(lpkB , params,L, KB2 = Hash(lskB , params,L,
WA, wA, aux) WA, aux)

KA3 = Hash(lskA, params,L, KB3 = ProjHash(lpkA, params,L,
WB , aux) WB , wB , aux)

sA = Ext3(H2(KA1)⊕KA2 ⊕KA3 , sB = Ext3(H2(KB1)⊕KB2 ⊕KB3 ,

tA ⊕ tB) tA ⊕ tB)

SKA = F̃sA(sid) SKB = F̃sB (sid)

• 2-smooth SPHF SPHF over L ⊂ X onto the set Y with hashing key space HK, projection key
space HP, witness space W and auxiliary input space AUX , such that the subset membership
problem between L and X is hard.

• Collision Resistant hash functions H1 : {0, 1}∗ → AUX and H2 : G→ Y.

• Strong extractors Ext1, Ext2 and Ext3, where:

– Ext1 : HK × {0, 1}t1(λ) → {0, 1}l1(λ) is an average-case (|HK| − λ1, ε1)-strong extractor,
where λ1 is the leakage bound on the long term secret key.

– Ext2 : {0, 1}u(λ) × {0, 1}t2(λ) → {0, 1}l2(λ) is an average-case (λ − λ2, ε2)-strong extractor,
where λ2 is the leakage bound on the ephemeral secret key.

– Ext3 : Y × {0, 1}t3(λ) → {0, 1}l3(λ) is an average-case (|Y| − λ1, ε3)-strong extractor.

• PRF families F̂ and F̄ and π-PRF family F̃ where:

– F̂λ,ΣF̂ ,DF̂ ,RF̂ : ΣF̂×DF̂ → RF̂ , where KF̂ = {0, 1}l1(λ), DF̂ = {0, 1}u(λ) and RF̂ =W×Zp.
– F̄λ,ΣF̄ ,DF̄ ,RF̄ : ΣF̄×DF̄ → RF̄ , where KF̄ = {0, 1}l2(λ), DF̄ = {0, 1}t1(λ) andRF̄ =W×Zp.
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– F̃λ,ΣF̃ ,DF̃ ,RF̃ : ΣF̃ ×DF̃ → RF̃ , where KF̃ = {0, 1}l3(λ), DF̃ = PK2×L2×G2×{0, 1}2t3(λ)

and RF̃ = {0, 1}l4(λ), where we assume PK is the space of certified public keys.

Correctness Analysis. The correctness of the AKE scheme follows from the correctness of Diffie
Hellman key exchange and the correctness property of the smooth projective hash function. In par-
ticular KA1

= KB1
, as KA1

= Y x = Xy = KB1
= gxy. Due to the correctness property of SPHF, we

have KA2
= ProjHash(lpkB , params,L,WA, wA, aux) = Hash(lskB , params,L,WA, aux) = KB2

,
and KA3 = Hash(lskA, params,L,WB , aux) = ProjHash(lpkA, params,L,WB , wB , aux) = KB3 .

6 Existing Security Analysis [CMY+16] of CMYSG Protocol and Its
Flaw

The CMYSG scheme is claimed to be secure in the CLR-eCK model [CMY+16, Theorem 1], based
on Decisional Diffie-Hellman (DDH) assumption and the security of underlying cryptographic prim-
itives. However, we disprove their claim by showing that the CMYSG scheme is incorrectly reduced
to the DDH problem in the eCK model. Note that the security of an AKE protocol in the CLR-eCK
model already implies its security in the eCK model. Hence our result also falsifies their claim in
the CLR-eCK model. In the following sections we give a sketch of the security proof as given in
the CMYSG scheme (Section 6.1) and demonstrate the flaw in the security reduction (Section 6.2).
Finally we rigorously re-prove the security of the CMYSG scheme in the eCK model (Section 7).

6.1 Proof Sketch

In this section we give the proof sketch of the CMYSG protocol. This will help the reader to
connect with our result in the next section. The security of the AKE protocol can be analyzed in
the following two disjoint cases.

Case I. The test session corresponding to oracle πsi has a matching session to oracle πtj . Based
on the freshness of the eCK model, we know that the adversary cannot get both the long term
secret key of the party involved in test session and the ephemeral secret key of the test session.
Without loss of generality, let us assume the adversary gets the long term secret key lsk∗A of party
IDA. Now, the witness, exponent pair (w∗A, x

∗) of the ephemeral public keys is generated using a

kind of twisted PRF trick [FSXY15], namely, (w∗A, x
∗) = F̂

l̂sk
∗
A

(eskA) + F̄
êsk
∗
A

(rA1
). In this case,

since the adversary does not know esk∗A, the output of the PRF F̄
êsk
∗
A

(rA1
) is random; and hence

the entire output (w∗A, x
∗) appears random to the adversary. Similarly, when the adversary knows

the ephemeral secret key esk∗A, the output of the PRF F̂
l̂sk
∗
A

(esk∗A) is hidden from the view of

the adversary, and hence the output (wA, x) appears random. So instead of computing (w∗A, x
∗)

as before, we choose (w∗A, x
∗)

$←− W × Zp. A similar argument holds for the party IDB , and hence

instead of computing (w∗B , y
∗) using the twisted PRF trick, we choose (w∗B , y

∗)
$←−W × Zp. Hence,

regardless of the type of reveal queries, (x∗, y∗) are uniform random elements in Z2
p from the view

of the adversary A. Therefore the value K∗A1
= K∗B1

= gx
∗y∗ is computationally indistinguishable

from a random element in G according to the DDH assumption and hence H2(K∗A1
) is a uniform

random string from the view of A who is given X∗ = gx
∗
, Y ∗ = gy

∗
. Thus the seed s∗A and s∗B for

the π-PRF function is uniformly distributed and unknown to the adversary and thus the derived
session key SK∗A is computationally indistinguishable from a random string.
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Case II. The test session corresponding to oracle πsi has no matching session. Note that, in his
case, the adversary cannot ask Corrupt(IDB) query to obtain the long term secret key lskB of party
IDB by the eCK freshness condition (Definition 14). In the simulation we proceed via a sequence of
games. Instead of computing KA2

= ProjHash(lpkB , params,L,WA, wA, aux), we compute KA2
=

Hash(lskB , params,L,WA, aux), and then in the next game choose W ∗A ∈ X \L instead of deriving
it from L by the algorithm WordG. This new game is indistinguishable from the previous game by
the correctness of the underlying SPHF and the hard subset membership problem. The adversary
may also activate a non-matching session with IDB , by simply choosing W ∈ X \L, send W to IDB

and issue RevealKey query to learn the session key. According to the property of the underlying 2-
smooth projective hash function, we have that K∗A2

is pairwise independent from any other such key

(denoted by K̃ ) and all public information. Hence, H̃∞(K∗A2
|K̃, params,L, lpkB ,W ∗A, aux∗) = |Y|.

By the property of the strong extractor the value s∗A is statistically close to uniform and thus the
derived session key SK∗A is computationally indistinguishable from a truly random element from
A′s view due to the application of π-PRF.

Another difficulty arises for the simulation of non-test session involving IDA or IDB . When
the Corrupt(IDA) or Corrupt(IDB) queries are not issued by the adversary the session execution
simulated should be identical to the session run by IDA or IDB from the view of A. In this case, the
simulator does not know the long term secret key of neither IDA nor IDB . In this case, the simulator

chooses (r1, r2)
$←− W × Zp, and then compute WA = WordG(param,L, r1), X = gr2 . In this way

the simulation of the session owned by IDA can be made identical to the real session from the view
of A due to pseudo-randomness of the PRF, namely the output F̂

l̂skA
(eskA).

6.2 Incorrect security reduction to the DDH assumption in the eCK model

In this section, we show that the above security reduction is flawed due to incorrect reduction to
the DDH problem based on the eCK model. The details of the problem is illustrated in Algorithm
1. Suppose that there exists a distinguisher D, which tries solve the DDH problem using the eCK
adversary M, i.e., given a DDH challenge instance (g, ga, gb, Z), the goal of D is to distinguish
whether Z = gab or a random group element. The distinguisher must properly set up the simulation
environment to the AKE adversary M in order to take advantage of M in solving the DDH
challenge. We use the superscript ‘*’ to denote the test session/oracle. Assume that M selects πt

∗

B

as the test oracle with the intended communication partner IDA. Note that in the simulation, D
needs to set the ephemeral public key of πt

∗

B (namely the value Y in Algorithm 1) to be one of
the challenge values in (ga, gb) and the ephemeral public key of an oracle πsA of party IDA (namely
the value X in Algorithm 1) to be another challenge value (which is the one received by test
oracle). Meanwhile the adversaryM corrupts party IDB (note that this is allowed according to the
eCK freshness definition without asking EphemeralKeyReveal(πt

∗

B ) and Corrupt(IDA) query). Then
the adversary generates a valid protocol message of its own choice and sends such a message to
πsA (see Algorithm 1). Note that the adversary can replay any message from party IDA to the
oracle πt

∗

B . Recall that the ephemeral public key of πsA is set to be DDH challenge value ga in
order to do the reduction. In this case, D cannot generate the session key for πsA without knowing
both the exponent of received ephemeral public value chosen by adversary M and the exponent
of the ephemeral public value of πsA. More precisely, D cannot compute the value KM1 without

knowing either of the exponents of Ỹ or X. Note that the adversary M can compute the value
KM1 using the exponent c chosen by him/her. The adversary can compute the values KM2 = KA2
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and KM3 = KA3 using the private key lskB of IDB (recall that M issued Corrupt(IDB) query and
has lskB) and the witness wM chosen byM respectively. Note that if the adversary can derive the
values KM1

, KM2
and KM3

he/she can also compute the session key. In order to fix the problem
above we model the hash function H2 to be a random oracle and instead use the Gap Diffie-Hellman
(GDH) assumption in place of DDH assumption to recover the security of the CMYSG protocol in
the eCK model. The modified security proof is shown in the next section.

DDH Challenge Instance (g, ga, gb, Z)

IDA M(Adversary) IDB

Long-Term Key Generation

hk
$←− HashKG(params,L) hk′ $←− HashKG(params,L)

hp
$←− ProjKG(hk, params,L) hp′ $←− ProjKG(hk′, params,L)

rA1

$←− {0, 1}t1(λ), rA2

$←− {0, 1}t2(λ) rB1

$←− {0, 1}t1(λ), rB2

$←− {0, 1}t2(λ)

lskA = hk, lpkA = (hp, rA1 , rA2) lskB = hk′, lpkB = (hp′, rB1 , rB2)

Protocol Simulation
πsA πt

∗
B

WA = WordG(param,L, wA) WB = WordG(param,L, wB)

X ← ga Ỹ ← gc Y ← gb

WM = WordG(params,L, wm),

where, (wm, c)
$←−W × Zp

Erase all state except Corrupt IDB Erase all state except
(eskA,WA, X, tA) (eskB ,WB , Y, tB)

X,tA,B,A,WA−−−−−−−−−→ X,tA,B,A,WA−−−−−−−−−→
Ỹ ,tB ,A,B,WM←−−−−−−−−−− Y,tB ,A,B,WB←−−−−−−−−−

Session Key Generation

aux = H1(sid), KM1 = Xc ,

KM2 = Hash(lskB , params,L,WA, aux)

KM3 = ProjHash(lpkA, params,L,WM , wm, aux)

sM = Ext3(H2(KM1)⊕KM2 ⊕KM3 , tA ⊕ tB)

SKM = F̃sM(sid)

aux = H1(sid) aux = H1(sid)

Cannot compute KM1 Set KB1 ← Z

KA2 = ProjHash(lpkB , params,L, KB2 = Hash(lskB , params,L,
WA, wA, aux) WA, aux)

KA3 = Hash(lskA, params,L, KB3 = ProjHash(lpkA, params,L,
WM , aux) WB , wB , aux)

sB = Ext3(H2(KB1)⊕KB2 ⊕KB3 , tA ⊕ tB)

SKB = F̃sB (sid)

Algorithm 1: Proof Reduction problem of CMGSY to DDH assumption
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7 Our Modified Security Analysis of CMYSG Protocol

In this section we show our modified security analysis of the CMYSG protocol. Our theorem follows:

Theorem 1. The AKE protocol in Section 5 is eCK-secure if the underlying smooth projective hash
function is 2-smooth, the GDH assumption holds in G, H1 is a collision-resistant hash function,
H2 is modeled as a random oracle and and F̂ , F̄ are PRF families and F̃ is a π-PRF family. Let
A be a PPT adversary against the protocol Π in Section 5. Then the advantage AdveCKΠ (A) of A
against eCK-security of protocol Π is:

AdveCKΠ (A) ≤ max{(AdvPRF(B) + εSM + ε3 + Advπ-PRF(B̃)),

(`2S2(2[ε1 + ε2 + ε3 + AdvPRF(B) + Advπ-PRF(B̃)] + AdvGDH
S )}.

where B, B̃, S are efficient algorithms constructed using the adversary A against the underlying
PRF, π-PRF, and GDH problem respectively. ε1, ε2 and ε3 are the parameters of the three strong
randomness extractors, and εSM represents the hardness of the underlying subset membership prob-
lem of the 2-smooth projective hash function.

The proof of this theorem will proceed via the game hopping technique [Sho04]: define a sequence
of games and relate the adversary’s advantage of distinguishing each game from the previous game
to the advantage of breaking one of the underlying cryptographic primitive.

We have to prove that the adversary is unable to distinguish a random value from the session key
space from the session key of any fresh oracle. The proof is split into two main cases: when the
partner to the test session exists, and when it does not. We use the superscript ‘*’ to high-light
corresponding values processed in test oracle πsA

∗. Let πsA be an accepted oracle with intended
partner IDB . Let πtB be an oracle (if it exists) with intended partner IDA, such that πsA has a
matching session to πtB . Throughout the proof we use the notation SuccGameδ(A) to denote the
event that the adversary A wins Game δ and the notation AdvGameδ(A) to denote the advantage of
the adversary A of winning Game δ. In all the cases Game 0 denotes the original game. According
to the freshness condition of the eCK model we consider the cases and sub-cases.

7.1 Case I. Partner to the test session exists

In this case we consider that the partner to the test session/oracle exists, i.e., πs
∗

A has a matching
session to πtB . We consider the following sub-cases under this case and we follow a game-based proof
technique.

1. The adversary A issued Corrupt(IDA) and Corrupt(IDB) query.

2. A issued EphemeralKeyReveal(πsA) and Corrupt(IDB) query.

3. A issued Corrupt(IDA) and EphemeralKeyReveal(πtB) query.

4. A issued EphemeralKeyReveal(πsA) and EphemeralKeyReveal(πtB) query.

I.1 A issued Corrupt(IDA) and Corrupt(IDB) query

Game 0. This is the original security game with adversary A. When the Test query is asked, the

Game 0 challenger chooses a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A,

otherwise a random value chosen from the same session key space is given. So, we have:
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AdvGame0(A) = AdveCKΠ (A). (1)

Game 1. Same as Game 0 with the following exception: before A begins, two distinct random prin-

cipals IDA, IDB
$←− {ID1, ID2, · · · , ID`} are chosen and two random numbers s∗, t∗

$←− {1, 2 · · · , S}
are chosen, where ` is the number of protocol principals or parties and S is the maximum number
of sessions that can be executed by a party. The oracle πs

∗

A is chosen as the target/test session and
the oracle πt

∗

B is chosen as the partner to the target session. If the test session is not the oracle
πs
∗

A or partner to the oracle is not πt
∗

B , the Game 1 challenger aborts the game. The probability of
Game 1 to be halted due to incorrect choice of the test session is (1− 1

`(`−1)S2 ). Unless the incorrect

choice happens, Game 1 is identical to Game 0. Hence,

AdvGame1(A) ≥ 1

`2S2
AdvGame0(A). (2)

Game 2. Same as Game 1 with the following exception: Instead of computing êsk
∗
A = Ext2(esk∗A, rA2

)

and êsk
∗
B = Ext2(esk∗B , rB2), the challenger chooses êsk

∗
A

$←− {0, 1}l2(λ) and êsk
∗
B

$←− {0, 1}l2(λ) re-
spectively. Note that Game 1 and Game 2 are indistinguishable by the property of the strong aver-
age case randomness extractor. To be more precise, since Ext2 is an average-case (k−λ2, ε2)-strong
extractor, (esk∗A, rA2

,Ext2(esk∗A; rA2
)) ≈ε2 (esk∗A, rA2

, Ul2(λ)), where Ul2(λ) denotes the uniform dis-

tribution over {0, 1}l2(λ). Similar case holds for the other party IDB . So,

|AdvGame2(A)− AdvGame1(A)| ≤ 2 ε2. (3)

Game 3. Same as Game 2 with the following exception: Instead of computing (w∗A, x
∗) = F̂

l̂skA
(esk∗A)+

F̄∗
êskA

(rA1), the challenge now chooses (w′A, x
′)

$←−W×Zp and computes (w∗A, x
∗) = F̂

l̂skA
(esk∗A) +

(w′A, x
′). Similarly for party IDB the challenger chooses (w′B , y

′)
$←−W×Zp and computes (w∗B , y

∗) =

F̂
l̂skB

(esk∗B) + (w′B , y
′).

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the session key value SK is computed using
the real PRF with a hidden key, or using a random function. The adversary A is given a SK, such
that a part of the key is computed using the PRF or randomly chosen from the session key space.
Note that for simulating non-test session involving IDA or IDB , the challenger knows the long term
key lskA and lskB (since the adversary queried Corrupt query on both) and hence can choose any
ephemeral secret key and compute the ephemeral public key correctly by using the long-term secret
key and long-term public key. Hence the session execution simulated is identical to the session run
by IDA or IDB from the view of A. So we have,

|AdvGame3(A)− AdvGame2(A)| ≤ 2 AdvPRF(B). (4)

Game 4. Same as Game 3 with the following exception: Instead of computing KA1 = Y ∗
x∗

=

X∗
y∗

= KB1
, the challenger chooses a random key K

$←− Y and adds an abort event. Namely, the

challenger aborts if the adversary queried a H2 random oracle query with input secret Y ∗
x∗

= X∗
y∗

which is a CDH solution for the target keys X∗ and Y ∗. It is straightforward to see that if the abort
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event happens with non-negligible advantage, then we could make use of the adversary to build a
CDH solver S.
S receives a CDH challenge instance (g, ga, gb), and tries to compute gab by runningA as subroutine.
S simulates the game for A, and sets the target Diffie-Hellman keys (i.e., X and Y ) to be ga and
gb respectively. For each unique H2 random oracle query, S returns a uniform random value if the

input to the oracle X∗
r

or Y ∗
r′

is a correct CDH value for corresponding ephemeral public keys
X∗ and Y ∗ (this check could be done via its DDH oracle query). As for two H2 oracle queries
with the same input, S returns the identical value. As for those Send, EphemeralKeyReveal, Corrupt
queries, S would answer them honestly based on the secrets chosen by herself following the protocol
specification. With respect to some RevealKey query and Test query involving target Diffie-Hellman
(DH) keys X∗ and Y ∗, S just returns a random key which should be identical to the session key
of its partner session. If the adversary asks a H2 oracle query for the test session with valid key

material Y ∗
x∗

= X∗
y∗

, then S aborts the game in success. Due to the security of GDH assumption,
we have that:

|AdvGame4(A)− AdvGame3(A)| ≤ AdvGDH
S . (5)

Game 5. Same as Game 4 with the following exception: Instead of computing s∗A = Ext3(H2(K∗A1
)⊕

K∗A2
⊕K∗A3

, t∗A⊕t∗B) and s∗B = Ext3(H2(K∗B1
)⊕K∗B2

⊕K∗B3
, t∗A⊕t∗B), the challenge chooses s∗A, s

∗
B

$←−
{0, 1}l3(λ). Since Ext3 is an average-case (|Y|−λ1, ε3)-strong extractor, (H2(K∗A1

)⊕K∗A2
⊕K∗A3

, t∗A⊕
t∗B , s

∗
A)) ≈ε3 (H2(K∗A1

)⊕K∗A2
⊕K∗A3

, t∗A⊕ t∗B , Ul3(λ)), where Ul3(λ) denotes the uniform distribution

over {0, 1}l3(λ). Similar case holds for party IDB . So,

|AdvGame5(A)− AdvGame4(A)| ≤ 2 ε3. (6)

Game 6. Same as Game 5 with the following exception: Instead of computing SKA = F̃s∗A(sid∗),

the challenger now chooses SKA
$←− {0, 1}l4(λ). If A can distinguish the difference between Game 5

and Game 6, then A can be used as a subroutine of an algorithm B̃, which is used to distinguish
whether the session key value SK is computed using the real π-PRF with a hidden key, or using a
random function. So,

|AdvGame6(A)− AdvGame5(A)| ≤ 2 Advπ-PRF(B̃). (7)

Semantic Security of the session key in Game 6. Since the session key SKA = SKB of πsA
and its matching session πtB is chosen randomly and independently from all other values, A does
not have any advantage in Game 6. Hence,

AdvGame6(A) = 0. (8)

Using equations (1) -(8), we get,

AdveCKΠ (A) ≤ `2S2(2(ε2 + AdvPRF(B) + ε3 + Advπ-PRF(B̃)) + AdvGDH
S ). (9)

I.2 A issued EphemeralKeyReveal(πsA) and Corrupt(IDB) query

Game 0. Same as Game 0 of Case I.1.

Game 1. Same as Game 1 of Case I.1.
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Game 2. Same as Game 1 with the following exception: Instead of computing l̂skA = Ext1(lskA, rA1
)

and êsk
∗
B = Ext2(esk∗B , rB2

), the challenger chooses l̂skA
$←− {0, 1}l1(λ) and êsk

∗
B

$←− {0, 1}l2(λ)

respectively. Note that Game 1 and Game 2 are indistinguishable by the property of the strong
average case randomness extractors. To be more precise, since Ext1 is an average-case (|HK|−λ1, ε1)-
strong extractor, (lskA, rA1 ,Ext1(lskA; rA1)) ≈ε1 (lskA, rA1 , Ul1(λ)), where Ul1(λ) denotes the uni-

form distribution over {0, 1}l1(λ). Similarly, since Ext2 is an average-case (k−λ2, ε2)-strong extractor,
(esk∗B , rB2

,Ext2(esk∗B ; rB2
)) ≈ε2

(esk∗B , rB2
, Ul2(λ)), where Ul2(λ) denotes the uniform distribution over {0, 1}l2(λ). So,

|AdvGame2(A)− AdvGame1(A)| ≤ ε1 + ε2. (10)

Game 3. Same as Game 2 with the following exception: Instead of computing (w∗A, x
∗) = F̂

l̂skA
(esk∗A)+

F̄
êsk
∗
A

(rA1
), the challenge now chooses (w′A, x

′)
$←− W × Zp and computes (w∗A, x

∗) = (w′A, x
′) +

F̂
êsk
∗
A

(rA1
). For party IDB the challenger chooses (w′B , y

′)
$←− W × Zp and computes (w∗B , y

∗) =

F̂
l̂skB

(esk∗B) + (w′B , y
′).

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the session key value SK is computed using
the real PRF with a hidden key, or using a random function. The adversary A is given a SK,
such that a part of the key is computed using the PRF or randomly chosen from the session key
space. Note that for simulating non-test session involving IDA or IDB , the challenger knows the long
term key lskB of party IDB (since the adversary queried Corrupt(IDB) query) and hence can choose
any ephemeral secret key eskB and tB and compute the ephemeral public key correctly by using
the long-term secret key and long-term public key. However for party IDA, the adversary does not
know its long term secret key lskA and hence cannot simulate the session as mentioned above. In

this case, the challenger chooses (r1, r2)
$←−W × Zp and compute WA = WordG(params,L, r1) and

X = gr2 . The session simulated in this way is identical to the real session from A’s view due to the
pseudo-randomness of the PRF. Hence the session execution simulated is identical to the session
run by IDA or IDB from the view of A. So we have,

|AdvGame3(A)− AdvGame2(A)| ≤ 2 AdvPRF(B). (11)

Game 4. Same as Game 4 of Case I.1.

Game 5. Same as Game 5 of Case I.1.

Game 6. Same as Game 6 of Case I.1.

Putting these together we get:

AdveCKΠ (A) ≤ `2S2(2(AdvPRF(B) + ε3 + Advπ-PRF(B̃)) + ε1 + ε2 + AdvGDH
S ). (12)

I.3 A issued Corrupt(IDA) and EphemeralKeyReveal(πtB) query

Game 0. Same as Case I.2.

Game 1. Same as Case I.2.
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Game 2. Same as Case I.2. except the following: Instead of computing êsk
∗
A = Ext2(esk∗A, rA2

)

and l̂skB = Ext1(lskB , rB1
), the challenger chooses êsk

∗
A

$←− {0, 1}l2(λ) and l̂skB
$←− {0, 1}l1(λ)

respectively. Note that Game 1 and Game 2 are indistinguishable by the property of the strong
average case randomness extractors. By a similar argument as in Game 2 in Case I.2 we have:

|AdvGame2(A)− AdvGame1(A)| ≤ ε1 + ε2. (13)

Game 3. Same as Game 2 with the following exception: Instead of computing (w∗A, x
∗) = F̂

l̂skA
(eskA)+

F̄
êsk
∗
A

(rA1
), the challenge now chooses (w′A, x

′)
$←−W×Zp and computes (w∗A, x

∗) = F̂
l̂skA

(esk∗A) +

(w′A, x
′). For party IDB the challenger chooses (w′B , y

′)
$←− W × Zp and computes (w∗B , y

∗) =

(w′B , y
′) + F̂

êsk
∗
B

(rB1).

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the session key value SK is computed using
the real PRF with a hidden key, or using a random function. The simulation for non-test session
involving IDA or IDB is done similarly to game 3 in Case I.2 except that the challenger now chooses

(r′1, r
′
2)

$←− W × Zp and computes WB = WordG(params,L, r′1) and Y = gr
′
2 . For party IDA, the

challenger knows the long term secret key lskA (since the adversary queried Corrupt(IDA) query)
and hence can choose any ephemeral secret key eskA and tA and compute the ephemeral public key
correctly by using the long-term secret key and long-term public key. Hence the session execution
simulated is identical to the session run by IDA or IDB from the view of A. So we have,

|AdvGame3(A)− AdvGame2(A)| ≤ 2 AdvPRF(B). (14)

Game 4. This is similar to the Case I.2.

Game 5. This is similar to the Case I.2.

Game 6. This is similar to the Case I.2.

Putting these together we get:

AdveCKΠ (A) ≤ `2S2(2(AdvPRF(B) + ε3 + Advπ-PRF(B̃)) + ε1 + ε2 + AdvGDH
S ). (15)

I.4 A issued EphemeralKeyReveal(πsA) and EphemeralKeyReveal(πtB) query

Game 0. Same as Case I.2.

Game 1. Same as Case I.2.

Game 2. Same as Game 1 with the following exception: Instead of computing l̂skA = Ext1(lskA, rA1)

and l̂skB = Ext1(lskB , rB1
), the challenger chooses l̂skA

$←− {0, 1}l1(λ) and l̂skB
$←− {0, 1}l1(λ) re-

spectively. Note that Game 2 and Game 1 are indistinguishable by the property of the strong average
case randomness extractor. To be more precise, since Ext1 is an average-case (|HK|−λ1, ε1)-strong

extractor, (lskA, rA1
,Ext1(lskA; rA1

)) ≈ε1 (l̂skA, rA1
, Ul1(λ)) and (lskB , rB1

,Ext1(lskB ; rB1
)) ≈ε1

(l̂skB , rB1
, Ul1(λ)), where Ul1(λ) denotes the uniform distribution over {0, 1}l1(λ). So,

|AdvGame2(A)− AdvGame1(A)| ≤ 2ε1. (16)
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Game 3. Same as Game 2 with the following exception: Instead of computing (w∗A, x
∗) = F̂

l̂skA
(esk∗A)+

F̄
êsk
∗
A

(rA1
), the challenge now chooses (w′A, x

′)
$←− W × Zp and computes (w∗A, x

∗) = (w′A, x
′) +

F̂
êsk
∗
A

(rA1
). For party IDB the challenger chooses (w′B , y

′)
$←− W × Zp and computes (wB , y) =

(w′B , y
′) + F̂

êsk
∗
B

(rB1
).

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the session key value SK is computed using
the real PRF with a hidden key, or using a random function. Now, in this case for the simulation
of non-test session involving IDA or IDB the challenger does not know either the long term key
lskA of party IDA or the long term key lskB of party IDB . In this case, the challenger chooses

(r1, r2)
$←− W × Zp and computes WA = WordG(params,L, r1) and X = gr2 . For party IDB ,

the challenger again chooses (r′1, r
′
2)

$←− W × Zp and computes WB = WordG(params,L, r′1) and

Y = gr
′
2 . The session simulated in this way is identical to the real session from A’s view due to the

pseudo-randomness of the PRF. Hence the session execution simulated is identical to the session
run by IDA or IDB from the view of A. So we have,

|AdvGame3(A)− AdvGame2(A)| ≤ 2 AdvPRF(B). (17)

Game 4. This is similar to the Case I.2.

Game 5. This is similar to the Case I.2.

Game 6. This is similar to the Case I.2.

Putting these together we get:

AdveCKΠ (A) ≤ `2S2(2(ε1 + AdvPRF(B) + ε3 + Advπ-PRF(B̃)) + AdvGDH
S ). (18)

Combining the four cases (Case I.1) - (Case I.4), from equations (9), (12), (15) and (18), we get:

AdveCKΠ (A) ≤ `2S2(2(ε1 + ε2 + ε3 + AdvPRF(B) + Advπ-PRF(B̃)) + AdvGDH
S ). (19)

7.2 Case II. Partner to the test session does not exist

Here we consider the case when there is no partner to the test session/oracle ,i.e., πs
∗

A does not have
a matching session. When the partner session does not exist, the owner of the test session shares
the session key with the active adversary. In this situation where there is no matching session
corresponding to oracle πs

∗

A , the adversary is not allowed to corrupt the intended partner principal
to the test session by the freshness condition (Definition 14). We have the following sub-cases:

1. The adversary A issued EphemeralKeyReveal(πs
∗

A ) query.

2. A issued Corrupt(IDA) query.

II.1 A issued EphemeralKeyReveal(πs
∗

A ) query

Game 0. This is the original security game with adversary A. When the Test query is asked, the

Game 0 challenger chooses a random bit b
$←− {0, 1}. If b = 1, the real session key is given to A,

otherwise a random value chosen from the same session key space is given. Hence,
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AdvGame0(A) = AdveCKΠ (A). (20)

Game 1. Same as Game 0 with the following exception: before A begins, the Game 1 challenger
guesses the identity IDB of the partner principal to the test session and if the guess in incorrect it
aborts the game. The probability of Game 1 to be aborted due to incorrect guess of the partner
principal to the test session is (1 − 1

` ). Unless the incorrect guess happens, Game 1 is identical to
Game 0. Hence,

AdvGame1(A) =
1

`
AdvGame0(A). (21)

Game 2. Same as Game 1 with the following exception: Instead of computing l̂skA = Ext1(lskA, rA1
),

the challenger chooses l̂skA
$←− {0, 1}l1(λ). Note that Game 1 and Game 2 are indistinguishable by

the property of the strong average case randomness extractor. To be more precise, since Ext1 is
an average-case (|HK|−λ1, ε1)-strong extractor, (lskA, rA1 ,Ext1(lskA; rA1)) ≈ε1 (lskA, rA1 , Ul1(λ)),

where Ul1(λ) denotes the uniform distribution over {0, 1}l1(λ). So,

|AdvGame2(A)− AdvGame1(A)| ≤ ε1. (22)

Game 3. Same as Game 2 with the following exception: Instead of computing (w∗A, x
∗) = F̂

l̂skA
(esk∗A)+

F̄
êskA

(rA1
), the challenge now chooses (w′A, x

′)
$←− W × Zp and computes (w∗A, x

∗) = (w′A, x
′) +

F̂
êsk
∗
A

(rA1
).

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the session key value SK is computed using
the real PRF with a hidden key, or using a random function. So we have,

|AdvGame3(A)− AdvGame2(A)| ≤ AdvPRF(B). (23)

Game 4. Same as Game 3 with the following exception: Replace K∗A2
= ProjHash

(lpkB , params,L,W ∗A, w∗A, aux∗) by K∗A2
= Hash(lskB , params,L,W ∗A, aux∗). Note that Game 1

and Game 2 are identical by the correctness of the underlying 2-smooth projective hash function
SPHF . So,

AdvGame4(A) = AdvGame3(A). (24)

Game 5. Same as Game 4 with the following exception: Choose W ∗A ∈ X \L instead of deriving it
through the algorithm WordG. Game 4 and Game 5 are computationally indistinguishable due to
the (tSM, εSM)-hard subset membership problem of the underlying 2-smooth projective hash function
SPHF . So,

|AdvGame5(A)− AdvGame4(A)| ≤ εSM. (25)

Game 6. Same as Game 5 with the following exception: Instead of computing

K∗A2
= Hash(lskB , params,L,W ∗A, aux∗), the challenger now chooses K∗A2

$←− Y. Game 5 and
Game 6 are perfectly indistinguishable to the view of the adversary A given the public param-
eters (params, L, aux∗), i.e., H̃∞(K∗A2

| params,L, aux∗) = |Y|. This follows from the smoothness
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property of the underlying 2-smooth projective hash function. Note that adversary A may activate
a session πtj with IDB which is not matching to the test session corresponding to the oracle πs

∗

A .
More precisely, A can choose W ∈ X \ L, send W to IDB and issues RevealKey(πtj) query to learn
the shared key. According to the property of 2-smooth of the underlying smooth projective hash
function, we have that K∗A2

is pairwise independent from any other such key (denoted by K̃) and

all public information (params, L, W ∗A, aux∗), and hence H̃∞(K∗A2
| K̃, params,L, aux∗) = |Y|. So

we have,

AdvGame6(A) = AdvGame5(A). (26)

Game 7. Same as Game 6 with the following exception: Instead of computing s∗A = Ext3(H2(K∗A1
)⊕

K∗A2
⊕K∗A3

, t∗A ⊕ t∗B), the challenge chooses s∗A
$←− {0, 1}l3(λ). Since Ext3 is an average-case (|Y| −

λ1, ε3)-strong extractor, (H2(K∗A1
) ⊕K∗A2

⊕K∗A3
, t∗A ⊕ t∗B , s∗A)) ≈ε3 (H2(K∗A1

) ⊕K∗A2
⊕K∗A3

, t∗A ⊕
t∗B , Ul3(λ)), where Ul3(λ) denotes the uniform distribution over {0, 1}l3(λ). So,

|AdvGame7(A)− AdvGame6(A)| ≤ ε3. (27)

Game 8. Same as Game 7 with the following exception: Instead of computing SKA = F̃s∗A(sid∗),

the challenger now chooses SKA
$←− {0, 1}l4(λ). If A can distinguish the difference between Game 7

and Game 8, then A can be used as a subroutine of an algorithm B̃, which is used to distinguish
whether the session key value SK is computed using the real π-PRF with a hidden key, or using a
random function. So,

|AdvGame8(A)− AdvGame7(A)| ≤ Advπ-PRF(B̃). (28)

Semantic Security of the session key in Game 8. Since the session key SKA of πs
∗

A is chosen
randomly and independently from all other values, A does not have any advantage in Game 6.
Hence,

AdvGame8(A) = 0. (29)

Using equations (20) - (29), we get,

AdveCKΠ (A) ≤ ` (AdvPRF(B) + εSM + ε3 + Advπ-PRF(B̃)). (30)

II.2 A issued Corrupt(IDA) query

Game 0. Same as Game 0 as in Case II.1.

Game 1. Same as Game 1 as in Case II.1.

Game 2. Same as Game 1 as in Case II.1 except the following: Instead of computing êsk
∗
A =

Ext2(esk∗A, rA2), the challenger chooses êsk
∗
A

$←− {0, 1}l2(λ). Game 1 and Game 2 are indistinguish-
able by the property of the strong average case randomness extractor Ext2. By a similar argument
as in Case I.1, we get:

|AdvGame2(A)− AdvGame1(A)| ≤ ε2. (31)
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Game 3. Same as Game 2 as in Case II.1 except the following: Instead of computing (w∗A, x
∗) =

F̂
l̂skA

(esk∗A) + F̄
êsk
∗
A

(rA1
), the challenge now chooses (w′A, x

′)
$←−W×Zp and computes (w∗A, x

∗) =

F̂
l̂skA

(esk∗A) + (w′A, x
′).

If A can distinguish the difference between Game 2 and Game 3, then A can be used as a subroutine
of an algorithm B, which is used to distinguish whether the session key value SK is computed using
the real PRF with a hidden key, or using a random function. So we have,

|AdvGame3(A)− AdvGame2(A)| ≤ AdvPRF(B). (32)

Game 4. Same as Game 4 as in Case II.1.

Game 5. Same as Game 5 as in Case II.1.

Game 6. Same as Game 6 as in Case II.1.

Game 4. Same as Game 4 as in Case II.1.

So, we have:

AdveCKΠ (A) ≤ ` (AdvPRF(B) + εSM + ε3 + Advπ-PRF(B̃)). (33)

Finally, combining Case I and Case II, we get the following:

AdveCKΠ (A) ≤ max{(AdvPRF(B) + εSM + ε3 + Advπ-PRF(B̃)),

(`2S2(2[ε1 + ε2 + ε3 + AdvPRF(B) + Advπ-PRF(B̃)] + AdvGDH
S )}.

This completes the proof of Theorem 1. ut

8 Conclusion

In CT-RSA 2016, Chen et al. proposed a new authenticated key exchange protocol and showed it
to be secure under challenge-dependent leakage-resilient eCK (CLR-eCK) model. The security of
their protocol is reduced to the existence of hash-proof systems, pseudo-random functions (PRF)
and π-PRFs, collision-resistant hash functions and the hardness of the Decisional Diffie-Hellman
(DDH) problem. In the paper, we refute their security claim by showing that the reduction to DDH
is incorrect. Further, we restore the security proof under the Gap Diffie-Hellman (GDH) hardness
assumption in the random oracle model. Restoring the security under the DDH assumption with
possibly a different reduction seems unlikely and our restoration under the GDH assumption is also
quite non-trivial. Moreover, due to our work, the existence of CLR-eCK secure AKE protocol in
the standard model becomes open once again.
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