Blockchain-Free Cryptocurrencies

A Rational Framework for Truly Decentralised Fast Transactions

Xavier Boyen Christopher Carr Thomas Haines
QUT NTNU & QUT QUT
Abstract

We present a radical solution to the two foremost challenges facing “blockchain”-based
cryptocurrencies: (1) “mining pool” oligopolies and (2) incompressibility of delays affecting
validation. Both problems stem from the Blockchain mechanism itself, which drives par-
ticipants into a winner-takes-all global contest that amounts to a low-odds high-variance
rewards lottery.

Our proposal strips out the “blocks”-&-“chain” consolidation mechanism, instead repur-
posing the atomic transactions as the only system objects. A fully distributed proof of work,
coupled with progressive and predictable rewards, is efficiently layered on top of the transac-
tion structure. Without blocks, the cryptographic “chain” of transaction affirmations turns
into a directed graph, whose sparseness, timely growth and global convergence are steered
by game-theoretic incentives.

The transaction affirmation process is cooperative (rather than competitive), to entice
all participants to work solitarily at their own pace, rather than in pools at the pace of a
blockchain.

In the absence of blocks, we develop a framework that enjoys better decentralisation,
improved responsiveness and natural scalability. Crucially, most of the key features of cryp-
tocurrencies are transaction-bound rather than blockchain-bound, and are thus compatible
with our framework—e.g., scripting, multi denominations, smart contracts, etc.

1 Introduction

Bitcoin is evidently the most successful cryptocurrency to date, with a large user base, consid-
erable media attention and a high market valuation. Earlier cryptographic digital cash schemes
tended to revolve around trusted central authorities [5]. Bitcoin reformed this classical view of
the cryptocurrency archetype, diverging from the mandatory centralisation by instead present-
ing a distributed cryptocurrency without a pre-ordained authority. Remarkably, it managed to
do so using only garden-variety cryptographic primitives (signatures and hash functions), relying
instead on innovative distributed systems concepts to achieve most of its desirable properties.

Although it was not the first authority-free cryptocurrency, with proposals like Bit-gold [28]
and B-money [27] credited with anteriority [21], Bitcoin is the first cryptocurrency scheme to see
widespread adoption. Various factors may account for Bitcoin’s success, though there is little
question that the decentralised design, and its perceived immunity to government interference,
played a significant part in the uptake. As a consequence of the growing awareness of Bitcoin,
there is a resurgence of academic interest in cryptographically enforced digital cash, and, more
generally, what is now called “Blockchain technology,” referring to one of the two key innovations
of Bitcoin—the other innovation being transaction scripting [14].

Unfortunately, the lack of an imposed authority did not prevent an emergence of oligopolies
(“mining pools”) which would naturally consolidate into an unshakeable monopoly if not for



self-restraint ostensibly to avert a crisis of confidence. Indeed, despite intentions, the influx of
new users, combined with older users seeking to consolidate their grip on the system, it did
not take long for problems to emerge, leading to compromises and arguments that called the
fundamentals of the system into question.

Some problems could be easily fixed, while others would have required redesigning central
aspects of the system (and sometimes did). Notably, there is a growing body of literature
focusing on almost all aspects of Bitcoin, looking at analysing, improving and understanding
Bitcoin in light of some of its emerging challenges [1, 3, 9, 15, 16, 17, 26]. On top of this, many
practical proposals have arisen, explicitly seeking to overcome various inherent limitations of the
system. Proposals range from parameter tweaks, or altcoins [31, 33|, to complete infrastructure
redesigns, albeit often with in-built centralisation [34] and even sovereign escrow systems [4]
as “solutions” to the perceived problems. Some of the improvements can run directly on the
Bitcoin Blockchain with no modifications, such as coloured coins. Improved anonymity [2, 17]
and multi-denomination smart contracts [32, 35] are some of the issues that have been addressed
with varying success.

Despite considerable effort, some bigger issues still remain, which is concerning for the
development of distributed digital cash. Aside from the emergence of mining pools, the other
critical issue is the incompressible delay required for affirmation of a new transaction. We argue
that both problems are inherent to “blockchain technology” itself, which is the method used by
Bitcoin and most other decentralised cryptocurrencies to reach verification consensus.

Decentralised Cryptocurrencies: Principles of Bitcoin. Bitcoin is made of of two
parts, a currency protocol layer, and a “backbone” protocol layer, referred to as the Blockchain.
Within the Blockchain infrastructure there are effectively two type of objects, the blocks and
the transactions.

Transactions embed all the information necessary for Bitcoin to function. Any participant
can create and broadcast transactions to the network. A transaction consists of a number of
inputs and outputs, and indicates how many “bitcoins” from the sum of the inputs are to be
transferred to each output. Any output with a positive bitcoin balance then acts as an input
in a future transaction.

Transactions, however, carry no authority until they become collected and verified by the
system participants, who package them into blocks in a chain-like fashion. In order to be allowed
to create a new block, which comes with two substantial rewards (collection of transaction fees
and “free money” minting), users compete to solve a highly difficult computational challenge
that refers to the packaged transactions. Once solved, the challenge is easy to verify.

Inputs and outputs are specified by addresses, which are derived from anonymous public
keys in a signature scheme, created as needed. For a transaction to be valid, all its inputs
must be signed with the respective private keys. Naturally, the input and output amounts must
match (minus a “transaction fee” that will be collected by the next block creator), and the
inputs must not have previously been spent. The network solves the double-spending problem
by accepting at most one of the conflicting transactions, but not both. Since a transaction
can recombine bitcoins arbitrarily from inputs to outputs, they are fully divisible and fungible.
What is more, Bitcoin actually allows inputs and outputs to carry programmatic scripts which
are executed when verifying a transaction, to determine the action to be performed.

The Bitcoin transactions themselves create a distributed payment ledger while the purpose
of the Blockchain is to ensure a global consensus over this ledger. The payment system provides
the incentive mechanisms without which the consensus engine would not be able to operate.



Blockchain Challenges. We have already mentioned the ostensible distributed nature of
Bitcoin being frequently called into question. This problem is an artefact of the Blockchain
consolidation principle itself, which makes it very hard to distribute rewards to the myriad of
participants that contribute (or would be contributing) their computing power to the verification
effort. On the Blockchain, the rewards are few and far between, and the only intrinsically fair
method of distributing those rewards is as a high-variance probability distribution—essentially
a lottery. Risk-averse participants will coalesce into mining pools to reduce that variance, at the
cost of abdicating their individual oversight duty, which collectively makes the network more
brittle to a variety of attacks, such as the well-known 51% attack [20] and the “selfish miner”
or 33% attack [8], which in some special cases can become a 25% attack. Proposals have been
made to mitigate this issue, by incentivising participants to defect from pools [19], but they
do not eliminate the Blockchain’s core problem of allowing only low-odds high-variance fair
rewards.

In Bitcoin, a feedback loop on difficulty ensures that puzzle renewal occurs every 10 minutes
on expectation as a Poisson process. From a miner’s point of view, 10-minute renewal is a
rapid enough pace that turns any communication delay to the Bitcoin network into a signifi-
cant disadvantage. Perversely, this also encourages any user interested in mining to delay the
propagation of any new block data, except for their own. !

From a non-mining point of view, the Blockchain pace is far too slow, as the inflexible
schedule of block creation makes transaction verification unbearably long. Some altcoins have
experimented with shortening the block creation interval (e.g., Litecoin’s 2.5 minutes), but this
exacerbates the miners’ predicament. Proper verification will always be bounded by the block
creation renewal time. 2

Further compounding these delays, the Blockchain encourages contention by hard-capping
the block size, hence the transaction rate itself.> At the time of writing, the lack of avail-
able bandwidth on the Blockchain is allegedly being (ab)used by Bitcoin miners to drive up
transaction fees without even having to deliver on speed.

Mining Pools. Mining pools come with the fundamental problem that they are themselves
becoming monopolies within the system, defeating the principle of decentralisation. As Bitcoin
developed, mining pools took a more and more significant position. Mining pools now make
up more than 99% of the (considerable) hashpower in the Bitcoin system. Indeed, a single one
of these monoliths temporarily held absolute majority of the computing power on the network
[29]. At the time of writing, those mining pools are mostly based in a single country (China),
with just two of these pools controlling over 50% of the hashpower of the entire network.*

This move away from decentralisation is a widely recognised problem, and is one that has
come under scrutiny in the past [15, 19]. On the other hand, some lines of research have sought
to give even more power to central authorities in an attempt to solve the scalability and power
wastage issues [6]. Unfortunately, none of the current proposals completely deal with a major
issue of proof-of-work (PoW) based consensus, in that current PoW systems become prohibitive
to new members as the value in the system grows, spurring coalition.

In short, the mining-pool problem is one of economic incentives, and is ineluctably tied

"nterestingly, Bitcoin mining pools have in the past voluntarily broken up when overshooting the 50% mark,
but they seem to feel no compunction to do so above 33% or 25%.

2Ironically, commercial Bitcoin users now mitigate the blockchain delays by entrusting third parties as “pay-
ment processors”, the very thing that Bitcoin sought to avoid.

3Bitcoin’s transaction rate is capped because blocks come at a fixed rate and have a fixed maximum size.
Block size has incidentally been raised once already, from 4kB to 1MB, and is presently the object of a fork, with
heated debate pitting individual transactors versus miners and mining pools.

4 Accurate per blockchain.info as at 26 April 2016.



to the “chain” aspect of the Blockchain design. The Blockchain reward structure is simply
unsuitable at providing rewards to a large population of miners.

Proofs of Work. The concept of proof of work was developed initially by Dwork and Naor
[7] for fighting spam. Applications emerged in other areas, such as client puzzles [12, 25], but
the most famous scheme to date remains the Blockchain system itself [20].

A central component of Bitcoin and its derivatives, PoWs are utilised as a majority-voting
mechanism to enforce the ledger’s integrity, achieve global consensus, and provide immunity to
minority byzantine attacks, by allowing the honest majority to “out-work” the faulty transac-
tions. At the same time, proofs of work are tasked with the duty of providing incentives in the
form of “fair rewards” to the participants, without adjudication by a central authority.

Despite its importance, there still remains relatively little examination of the underlying
design, its properties and fundamental limitations. Indeed, the difficulty of realising a proof of
work with characteristics better suited than the Blockchain has been recognised as a central
problem in the design of decentralised currencies. Narayanan et al. [21] summarise it in these
terms:

“The holy grail would be to design a consensus protocol with is ‘naturally’ low-
variance by rewarding miners a small amount for lower-difficulty puzzles [...] It
remains an open question if there is an alternative version of the consensus proto-
col which would enable mining puzzles without near-instantaneous broadcast of all
solutions.”

1.1 Owur Approach

Here we demonstrate an alternative backbone proof-of-work scheme which is collaborative rather
than competitive, and which we claim successfully addresses all of the above challenges and has
considerable advantages over the existing schemes. We show how to construct a PoW scheme
that:

1. Is fully decentralised without “block consolidation”.

2. Works on an open model, empowering individuals.

3. Promotes cooperation and demotes competition.

4. Ensures fast and strong transaction confirmations.

5. Gives commensurate rewards for differing efforts.

6. Has natural quiescence, without unneeded broadcasts.
7. Naturally scales up and down with fluctuating activity.

Our proof of work altogether removes the large construct of the Blockchain (which adju-
dicates transactions into a consolidated total order in the form of blocks). Instead it creates
a lighter system of limited partial orders by arranging transaction verifications into a directed
graph.

The parallelism between different branches of this graph, or partial orders, allows multiple
miners to work and get rewarded for verifying the same transactions. This simultaneously
removes the “global clock” constraint of the Blockchain, as it allows miners to work at unequal
speeds and with unequal resources, and still get rewarded for their efforts, as they are all
contributing to the overall system strength.



Transactions as First-class Objects. Without blocks, transactions are promoted to first-
class status, with a dual function: transactional (moving funds, settling contracts, and so
on) and structural (validating prior transactions, processing fees, minting new units of value).
Accordingly, a transaction in our framework has two (loosely interacting) components:

e A “transactional/monetary” component, representing the user-facing—or payload—aspect
of the transaction. Its format depends on the user functionalities that the cryptocurrency
seeks to provide (e.g., simple cash, multiple currencies, securities, contracts, etc.). Our
framework is mostly oblivious to this component, other than for its minimal ability to
carry a value.

e A “verification/mining” component, representing the systemic aspect of the transaction—
its metadata—, common to all instantiations of our framework. Our framework relies on
this component to build a globally consistent verification graph using mechanisms such as
proofs of work and associated rewards.

In this framework, each transaction must post a transaction fee (e.g., proportional to size) which
is offered for collection by future transactions that will verify it. Indeed and conversely, each
transaction must refer to a fixed few (e.g., two) prior transactions, which must be valid and
have fees available for collection. Those references indicate verification and allow the referring
transaction to collect a certain amount of transaction fee from the referred transactions and
their own ancestors.

Fees and Incentives. Fees are collected by walking the directed acyclic graph of ancestors
of the two designated transactions, starting from the most ancient, and grabbing any available
fee that remains up to some total amount of fee calculated by a predetermined formula. This
total is a function of the transaction’s proof-of-work effort or hash-energy compared to the total
hash-energy of the ancestors, among other factors.

Importantly, we require that only prior transactions from which sufficient fees are still avail-
able to collect can be designated as a valid verification target. That is, if based on the hardness
of its proof of work and other factors, a new transaction is owed a fee of v, and it designates
the two prior transactions x1 and o as verification targets, then it must be the case that the
total fee vy still available from 21 and its ancestors, plus the total fee vo, available from x5 and
its ancestors (excluding duplicates), is equal to or exceeds v.

Emerging Properties. These requirements confer many desirable properties:

1. Verification will be steered toward recent transactions, since direct validations of older
transactions will be forbidden once their fees are exhausted;

2. Urgent transactions with a higher fee will attract parallel verifiers for rapid affirmation;

3. Non-zero, but low-fee transactions will eventually get included by smaller miners, with
the risk of competition decreasing gradually as time moves on, albeit for lower rewards;

4. Any transaction, once collected into the verification graph, will at some point become con-
nected to the ancestor tree of every future transaction in the graph, eventually providing
maximum validation regardless of fee (as on the Bitcoin blockchain).

5. Invalid transactions (due to, e.g., double spending, stale fees, misformatting, deliberate
attacks, etc.) will be weeded out by majority vote of the honest miners, who will simply
refuse to extend the transaction graph downstream from the fault.



Our approach resolves the central difficulty of maintaining global consistency of a partial
order by exploiting the economic incentives available in a cryptocurrency. The incentives makes
it in the miners’ best interest to always try to extend the graph from its “strongest/hardest/lat-
est” point, while also referring to prior transactions that might have not yet been confirmed
by others. The requirement that the full amount of fee owed to a particular transaction (as
determined by a formula) be available from the ancestors it verifies, makes the transaction more
concise and easier for miners to verify.

Finally, we note that the overhead of embedding the verification of a couple of prior transac-
tions within each new transaction is minimal, compared to the rest of the data that any useful
transaction would require. There will generally be little incentive to post a transaction just to
collect fees and mining rewards, rather than combine those with a useful transaction. Setting
the number of prior verification to a very small number (two) also has the advantage of forcing
miners to create fewer but stronger proofs of work. This increases the total resilience of the
system, keeps transactions short, and still leaves small rewards available to small players.

General Benefits. Because our graph-based validation and cooperative proof-of-work frame-
work is mostly independent of the “payload” of the transaction itself—other than a way to
collect fees, pay fees, and mint coin— we envision that it should be very straightforward to
instantiate it with any user-facing cryptocurrency functionality of choice. Transforming any
existing blockchain-based cryptocurrency into the “same” cryptocurrency without blockchain,
giving much better scalability and decentralisation toward individual users, by giving everyone
an opportunity not only to take part, but to profit from creating proofs of work that they can
tailor to suit themselves.

In a nutshell, the Blockchain creates inefficiencies that allows middlemen (mining pool op-
erators) to extract a “tax” (in the form of control over the Blockchain) at the expense of the
users and miners alike. By eliminating the Blockchain, the users and miners will benefit from
faster transactions and better alignment of fees and rewards to the actual costs.

1.2 Related Work

The main problems we focus on are widely recognised within the world of distributed cryptocur-
rencies, and there have been various proposals that have sought to address some or both of the
problems we have discussed, with varying degrees of success. Karame et al. [13] evaluate the
problem of payment verification speed. Miller et al. [18] look at replacing the proof-of-work in
Bitcoin with proofs of retrievability, in order to mitigate the waste of computational resources,
similar to Park at al. [22] who present a proof of space alternative and retrieve decentralisation
by making mining available, and reducing the wastage of computational effort in the system.
Gervais et al. [10] critically analyse the claims of decentralisation in Bitcoin, while Johnson et
al. [11] review the incentives for mining pools to engage in underhanded strategies to achieve a
competitive advantage. Pass et al. [23] analyse the Bitcoin Blockchain under an asynchronous
setting, where users can join and leave the system as required, and scalability improvements
are the focal point of work by Sompolinsky and Zohar [24].

In addition to these works, Miller at al. [19] propose puzzles designed specifically so that
they cannot be outsourced, thus removing their utility within mining pools. Further, Lewenberg
et al. [15] put forward a scheme that allows for multiple blockchains to emerge at once. In order
to capture more transactions and allow for proofs of work that somewhat overlap. These latter
two proposals are most closely related to our work, in that they attempt to resolve almost iden-
tical issues to us by also proposing alternatives to the underlying Blockchain structure. Whilst
interesting ideas, our work takes a different approach that incentivise solo work, and removes



the “Block” construct altogether, which we feel is the natural destination of this line of enquiry.

2 Block-Free Ledger

This section illustrates a method for constructing a proof-of-work system that is fundamentally
collaborative in nature. The idea is simple: instead of grouping individual transactions into
“verified” blocks strung into a blockchain, transactions themselves are responsible for vouching
for other previous transactions, in a graph-like rather than chain-like structure. Proofs of work
are still employed for measuring the weight (incremental but also cumulative) of all verifications.

We describe our proposal in two parts. The first part concerns the collaborative proof of
work and the way it is used to give rise to an efficient and fully decentralised consensus system.
This part can be thought of as a drop-in replacement for the Bitcoin blockchain machinery, with
greater decentralisation. Mathematically, we can think of this structure as a partially ordered
set (POSET), represented graphically as a directed graph, where each node has a fan-out of
exactly two edges directed toward two distinct nodes called sinks, and an unbounded fan-in of
arbitrarily many edges incoming from as many sources, necessarily all distinct. Each node in
this graph represents a singular data structure that forms an individual transaction. Each edge
in this graph represents a “verification” relationship, indicating that the source transaction is
vouching for the validity of the sink transaction. We emphasise that those edges are about
verification rather than payments, which are the concern of the second part.

The second part specifies the various settlement protocol(s) that can be built on top of the
verification structure, while only minimally interacting with it. We describe an instance of such
a protocol—for making Bitcoin-like settlement transactions in a single unit of account—along
with parameters that causes the system to operate as a digital currency.

2.1 Collaborative Proof Of Work

To help express the intuition behind a collaborative proof-of-work system, imagine a challenge-
response protocol, where the challenge is to return a solution to a puzzle p, which could be an
arbitrary string. The puzzle is to find a solution s, such that f(p,s) returns true, for some fixed
function f, where f is chosen so that for any p the easiest way to find an s that makes the
function true is by blind search with independent probability 1/c. We call this ¢ the difficulty
of the puzzle. Thinking of this in a Bitcoin context, p represents the bulk of a new block to be
created on the Blockchain. The variable s represents the v that is selected by the challenger.
The function f may be taken as the function that returns true if H(p,s) = m < 21"l /¢, i.e., if
the puzzle and the initialisation vector hashed through some fixed hash function H yields an
output that falls in the 1/c-th lowest portion of its range. The solution s bears witness that the
solver has on average sifted through 2°~! candidates before finding s.

Now, instead of accepting one string s as solution of a given challenge p of difficulty ¢, we
may instead accept any number of distinct answers {s;} such that they together bear witness
that the solver has searched through the same expected 2°~! candidates in total. More generally,
the answers s; may, but need not, refer to the exact given challenge p. They could refer to a
sequence of derived challenges, as long as it is clear that the total “proof of work” exhibited by
the set of solutions is evidence of a total amount of work performed in response to the given
challenge p. Figures 1 and 2 illustrate two possible ways to derive sub-challenges from a given
p, in such a way that the solution set constitutes a suitable proof of work for the original p.

By creating puzzles of this form, finding a solution can be achieved in stages, by multiple
distinct users, even allowing for completely overlapping solutions. This straightforward way



P — H(p,ivi) =my H(ma,iv3) = m3

H(ml,i’l)g) = My H(mg,i’04) = My

Figure 1: Incremental solution method.

p *{ H(p,iv1) = m

/\

H(my,ive) = mgy H(my,a,ivsg) = ms

=

H(mg,ms,ivs) = my

Figure 2: Overlapping solution method.

of accumulating proofs of work establishes the foundations for building our framework, and
provides a way of forming a metric on the security of transactions.

What is now needed is a formal method for evaluating the security of the scheme. To achieve
this we first need to define define a proof of work scheme and establish a way of capturing
challenge form it.

Definition 1 (Proof-of-Work Scheme). A Proof-of-Work Scheme is characterised by a function
S = S, taking arbitrary strings a, along with some solution string b, where S(a,b) returns either
true or false.

This is a proof-of-work scheme in its simplest form, taking no account for timeliness or
succinctness. The function parameter c¢ allows us to vary S, to target a desired difficulty.
In practice, the most common proof-of-work schemes are based on hash functions, where the
difficulty is easily tunable, verification is quick, and inputs can be arbitrary. We purposefully
leave this definition loose so as to allow for maximum flexibility in implementation. The proof-
of-work scheme, to some degree, does not matter so long as we can capture and specify how
challenging it is to form a proof.

Definition 2 (Black-Box Difficulty). A proof-of-work scheme S is said to have difficulty c if

any entity, given an arbitrary challenge string a, and one attempt to find a solution b such that

the oracle call to S(a,b) returns true, will succeed with probability negligibly close to ¢!,

Definition 3 (White-Box Difficulty). We further say that S has computational difficulty c if
no PPT entity, given open-box access to S, and just enough time to evaluate it on k inputs,
outputs a solution b such that S(a,b) with probability non-negligibly greater than kc1.

Later on, the term “difficulty” implies the computational notion from Definition 3.

2.2 Protocol

So far we have examined a way of building proofs of work in a collaborative manner. Next, we
describe the ground rules of a transaction-based fully decentralised ledger protocol that relies on



collaborative proofs of work and derived incentives, to achieve convergence, or global consensus
and timely verification of new transactions.

Transactions. Transactions perform all roles in our framework: they mint cash, redistribute
value, spend money, add fees and—crucially—confirm the legitimacy of previous transactions.
To create a transaction, certain information is provided: payment information, a reference to
two previous transactions xj, z,, the difficulty being solved ¢, the fee f, the mint m, and a
solution value s,

x; = [Payments;, x;,, xy,, ¢, fi, mi, Si]. (1)

In practice, the mint m; can be omitted as it is implied by available data; and likewise the
difficulty ¢; is implied by the “quality” of the solution seen in the proof-of-work verification.

The two transactions z; and z, are mandatory references to two distinct prior transactions
whose validity the present transaction is vouching for (and by transitivity, the validity of all of
those two transactions’ ancestors also). Provided that the new transaction is itself valid, the
proof of work attached to this new transaction will further strengthen the cumulative proof
of work associated with both of the two referenced transactions, and in turn, with all of their
ancestors also.

This gives us a simple but powerful way of “incorporating” new transactions within the
system while validating older ones. We can formalise this entire transaction graph as a partially
ordered set or POSET, containing within it subsets of strict total orders. For example, returning
to Figure 2, one could describe the figure as a POSET with two subset orderings given by:
mi < me < my and mq < mg < my. For future use, note also that any partial order or POSET
can be “lifted” into a compatible total order over the entire set, but this lifting need not be
unique. In our example, this would amount to choosing one of mo < mg3 and meo > mg. For
ease of intuition, the POSET we describe can best be visualised as a directed acyclic graph.

Formally, we can express an ordering relation on the elements, namely the transactions,
with respect to a proof-of-work scheme.

Definition 4 (Transaction Ordering). Let P be a set of elements called transactions. For t
and t', two distinct elements in the set, we write t < t' if and only if t' contains t within the
Proof-of-Work Scheme. We call the set P equipped with its (partial) ordering relation <, a
Transactional Partially Ordered Set, or T-POSET.

We refer to a transaction that is captured in the proof of work of another transaction x
as a parent transaction. These parent transactions will also contain transactions within their
respective proof of work; we call all of these previous transactions recursively captured from the
stem transaction x (exclusive of z itself) all the way to the system’s inception, as the ancestors
of x. Respectively, we speak of children and descendant transactions for the converse notions.

We are now in a position to formally define the weight on a transaction, which will become
useful in Section 3 for describing validation and security properties.

Definition 5 (Transaction Weight). Let P be a T-POSET and let x € P be a transaction or
element therein. Let P' = {y; : y; = x} be the set of all the descendants of x. The weight of x
1s defined as the sum of the proof-of-work difficulty contributed by every one of the y;, i.e.,

Weight(z) = > Work(y;). (2)
y, EP!

Clearly, this notion of weight is a dynamic one, since in a running cryptocurrency the number
of descendants of any given transaction can grow unboundedly, with the constant addition of
new transactions (and their occasional removal, when there is a tie that must be broken).



This leads us to the monetary and incentive aspects of the proof of work. To operate as
desired, our framework relies on two mandatory reward mechanisms—fee collection and coin
minting—which must be considered in tandem.

e The fee mechanism is the more complex one, and is designed to steer the rational users
to behave for the common good.

e The minting mechanism is simpler and although it also comes with incentives, its principal
function is to control the coin supply.

2.2.1 Fees

Every transaction z must post a Fee(z) > 0 to offset the distributed cost of conveying and
verifying the transaction.

Unlike blockchain-oriented cryptocurrencies, fees are not designed to be immediately passed
on to the next claiming transaction, but rather fees increase the total prize value of the trans-
action, available for partial collection by a number of descendants. This mechanism is intended
to speed up the convergence of the system by providing an incentive for other users to work on
newly created transactions rather than any of their ancestors.

The fee paid is arbitrary, but to make the transaction palatable by all verifiers, it is advisable
that the fee paid by the new transaction exceed the total fees that it collected from its ancestors.
Even so, the transaction may still result in a net profit, from the “minting” component of the
reward (discussed later).

Larger fees will entice additional verifiers to contribute to the verification of the newly posted
transaction and make it “irreversible” sooner, as previously discussed. Contrast this with the
system in Bitcoin, where fees are only a threshold mechanism for including transactions in the
Blockchain, without actually speeding up the confirmation process faster than what the pace
of the Blockchain can allow.

Collection. In our framework, we require every new transaction x that links to a pair of
earlier transactions x1 and xo, to collect a positive and well determined amount of fees, somehow,
from the union of x1, x2 and all of z1 and z9’s ancestors. Specifically, for the new transaction
2 to be valid, it must meet the following two (or optionally three) conditions:

1. The fee that = will collect must be available in full from the fees that remain in the union
of all of x’s ancestors. In particular, if x1, 29 and all their ancestors have been depleted
of their fees, then x cannot link to both z; and z9 as the two transactions it wishes to
verify.

2. In the updated T-POSET P with the new transaction z € P, the fee now available
to collect from x and its ancestors must exceed the fee available for collection from z’s

ancestors alone. (Using the notion of prize defined below, this is to say that Prizep(x) >
Prizep({z1,22]}) in the updated T-POSET P > z.)

3. Optionally, we request (but not require) that the prize of x in the updated T-POSET
P > z, also exceeds the combined prize of 1 and x9 in the T-POSET just prior to the
update, P’ = P\ {z}. (Or in other words, Prizep(x) > Prizep:({x1, z2]}).)

Those constraints together ensure that new unverified transactions are validated in priority,
and that all valid transactions quickly “converge” to sharing a common descendant sooner rather
than later.

10



This mechanism also allows an urgent transaction to be better verified sooner, before reach-
ing “convergence”, simply by having it pay a larger fee. This ensures that more fees will be
collectable from this transaction in the short term, which in turn will entice additional verifiers
to pile on and verify this transaction in parallel.

The optional requirement #3 goes beyond #2 by further removing the incentive that a com-
peting verifier might have had to displace the transaction by creating a conflicting transaction.

The amount of fee that a new transaction z is required to collect is fully determined by
x and its local context (i.e., the smallest subset P’ C P containing x and its ancestors). The
collected fee increases monotonically with the difficulty of x’s proof-of-work contribution, or
even proportionally with an automatic proportion factor 371; see below.

Prize. Intuitively, the prize of a transaction = w.r.t. P 5 z, is the total fee that is still
available, from z and all of z’s ancestors, for all of z’s future descendants (not yet in P). Prize
is a dynamic notion: it is highest when x is new and has no descendant, and monotonically
decreases as the graph P grows and the fees from x and its ancestors are picked up by z’s
descendants. (The prize of x is a well-defined quantity given the current state of P.)

Prizep(z) is a very important quantity for a verifier to keep track of, because that is the most
fee that a new transaction choosing to verify x will be able to collect from z and its ancestors.

In this context, we call pass-through the contribution to the prize of a new transaction, that
is “passing through” from the prizes of its combined parents. A hypothetical transaction x that
neither paid nor collected any fee would thus have a prize equal to that of its parents, consisting
entirely of pass-through. Prize tends to increase from ancestors to descendants, an important
property for our system.

Depletion. With a new transaction, we need to specify from which ancestor transactions
it will collect its fees, and how will the collection assignment will be apportioned.

The method we employ is to deplete the oldest eligible nodes first. This has two desirable
purposes: (1) verifiers will be further compelled to work on newer rather than older transactions,
lest their effort risk being for naught; (2) the verification algorithm will be more streamlined,
since the sooner the prize of a node reaches zero, the sooner it and all of its ancestors can be
pruned from the dynamic data structure that each verifier must maintain to keep track of the
amounts still available for collection.

To define the depletion ordering unambiguously, we shall say that “z is older than g” if
and only if Weight(x) < Weight(y). This relation induces a total order that is compatible with
the partial order of the T-POSET. Ties will be highly unlikely, and can be broken in any fixed
deterministic manner, e.g., by employing a hash function.

Thus, when a new transaction comes in, the fees that it collects will be garnered from the
oldest of its ancestors that still have fees available to collect, moving forward as those oldest
transactions become depleted. In this context, Prize(x) of a transaction x is simply the total
amount that can still be collected from x and all of its ancestors y;, and clearly for all such
ancestors we have Prize(y;) < Prize(z).

Gross and Net. We now formalise all of these notions. We first need the related notion
of gross fee of a transaction. The gross fee or just “fee” is the amount paid by a transaction,
that will be available for future collection by its descendants. We also define the met cost or
just “cost” of a transaction, incurred by the transactor, as the gross fee minus any ancestor fees
collected and new coin minted (see below).

The “drain” of a transaction x, then, is the current portion of the fee of x that has already
been collected by the descendants of z. Clearly, Drainp(x) = 0 for a transaction without

11



descendants, and reaches Drainp(x) = Fee(x) as x acquires descendants that deplete it. Because
Drainp(z) is a dynamic notion, it depends on the current state of the T-POSET P in the view
of a particular verifier at a given time, which we indicate by the subscript P.

Definition 6 (Dynamic Drain). Let P be the T-POSET of some universe of valid transactions.
The drain of x with respect to P is the sum of all portions of its fee that have been collected by
its descendants z; = x:

Drainp(x) = Z fee from x collected by z; (3)

Zi:2i- %

The “prize” of a transaction z is then the total fees brought by x and its ancestors, minus
by the total drain of the same. Likewise, prize is a dynamic notion that depends on the current
T-POSET P, hence the subscript P.

Definition 7 (Dynamic Prize). Let P be the T-POSET of some universe of valid transactions.
The prize value of a transaction x with respect to P is defined as the sum, over x and all its
ancestors, of the fee minus the drain:

Prizep(z) = Z (Fee(yi) - Drainp(yi)) (4)

Yiyi 3T

We define the prize of a set of transactions, X C P as,

Prizep(X) = > (Fee(yi) - DrainP@z‘)) (5)

Yyiy; 3T for some xeX

Note that by summing the gross we avoid double-subtracting the fees collected by y; itself,

which will be counted in szjyi Drainp(z;).
Automatic Drain Rate Adjustment. Consider the total prize available across all the
current transactions in the system, given by Prizep(P). Macroscopically, we can control the time
it will take for the combined verification effort to deplete this prize completely (and substitute
for it a renewed prize made of the new fees posted with the new transactions). This time is
the expected “useful” lifetime of a transaction in the T-POSET, before it can no longer be the
direct ancestor of a future transaction.

We control this lifetime by adjusting the rate at which a transaction x can drain the fees
from its ancestors, in proportion to the difficulty of the proof of work posted by x. Specifically,
assuming for a moment that the combined “proving power” of the whole system is constant,
then the drain time as a fraction of the system’s age, can be estimated using the ratio of the
total available prize (converted to difficulty units) over the total work or difficulty of all the
proofs since the system’s inception, i.e.,

Time-to-drain (in s) Prizep(P) (in $%)

Age-of-system (in s) =5 > yep Work(y;) (in #comp) (6)

Here, 8 (in #computations per $3$) is an exchange rate parameter indicating how much fee is
to be collected from its ancestors by a transaction that posts a proof of work of unit difficulty.
Time-to-drain is chosen as a global system constant, selected large enough to give even to the
slower clients an opportunity to solve useful puzzles in their own time, e.g., 1 day (see below
for a longer discussion).

We can now adjust the parameter 5 almost endogenously by solving for 8 in the above
equation every so often, say by forcing recomputation of 8 in every transaction x whose number

12



of ancestors [{y; < z}| = 2", a power of 2. At all other times, new transactions x are required
to use the most recent value of g from any ancestor of the transactions it references—where
most recent refers to the total order induced by the notion of Weight, as defined earlier.

Such choice of g is well-defined and locally computable entirely from x and its ancestors.
Nevertheless, it ensures that updates to 8 propagate quickly as earlier transactions converge
toward common descendants. If a client truly wishes to cheat on the value of 8 by only refer-
encing older transactions, they will soon be deterred or barred from doing so by our transaction
verification obsolescence mechanism.

Unfortunately, S determined from the above equation will be technically ill-defined unless
all the verifiers share the exact same view of P at the time it is determined. To avoid this
problem, we are going to solve for § in a slightly different equation which uses only well-defined
inputs. Letting P’ C P be the uniquely defined set of x’s ancestors, we use:

Time-to-drain (ins) Prizep/(P’)  (in $9$) .
Age-of-r (ins) p >yepr Work(y;) (in #comp) (M)
This leads to well-defined recomputations of 8 that are easy to verify.

There is still one aspect of this determination of 8 that requires an external input: Age-of-
system, which needs a clock. Since precision and accuracy are not paramount for the determi-
nation of 3, we simply propose to let whichever client whose onus it is to recompute 3 use its
own clock, and to require that the verifiers accept it unless the clock skew is very substantial,
e.g., more than one hour.

2.2.2 Minting

Minting is the process whereby new “coins” are created with every valid transaction, as an
extra reward. More critically, minting is the process whereby the money supply is gradually
and “fairly” inflated from its initial supply of zero.

Coins are minted when creating a transaction. A user selects a challenge and pays to
themself a value. This value is determined from available data before closing the transaction ,
and calculated, e.g., as either,

Mint(z) = f(Work(z)/Weight(x Z Mint(y;) (8)
Yi<T

for some monotone function f, or even,

) Work(z)
Mint(x) = Mint(y;
int(z)  Weight(x) yz;m int(y;) (9)

for some dimensionless system parameter a.
A lot of flexibility is allowed in the selection of f(-) or . We briefly mention a few points
of interest:

e Aslong as f is not super-linear, there is no incentive at all for verifiers to join forces and
form Bitcoin-style mining pools.

e Sub-linear choices for f would disproportionately reward smaller proofs of work, and also
further discourage the pooling of effort.

e If the function f or the proportionality parameter « is kept constant throughout the
life of the system, then the coin supply will grow as the total verification work, i.e., the
time-integral of the total verification power:

13



— if the hashing power is constant, inflation is linear;

— if hashing power follows Moore’s law, then inflation will follow the same exponential
growth.

e It is easy to target a different—and almost arbitrary—inflation schedule, by bringing up
the system with a decentralised feedback adjustment mechanism for f or a (similar to
that which we described earlier for j3).

We emphasize that minted coins go directly to the user independently of fees. Minting may
however indirectly affect the balance of incentives to a rational user, depending on the choice

of f.

2.2.3 Verification

The transaction verification process is intentionally similar to blockchain-based cryptocurren-
cies, but with a few twists.

All users normally participate in the verification process, meaning that all participants must
collect the transactions issued by other nodes, and record the ones that pass the verification
procedure. Users also keep a record of the valid transactions so that they can be later given to
new participants that wish to join the system.

Users verify transactions as they recieve them. Upon receiving notice of a transaction
x, the client first checks that the two previous transactions included within x are acceptable
transactions. There are three possibilities:

1. The included transactions have been previously verified and accepted.
2. At least one of the included transactions has not previously been seen.

3. At least one of the included transactions has been seen previously and is invalid.

In other, Bitcoin-like systems, users must also collect and verify all transactions, often
without being rewarded for it. Moreover, this step should be relatively quick if the user has
already seen and verified multiple transactions.

The next step of validation is to check that the transaction has the correct proof of work
attached.

A final part for verification is to check that the transaction x itself is valid, which requires
that it be both intrinsically correct or well-formed, and extrinsically admissible or valid in the
current ledger context. The former condition is a (static) determination whether the transaction
could be valid in the smallest possible ledger context that contains it and its ancestors; if that
fails it is forever marked as ill-formed. The latter condition means that we have to check for
double spending (and a few other conditions such as availability of fees).

In order to check double spending and resolve conflicts, we use a greedy approach that will
ensure consensus. Nodes simply take as valid the (well-formed) transaction that (in their view)
has the largest amount of work attached to it and its ancestors: a notion we call height. This
means that all the ancestors must be well-formed and then accepted as valid as well. This
simple rule is then repeated on the remaining well-formed transactions to accept the one of
highest height (and its ancestors), and so on.

In a normal situation (e.g., barring a powerful attack), conflicts will be shallow and confined
to the upper fringe of the growing graph. Clearly, the shallower the conflict, the smaller and
faster the local revision needed to resolve it. When an intrinsically correct transaction x is
marked invalid because of an extrinsic conflict with a previously accepted transaction y, the

14



rejected transaction x may become valid again if a majority of the network favours x over y.This
very same situation occurs in Bitcoin when two competing but otherwise valid blocks share the
same prior block.

In order to check that a transaction is inherently well-formed, the criterion is simply that
it be valid in at least one POSET, namely the smallest possible POSET that contains that
transaction together with all the transactions it references and their ancestors. What makes
intrinsic correctness important is that it is a permanent, static notion.

Conflicts and Resolution. Verifiers will normally develop slightly differing views of the
current state of the system as it evolves, which can be formalised as saying that they will
hold different real views Pj, P, ..., of some hypothetical “true” T-POSET P.This is due to
transactions taking some time to propagate through the network, and will resolve by itself as
long as no conflict arises.

A conflict arises when two or more transactions x1 € P;, x5 € P, etc., are published, such
that there can be no single P that contains them all. This normally would require a deliberate
attack, such as double spending; but this can also happen by accident, for example, when z;
and xo both refer to almost-depleted parents, so that when the first transaction comes in, the
second can no longer claim its fee and is therefore rejected. Either way, the difficulty with
conflicts is that, due to propagation delays in the network, different users may end up resolving
conflicts differently in their own view of the network.

Maintaining a consensus across multiple verifiers in our framework requires the formal notion
of the height of a transaction. For a transaction x, Height(x) is the total proof-of-work difficulty
expended by all the ancestors of x.

Definition 8 (Transaction Height). Let P be a T-POSET and let x € P be a transaction or
element therein. Then the height of x is the sum of the proof-of-work difficulty contributed by
every one of x’s ancestors, plus x itself, given by,

Height(z) = ) Work(y). (10)
yi€Pwy; 3
Algorithm for Consensus. The rule for conflict resolution is then simply stated as follows:

The tallest well-formed transaction prevails (breaking ties deterministically). In other words, a
new verifier that comes online can share the network’s consensus view of the current T-POSET
P of valid transactions, by applying the following algorithm:

1. Collect all transactions ever posted, flagging all the ill-formed transactions as permanently
ignorable. °

2. As long as there remain well-formed transactions that have neither been deemed valid or
invalid:

(a) Select the maximum-height or “tallest” well-formed transaction not yet classified,
and classify it as valid as well as all of its ancestors.

(b) While doing do, mark as invalid any other transaction that conflicts with any of the
newly validated ones.

SPermanently ignorable transactions are those that could never become valid, e.g., because they carry an
invalid signature, have two or more ancestors that mutually conflict, or carry an illegal transaction payload.

15



We present a consensus mechanism algorithm (Section 2.3) that runs in a bounded number
of steps, showing that any two honest verifiers A and B that apply it on the same published
transaction data sets S and Sp, regardless of collection order, will independently reach the
same T-POSET view P4 = Pg. Additionally:

e Small conflicts only cause small revisions, in the sense that status swapping between valid
and invalid can only occur between conflicting transactions and their ancestors up to the
point when they share a common ancestor.

e The conflict-resolution rule is fully incentive-compatible with the fee-based mechanism
previously described, and indeed provides an additional incentive to build new transactions
upward from the current “summit” of the graph: any (correct) transaction that builds
up from the current summit will become the new summit and thus necessarily valid, in
addition to offering the highest prize amongst its ancestors.

e Verifiers who have been accepting the non-consensus branch of a conflict will soon be
enjoined to reconcile with the majority consensus, since the majority will be extending
the graph from the consensus branch at a faster rate than the dissenters, which guarantees
that the summit does (or will eventually) belong to the consensus branch. At that point,
all the verifiers will have to accept it.

In practice, an implementation of this consensus strategy will of course have to process
additions and conflicts incrementally, which can be done very efficiently for shallow conflicts.
Other implementation considerations are the possibility of heuristically delaying “reversal”-
causing updates (i.e., the switching of a well-formed transaction from valid to invalid status, or
vice versa), in order to amortise their costs, as long as the delay does not stymie the general
consensus rule.

We note that this conflict resolution mechanism is a POSET-based generalisation of the
linear conflict resolution mechanism between blocks introduced with the Bitcoin Blockchain.

2.3 Consensus Mechanism

The main difficulty in making consensus highly efficient is that it requires (incrementally) com-
puting the height of every transaction. For an n-node annotated directed acyclic graph, the
trivial algorithm to compute the sum of any one node’s ancestors’ value runs in O(n) time,
requiring O(n?) time to do the same for every node in the graph. Unfortunately, no faster
algorithm is known for the general problem. Here, we would like to perform the whole-graph
computation in O(n) time, with incremental updates in O(1) or at worst O(1) time.

In order to facilitate such a fast update, we place an extra constraint on the topology of the
graph by requiring that for any transaction x, its two parents x; and x, be “not too distant”
from each other. Specifically, we ask that all the ancestors of x, after the §-th generation, also
be ancestors of x;. For § = 2, this means that a verifier must check that all 20 = 4 “grand-
parents” of z, are contained in the ancestry of z;. For this check to be performed quickly, we
require that x provide the (unique) paths from z; back to each of the 4 grand-parents, in the
form of 4 short binary strings compressible into a prefix-tree. Under those conditions, the height
of & can be determined incrementally as a four-operand addition after verifying the constraint
is satisfied. In general, the constraint can be checked in constant O(|paths|) < O(2?) time.

To describe this formally, we firstly introduce the notion of level of a transaction.

Definition 9 (Transaction Level). Let P be a T-POSET and let x € P be a transaction,
including two previous transactions x; and x,. Then the level of x is given as the maximum of

16



x; and ., plus 1,
Level(z) = max(z, z,) + 1 (11)

Unlike the height, the level of a transaction is calculated incrementally in constant time.

Now we state the requirements which must be met by any new transaction posted onto the
system. Let P be a T-POSET and let = be a transaction in P, where x links to two previous
transactions x; and x,.

1. All ancestors of . after § generations must themselves be ancestors of x;, for some constant
design parameter (such as § = 2).

2. The level of the transaction z; must be no less than the level of the transaction x,:
Level(x;) > Level(z,).

3. Transaction creators must supply a hint on how to find, within a;’s binary tree of ancestors,
all 2° §-generation ancestors of .

Note that for requirement 1, we are not disallowing x, from being an ancestor of x;, however, in
that case the height of x will not include any contribution of work from x, that was not already
provided by z;.

With these additional constraints it is possible to bound the additional effort required to
update the heights of the graph and select the correct path. Provided that the three properties
are true, then the height of the new transaction x is given as

Height(x) = Height(x;) + Z Work(y) + Work(z). (12)
Y<Tr
yAZ

Notice that the sum Zy contains at most 20~! terms, trivially enumerated. In particular, if z,
itself is an ancestor of ; then the height is simply calculated as Height(z) = Height(x;)+Work(z).

This algorithm is inherently incremental, and builds from the ground up. This makes the
calculation of height at the edge of the system very quick, assuming that the height of x; is
already known.

2.4 Transaction Payload

The framework we present is essentially agnostic as to what comes into the transactions. For
example, we could use single-denomination transactions that endorse transfers from/to public
keys, and powered by a scripting language a la Bitcoin. Alternatively, one could use Stellar or
Ethereum-like transactions with a richer scripting language, supporting asset security by the
creation of new denominations, and their trade using programmatic smart contracts enforced by
the consensus. The only difference is that, instead of a hash chain system, transactions would
be cross-verifying in a T-POSET structure.

Our only requirement is that transactions provide a peer-to-peer ledger-based value creation
and transfer mechanism based on digital signatures, that our underlying framework can access
in order to implement minting and fees.

3 Security and Properties

Having described the operation of the system, we can now delve into analysing its formal security
properties. First, we make some rationality assumptions on the players.

17



3.1 Rational Players

The first natural but often unstated assumption is that a majority of players follow the correct-
ness rules of the protocol. In our system, as in Bitcoin, incorrect or invalid transactions will be
weeded out by the honest participants, which ensures integrity among them as long as they are
the majority.

Equally important is the assumption of rational participants (whether they are cheating or
not), and we likewise assume that majority of the computing power is held by rational players.
Rationality here comes in two flavours: miner rationality, and transactor rationality, the latter
further comprising rationality from the viewpoint of a payer versus that of a payee.

Assumption 1 (Rational Miner). A miner acts rationally if they seek to mazimise the value
of their reward (from minting and fee collection alike) for a chosen amount of expended effort.

Assumption 2 (Rational Transactor). A transactor acts rationally if they seek to ensure the
acceptance of transactions in which they are the payer or payee.

We now turn to proving the properties of our system.

3.2 Emerging Properties

Double-Spending Resistance. A key priority is to ensure that a broadcast transaction
quickly becomes agreed on by the majority of nodes, and cannot later be cancelled in some way.

In order to assess this property, we refer to the weight, or total proof-of-work difficulty, of a
transaction. Depending on its importance, once the transaction has gained enough weight, e.g.,
from its descendants’ work, it can be deemed impassible: it will no longer be feasible and/or
economical for an adversary to try to displace it.

For any two transactions x and y, we say that x conflicts with y if for any honest party U
accounting for incoming transactions, U can accept either x or y but not both. There are a few
ways for conflicts to occur, with the most obvious ones being of two transactions attempting
to make payments from the same source, and of a transaction attempting to extract too much
value from an insufficient source. We refer to both as instances of double spending.

Theorem 1 (Double-Spending Resistance). Let P be a T-POSET, let x be a transaction ele-
ment in P, and denote by x the total weight of x in the context of P. Let A be a PPT challenger
attempting to include a transaction y that conflicts with x. Suppose that the total number of
computational steps performed by A, is k. Then the probability that A can cause y to displace
x in the majority consensus, is non-negligibly no greater than k- ¢ .

Proof. From the verification procedure, in order to replace transaction x, A needs to imbue
transaction y with a greater total weight than z, as described in Definition 5. From Definition
3 it follows that for k steps, the probability of succeeding is k- ¢~ +negl(k) as required, where
negl(k) is a negligible function. O

Theorem 1 is essentially showing that the weight, or total verification work accumulated on
a transaction by itself and its descendants, directly translates to the level of security of that
transaction.

Leading-Edge Preference. The scheme as envisaged provides an incentive to work on
the latest transactions—the leading edge—which is important both for fast verification and for
convergence. We show this by appeal to rational mechanisms.

18



Theorem 2 (Leading-Edge Preference). Let x1 be a legitimate transaction forming a proof of
work on two other distinct transactions xo and x3. The optimal strategy for any rational player
is to include x1 within the proof of work of its next transaction, over xo and x3.

The proof relies on the second property of fee collection—mnamely that the prize of a trans-
action is always at least as large as that of its parents.

Proof. Let v, vo and vs represent the total value of each transaction x1,x2 and z3. Then by
definition v; > vy 4 v3 in any T-POSET P that is a superset of x; and x1’s ancestors (including
x9 and x3). If 1 includes a fee then v; is strictly greater than vy + vs.

In the first case, a rational player will prefer to reference 1 over xg and/or x3, as it maximises
the probability that the required fee will be available for collection when the new transaction
is ready, thereby offering greater expected reward for the chosen level of effort.

For the second case, the act of referencing just the one transaction x; provides the same
total prize as xo and x3 combined, whilst allowing for an extra reference. O

A stronger property can be made for those transactions that further satisfy property #3—
namely that the prize of the new transaction be larger still than the prize of its parents before
the new transaction came into existence. As long as this property is true, not only will honest
verifiers have an incentive to prefer the new transaction over its parents, but even dishonest
clients—who might think of actively denying certain valid transactions—will still find it advan-
tageous to prefer the new transaction.

Convergence. We now analyse the time it would take for transactions published at a
given time to converge onto one another. Convergence in this sense means that at some point
there will be a future transaction, x, which will be a common descendent of all the presently
published transactions, provided of course that the transactions of interest are acceptable, valid
and non-conflicting. We show that, within this framework with honest rational players, all such
transactions will at some point share a common ancestor.

Theorem 3 (Convergence). Let P be a T-POSET and let there be n published transactions
such that all transactions are valid, altogether non-conflicting in P. Assuming honest rational
players with varying computational abilities, after some period t, all n transactions will share a
common descendent.

Proof outline. For all n transactions, if all but one transactions are the ancestors of the one
transaction then we are done. Otherwise, list all potential transaction parent pairs. We call
potential transaction parent pairs, satisfying the global predefined § condition, combinable trans-
actions. Now we can search the list for the combinable transactions with the greatest prize.
The rational strategy is to combine these transactions with a new transaction. We include this
new transaction and ignore the original two, then start again from the beginning with n — 1
transactions. We can do this as it will always be more beneficial to build from the new trans-
action, from Theorem 2, and because the new transaction has the same ancestors of both of its
parents, so it will be combinable with all the transactions that its parents were. By repeating
the process eventually all transactions will be combined, in at most n — 1 steps. Which is a
worst case bound on the maximum steps to convergence. At this point all transactions will
share a common descendant. O

An important point here is to realise that there will never be a point with no combinable
transactions. If that happens, then the base of the graph must not be connected, which cannot
happen.

19



Strong Convergence. Not only is it the case that any given set of suitable transactions
will soon share at least one common descendant, we can also prove that, at some later point,
any further transaction will always be a descendant of the entire initial set.

Theorem 4 (Strong Convergence). Let P be a T-POSET and let Q) be a set of n transactions in
P, all valid, non-conflicting, and with no descendants in P. Assuming honest rational players,
for any large enough superset P D P, it is the case than any future transaction that can be
added to P' must be a descendant of all the transactions in Q.

The proof is based on the previous result, which together with our prize-depletion and oldest-
fee-first collection mechanisms, ensure that no existing valid transaction in P can continue being
verified directly, rather than through its descendants in P’, once P’ has grown sufficiently large
through the action of rational verifiers. Using an argument similar to the above, one can then
show that any new valid transaction z not in P’ but added to P’, is necessarily a descendant
of at least one y € P’ that is a “shared common descendant” of all the elements of ). This
implies that z is a descendant of all of (), as required. We omit the formal proof.

This property shows that, “after a while”, our T-POSET-based verification graph behaves
for all practical purposes just as a Bitcoin-style consolidated Blockchain: every new proof of
work reaffirming every sufficiently old transaction.

Stability. As the system progresses, conflicting subgraphs may have appeared and branched
out from the main graph to become unused. Of course, these subgraphs should eventually be
discarded to avoid overloading the memory of the verifiers; however, they must persist for some
period of time until it has become clear that the network consensus is indeed to discard those
conflicting transactions (rather than the transactions they are conflicting with).

For example, if two conflicting transactions are relayed to different nodes, both nodes may
later receive the other conflicting transaction. After some period, additional transactions will
be broadcast predominantly confirming either one or the other of the conflicting transactions.
Eventually, one transaction will clearly pull ahead of the other in terms of weight, and as the
difference increases the verifiers will switch to the winner’s side, to reach global consensus.

4 Discussion

Aside from the direct consequences of our incentive structure on rational users, a number of
additional differences to the Blockchain paradigm emerge. For concreteness, we compare mainly
to Bitcoin, although the points we make will apply to all Blockchain-based cryptocurrencies.

Attacks. There is a salient difference between the Blockchain and our transaction-based
verification approach, in terms of short-term vulnerability to attacks.

Casual attacks are simple and easy, such as someone trying to steal back a payment using
double spending. Bitcoin transactions are defenceless against such attacks, until they get picked
up onto the Blockchain (taking > 10 minutes in theory, and hours in reality due to congestion,
which is only mitigated by paying a large fee).

Our framework closes this opportunity for casual attacks very quickly, because yet-unverified
but fee-laden transactions act as a magnet for their immediate parallel verification by multiple
users.

Concerted attacks are focused attempts to dislodge a specific transaction, using sub-
stantial computing power. The vulnerability profile of a Bitcoin transaction against concerted

20



attacks is essentially the same as a casual attack: defenceless for a significant period until con-
solidated, then sharing the strength of the block that picked it up, which then increases as the
chain predictably extends from there.

In our system, vulnerability decreases right away as verifications pour in. We note that
partially verified transactions have temporary exposure to a concerted attack, since a powerful
attacker may have the temporary local ability to overpower the honest majority by focusing
all of its efforts against a specific target. We note that once a transaction nears or reaches
convergence, it will be as strongly affirmed as it would be in a Blockchain system of equivalent
total verification power.

There is little value in using energy to remove a previous transaction, outside of attacks that
focus on transactions one may wish to remove, such as in a double spend scenario, see Theorem

1.

Disruption and DoS style attacks, where attackers seek to cause as much disturbance to
the system as possible, by flooding the network with multiple small transactions, are another
potential threat. However, verifiers can employ simple heuristics based on transaction level and
the offered prize of a transaction to determine if it holds any value before seeking to determine
its validity. Thus the system remains unclogged by flooding, unless the attackers are willing to
put in effort equivalent to a 51% attack. This is a contrast to Bitcoin, where small transactions
can still be formed to effectively fill blocks, albeit at a cost of transaction fee.

Transaction Size and Cost. We envisage that any system design would make it so that
the cost, or fee included with creating a new transaction, would directly reflect the size of
the transaction. This measure has the benefit of making it more costly to refer to previous
transactions that are on considerably different levels, due to condition three under Section 2.3.
This fee reflects the fact it will take longer to verify transactions where the discrepancy between
the levels of the immediate ancestors is high. Choosing whether this would be written into
the system, or designed so that it naturally evolves as a consequence of the game theoretic
incentives, remains an implementation decision.

Bootstrapping. In order to instantiate the system, it will be necessary to create at a pair
of origin transactions, which can come loaded with prize for collection, and as many, or as few,
as required can be created.

Referring to Two Previous Transactions. We have presented a system where transac-
tions are formed with a proof of work which refers to two previous transactions. In fact, this
may seem a bit rigid, and may not be the ideal solution in certain scenarios.

While we believe that this strikes a balance between burden on the network, such as traffic
and verification demand, whilst simultaneously allowing for the building of a proof of work
system, it can be relaxed if necessary, and there is nothing in principle preventing a design
where transactions refer to more than two parent transactions. However, this protocol would
need to be selected depending on what is appropriate for an alternative system.

Early Adoption. In our proposal the choice of minting function will determine the rate of
inflation and hence the inherent incentives, or disincentives, to early adopters.

Post-Dated Transactions. By enforcing a notion of verification freshness, our framework
disallows this behaviour by default, which we view as a feature, but note that the permissive
behaviour can be restored at the transaction payload level.

21



Scalable Throughput. Unlike blockchained cryptocurrencies we place no cap on the num-
ber of transactions verifiable in any period of time. Better yet, since transactions verify each
other (in a ratio of 2-to-1), a surge in transactions broadcast will be met with an equal surge
in verification response. We note that Bitcoin is currently mired in a debate concerning the
total size of transactions that can appear in a single block [30], an exclusively Blockchain-model
problem.

5 Conclusion

We have presented a natural, but radically different, model for distributed digital cash, combin-
ing existing technologies and ideas to tackle the biggest issues with contemporary decentralised
cryptocurrencies. The primary objective of this paper was to establish an alternative way of
creating a distributed cryptocurrency that avoids the bottlenecks and centralisation issues that
come packaged with blockchain implementations. We achieved this by redesigning the base
layer, in favour of a naturally self-regulating and completely decentralised verification process.
The graph based proposal maintains the security of the Blockchain while being able to reward
every participant for their contribution individually. Moreover, our framework does not appear
to have any fundamental drawback, and is universal enough to apply to all of the cryptocurrency
application payloads in existence today.

We believe this novel design for distributed digital currencies is a valuable improvement for
this field of research. By creating a currency in this way, it allows us to get closer to the moral
of a decentralised system which is found wanting in current implementations.

References

[1] S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to better - how to make Bitcoin a better
currency. In Financial Cryptography — FC 2012.

[2] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza.
Zerocash: Decentralized anonymous payments from bitcoin. In IEEE S&P, 2014.

[3] J. Bonneau, A. Miller, J. Clark, A. Narayanan, J. A. Kroll, and E. W. Felten. SoK:
Research perspectives and challenges for Bitcoin and cryptocurrencies. 2015.

[4] D. Chaum. PrivaTegrity: online communication with strong privacy. Oral presentation at
Real-World Crypto 2016, Stanford University, 6 Jan 2016.

[5] D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In CRYPTO, 1988.

[6] G. Danezis and S. Meiklejohn. Centrally banked cryptocurrencies. CoRR, abs/1505.06895,
2015.

[7] C. Dwork and M. Naor. Pricing via processing or combatting junk mail. 1992.

[8] I. Eyal and E. G. Sirer. Majority is not enough: Bitcoin mining is vulnerable. In Financial
Cryptography and Data Security - FC 2014, 2014.

[9] J. A. Garay, A. Kiayias, and N. Leonardos. The bitcoin backbone protocol: Analysis and
applications. In FUROCRYPT 2015, 2015.

[10] A. Gervais, G. O. Karame, V. Capkun, and S. Capkun. Is bitcoin a decentralized currency?
IEEFE Security & Privacy, 12(3), 2014.

22



[11]

[12]

[13]

[14]

[26]

[27]
[28]

B. Johnson, A. Laszka, J. Grossklags, M. Vasek, and T. Moore. Game-theoretic analysis
of ddos attacks against bitcoin mining pools. In Financial Cryptography and Data Security
- FC 2014 Workshops, BITCOIN, 2014.

A. Juels and J. G. Brainard. Client puzzles: A cryptographic countermeasure against
connection depletion attacks. In NDSS, 1999.

G. Karame, E. Androulaki, and S. Capkun. Double-spending fast payments in bitcoin. In
ACM CCS, 2012.

A. E. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou. Hawk: The blockchain
model of cryptography and privacy-preserving smart contracts. JACR ePrint, 2015.

Y. Lewenberg, Y. Sompolinsky, and A. Zohar. Inclusive block chain protocols. In Proceed-
ings of the 22nd ACM, 2015.

S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G. M. Voelker, and
S. Savage. A fistful of bitcoins: characterizing payments among men with no names.
Commun. ACM, 59(4), 2016.

I. Miers, C. Garman, M. Green, and A. D. Rubin. Zerocoin: Anonymous distributed e-cash
from Bitcoin. In IEEE Symposium on Security and Privacy, 2013.

A. Miller, A. Juels, E. Shi, B. Parno, and J. Katz. Permacoin: Repurposing bitcoin work
for data preservation. In IEEFE S&P, 2014.

A. Miller, A. E. Kosba, J. Katz, and E. Shi. Nonoutsourceable scratch-off puzzles to
discourage bitcoin mining coalitions. In ACM CCS, 2015.

S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf, 2008.

A. Narayanan, J. Bonneau, E. Felten, A. Miller, S. Goldfeder, and J. Clark. Bitcoin and
cryptocurrency technologies, draft, 2016.

S. Park, K. Pietrzak, A. Kwon, J. Alwen, G. Fuchsbauer, and P. Gazi. Spacemint: A
cryptocurrency based on proofs of space. TACR ePrint, 2015, 2015.

R. Pass, L. Seeman, and A. Shelat. Analysis of the blockchain protocol in asynchronous
networks. TACR ePrint, 2016, 2016.

Y. Sompolinsky and A. Zohar. Accelerating bitcoin’s transaction processing. fast money
grows on trees, not chains. TACR ePrint, 2013, 2013.

D. Stebila, L. Kuppusamy, J. Rangasamy, C. Boyd, and J. M. G. Nieto. Stronger difficulty
notions for client puzzles and denial-of-service-resistant protocols. In RSA, volume 6558 of
LNCS. Springer, 2011.

F. Tschorsch and B. Scheuermann. Bitcoin and beyond: A technical survey on decentralized
digital currencies. TACR ePrint, 2015, 2015.

Web. B-money. www.weidai.com/bmoney.txt.

Web. Bit-gold. unenumerated.blogspot.com.au/2005/12/bit-gold.html.

23



Web.

Web.
Web.
Web.
Web.
Web.
Web.

Dan Goodin Ars Technica. http://arstechnica.com/security/2014/06/bitcoin-
security-guarantee-shattered-by-anonymous-miner-with-51-network-power.

BitcoinXT. https://bitcoinxt.software/, 2016.
Dogecoin. http://dogecoin.com/, 2016.
Ethereum. https://www.ethereum.org/, 2016.
Litecoin. https://litecoin.org/, 2016.

Ripple. https://ripple.com/, 2016.

Stellar. https://www.stellar.org/, 2016.

24



