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Abstract In this work we consider the closest vector problem (CVP) —a problem
also known as maximum-likelihood decoding— in the tensor of two root lattices
of type A (Am⊗An), as well as in their duals (A∗m⊗A∗n). This problem is mainly
motivated by lattice based cryptography, where the cyclotomic rings Z[ζc] (resp. its
co-different Z[ζc]

∨) play a central role, and turn out to be isomorphic as lattices
to tensors of A∗ lattices (resp. A root lattices). In particular, our results lead to
solving CVP in Z[ζc] and in Z[ζc]

∨ for conductors of the form c = 2αpβqγ for any
two odd primes p, q.

For the primal case Am⊗An, we provide a full characterization of the Voronoi
region in terms of simple cycles in the complete directed bipartite graphKm+1,n+1.
This leads —relying on the Bellman-Ford algorithm for negative cycle detection—
to a CVP algorithm running in polynomial time. Precisely, our algorithm performs
O(l m2n2 min{m,n}) operations on reals, where l is the number of bits per coor-
dinate of the input target. For the dual case, we use a gluing-construction to solve
CVP in sub-exponential time O(nmn+1).
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1 Introduction

The root lattices and their duals are well known distinguished lattices, and their
application as lattice-codes and as quantizers are well understood [4,5]. In partic-
ular, quasi-linear time algorithms [3,9] are known for the root lattice An and its
dual A∗n (see definition 7), or even linear time ones [10].

In this work, we are interested in generalizing those results to tensors of such
lattices. A motivation could be to use root lattices as building blocks for larger
lattice-codes and quantizers. But more naturally, those tensors appear when con-
sidering cyclotomic rings Z[ζc] as lattices1 via the Minkowski embedding [12,8].
The structure of Z[ζc] as a lattice may be deduced inductively from the following
lattice isomorphisms 2

Z[ζ2k ] ' Z2k−1

,

Z[ζp] ' A∗p−1, p an odd prime,

Z[ζpk ] '
pk−1⊕
i=1

Z[ζp], p a prime,

Z[ζmn] ' Z[ζm]⊗ Z[ζn] m,n coprime.

We note that the direct sum ⊕ of lattices is very easy to handle (see Lemma 4), and
so are tensors with Z` thanks to the identity Z`⊗Λ '

⊕`
i=1 Λ. Therefore treating

CVP in lattices A∗m⊗A∗n suffices to solve CVP in Z[ζc] for any c = 2αpβqγ , where
p, q are any odd primes. In a dual fashion, solving CVP in Am ⊗ An leads to a
solution for CVP in the co-different ideal Z[ζc]

∨ of the ring Z[ζc].

Cryptographic motivations Our motivation to solve CVP in Z[ζc] and Z[ζc]
∨ comes

from ideal-lattice based cryptography. The worst-case to average-case reduction of
Lyubashevsky et al. [7] has given a central role to cyclotomic rings in this field of
research. One key step in such cryptosystems is to decode in the lattice Z[ζc]

∨,
and —unless c is a power of 2— then only approximated CVP algorithms were
considered, relying on special decoding bases [8].

Improving this step using an exact CVP algorithm would lead to improve
those cryptosystems (better error tolerance, and therefore smaller parameters).
Theoretically, it would also bring the satisfaction that the decoding algorithm
respect the symmetry of the lattice. Note that our remark that Z[ζp]∨ ' Ap−1

already trivializes this question for c a prime or even when c = 2αpβ .

Contributions Our main contribution is a polynomial-time algorithm to solve CVP
in the latticeAm⊗An, more precisely an algorithm performingO(ln2m2min{m,n})
operations on reals, where l is the number of bits per coordinate of the input tar-
get. This gives a satisfactory solution to our cryptographic application for any
c = 2αpβqγ .

1 We remind that this lattice has dimension ϕ(c), the Euler totient of c.
2 Such details are out of the scope of this paper, but are described in the B.S. The-

sis of the second author, available online https://www.math.leidenuniv.nl/scripties/
BachVanWoerden.pdf

https://www.math.leidenuniv.nl/scripties/BachVanWoerden.pdf
https://www.math.leidenuniv.nl/scripties/BachVanWoerden.pdf
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This algorithm is derived from a very explicit characterization of the Voronoi
region of the lattice Am ⊗ An, which is expressed —perhaps surprisingly— as a
one-to-one map between the Voronoi-relevant vectors and the simple cycles in the
complete bipartite directed graph Km+1,n+1.

As a secondary contribution, we also study the dual case A∗m ⊗A∗n, for which
we obtain only a weaker result: an algorithm in time O(nmn+1), which is at

worse sub-exponential 2Õ(
√
mn) in the dimension mn —assuming without loss of

generality that n ≤ m. This result is obtained by classical gluing theory, with a
small completion trick.

Open problem The most natural open problem is to improve the result for the
dual case, ideally to a polynomial runtime algorithm. It would be even nicer if
it would come with a characterization of its Voronoi cell, and if it’d respect the
symmetry between m and n, as in the primal case.

One could also be curious about the case of tensors of three root lattices A` ⊗
Am ⊗ An or more. But it would of course also be interesting to improve further
the polynomial running-time for CVP in Am ⊗An.

Plan In the preliminaries (Section 2), we review the definitions of lattices, Voronoi
region, direct sums and tensor products of lattices, as well as the definitions and
basic properties of the root lattices An and their duals A∗n. In Section 3, we
describe our sub-exponential time algorithm for CVP in A∗m⊗A∗n. The last section
(Section 4) presents our main result, the polynomial time algorithm for CVP in
Am ⊗An.

2 Preliminaries

For the rest of the paper, we fix two integers m,n ≥ 1 and let m′ = m + 1 and
n′ = n+ 1.

2.1 Lattices, and the Closest Vector Problem

Definition 1 (Lattice) A lattice Λ with R-linearly independent (lattice) basis
vectors b1, . . . , br ∈ Rd is the discrete additive subgroup

Λ :=

{
r∑
i=1

zibi : zi ∈ Z

}

of Rd. Let B ∈ Rr×d be the matrix with rows b1, . . . , br. We say that Λ has rank
r and generator matrix B. Let span(Λ) be the linear subspace of Rd spanned by
the elements of Λ over R.

The shortest vectors of Λ are the nonzero points of Λ with minimal norm. If
v ∈ Λ is a shortest vector then ρ = ‖v‖

2 is the packing radius of Λ. The covering
radius R is the minimal distance such that any point in span(Λ) is at distance at
most R to a lattice point. Another lattice Λ′ ⊂ Rd of the same rank r such that
Λ′ ⊂ Λ is called a full rank sublattice of Λ.
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Definition 2 (Closest Vector Problem) Let Λ ⊂ Rd be a lattice. Given an
arbitrary point t ∈ span(Λ), the goal is to find a closest lattice point of Λ to t,
i.e., an x ∈ Λ that minimizes the distance ‖t− x‖ :=

√
〈t− x, t− x〉. Such an x

is also called a closest vector to t.

A natural geometric body associated with the closest vector problem is the
Voronoi region, defined below.

Definition 3 (Voronoi region and relevant vectors) LetHv = {x ∈ span(Λ) :
‖x‖ ≤ ‖x− v‖} for v ∈ Λ be the half space consisting of points at least as close
to 0 as to v. The Voronoi region (around 0) of a lattice Λ is defined by

V (Λ) :=
⋂
v∈Λ

Hv,

consisting of all points in span(Λ) that have 0 as a closest vector. It is easy to con-
firm that the Voronoi region is a convex polytope which is symmetric by reflection
in 0 [5].

The Voronoi relevant vectors are the vectors forming the minimal set RV (Λ) ⊂
Λ of vectors such that

V (Λ) =
⋂

v∈RV (Λ)

Hv.

Voronoi showed in [13] that for v ∈ Λ\{0} we have that v is a Voronoi relevant
vector iff 0 and v are the only closest vectors to 1

2v in Λ, i.e. iff 〈v,x〉 < 〈x,x〉
for all x ∈ Λ \ {0, v}. Interestingly, Voronoi relevant vectors suffice to decide if a
lattice vector is a closest vector to a given target, and if not, to find a closer one.
This gave rise to generic CVP algorithms, running in exponential time [11,2].

Lemma 1 Let t ∈ span(Λ) and x ∈ Λ. There exists a vector y ∈ Λ such that
‖(x + y)− t‖ < ‖x− t‖ iff there exists a Voronoi relevant vector v ∈ RV (Λ) such
that ‖(x + v)− t‖ < ‖x− t‖.

Proof The implication from right to left is trivial by taking y = v. Now suppose
there exists a vector y ∈ Λ such that ‖(x + y)− t‖ < ‖x− t‖. Then by definition
t− x 6∈ V (Λ). So there exists a v ∈ RV (Λ) such that ‖t− x‖ > ‖(t− x)− v‖.

2.2 Combining lattices: sums, tensors and duals

Definition 4 (Direct sum and orthogonal sum) Let Λ1 ⊂ Rd1 and Λ2 ⊂ Rd2
be lattices of rank r1 and r2 respectively. Then the direct sum Λ1 ⊕ Λ2 ⊂ Rd1+d2
between Λ1 and Λ2 is defined as

Λ1 ⊕ Λ2 = {x1 ⊕ x2 ∈ Rd1+d2 : x1 ∈ Λ1,x2 ∈ Λ2}

where x1 ⊕ x2 is just the concatenation of the two vectors. Note that the inner
product between elements in Λ1 or Λ2 (embedded as x1 7→ x1⊕0 and x2 7→ 0⊕x2)
stays the same and that each two elements x1 ∈ Λ1 and x2 ∈ Λ2 are orthogonal
in Λ1 ⊕ Λ2.

Let Λ1, Λ2 ⊂ Rd be lattices. Suppose Λ1 has basis a1, . . . ,ar1 and Λ2 has basis
b1, . . . , br2 . In the case that 〈ai, bj〉 = 0 for all i = 1, . . . , r1 and j = 1, . . . , r2 we
call Λ1 and Λ2 orthogonal and the orthogonal sum Λ1 ⊥ Λ2 between Λ1 and Λ2

is defined as the lattice with basis a1, . . . ,ar1 , b1, . . . , br2 .
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Definition 5 (Tensor product) Let Λ1 ⊂ Rd1 and Λ2 ⊂ Rd2 be lattices of
respective ranks r1 and r2 and let a1, . . . ,ar1 ∈ Rd1 and b1, . . . , br2 ∈ Rd2 be
respective bases. The tensor product Λ1⊗Λ2 ⊂ Rd1d2 is defined as the lattice with
basis {ai ⊗ bj : i ∈ {1, . . . , r1}, j ∈ {1, . . . , r2}}. Here x ⊗ y = (x1, . . . , xd1) ⊗
(y1, . . . , yd1) with x ∈ Rd1 and y ∈ Rd2 is defined as the natural embedding in
Rd1d2 as follows:

x⊗ y := (x1y1, x1y2, . . . , x1yd2 , x2y1, . . . , xd1yd2) ∈ Rd1d2 .

Definition 6 (Dual lattice) For a lattice Λ ⊂ Rd its dual lattice Λ∗ ⊂ Rd is
defined as

Λ∗ := {y ∈ span(Λ) : ∀x ∈ Λ, 〈x,y〉 ∈ Z}.

As expected we have the following identities:

(Λ∗)∗ = Λ

(Λ1 ⊕ Λ2)∗ = Λ∗1 ⊕ Λ∗2
(Λ1 ⊗ Λ2)∗ = Λ∗1 ⊗ Λ∗2.

2.3 Root lattices of type A and their duals

Root lattices emerge from so called root systems of vectors. There are three families
of root lattices (A,D and E), and they have been the object of very detailed
studies [4,5,3,9,10] to cite a few. We recall the definition of the root lattice of
type A below, characterize its dual lattice, and provide bases for both.

Definition 7 (root lattice Am [5]) Let m ≥ 1. The lattice Am ⊂ Rm+1 of rank
m is defined as

Am :=

{
(x1, . . . , xm+1) ∈ Zm+1 :

m+1∑
i=1

xi = 0

}
,

i.e., all integer vectors of Zm+1 that sum up to zero.

Lemma 2 (root lattice A∗m [5]) The lattice A∗m dual to Am is

A∗m =
m⋃
i=0

([i] +Am),

where

[i] =

(
i

m′
, . . . ,

i

m′
,
−j
m′

, . . . ,
−j
m′

)
has j components equal to i

m′ and i components equal to j
m′ .

In Sections 3 and 4 it will be usefull to know a basis for A∗m and Am respectively.
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Lemma 3 (bases of Am and A∗m [5]) The m× (m+ 1)-matrix B given by

B =
1

m+ 1


m −1 . . . −1 −1
−1 m . . . −1 −1
...

. . .
...

...
−1 −1 . . . m −1


with m

m+1 on the diagonal and −1
m+1 everywhere else is a generator matrix of A∗m.

Furthermore the vectors b1, . . . , bm ∈ Am given by bii = 1, bii+1 = −1 and 0 other-
wise form a basis of Am.

3 Solving the closest vector problem in A∗
m ⊗ A∗

n

Overview In this section, we make use of gluing theory [5, Chap. 4, Sec. 3, pp 99]
to derive a sub-exponential time algorithm for CVP in A∗m⊗A∗n. The most direct
approach would consist of tensoring the glue constructions of A∗m and A∗n which
would lead to an algorithm running in time O((n′)m+2 · (m′)n+2). Yet, thanks to
a completion trick, we can decrease this complexity down to O(n ·mn+1), which
can be significantly better.

Computational model For this algorithm, we require only a very simple compu-
tational model, namely, circuits over real numbers with the arithmetic operations
{+,−,×}, a “compare-and-choose” gate operating on four inputs:

cac : (a, b, c, d) 7→
{
c if a ≤ b,
d otherwise.

as well as a “round” gate: round : a 7→ bae. Any gate may use a fixed constant as
some of its input. The size of circuit is defined as the number of gates it requires.

Definition 8 For a lattice Λ ⊂ Rd, let C(Λ) be the size of the smallest circuit
as above, that given on input wires the coordinates t1, . . . , td of any vector t ∈
span(Λ) computes a closest vector to t in Λ.

We start with a basic lemma on solving CVP on a lattice written as a di-
rect or orthogonal sum of smaller lattices. Amusingly, we mostly make use of the
reciprocal property: solving CVP in the full lattice also solves it in any of its
orthogonal components. This idea will allow us to perform the completion trick
aforementioned.

Lemma 4 (Direct sum and orthogonal sum) Let Λ ⊂ Rd be a lattice and let
Λ1, . . . , Λk ⊂ Λ be orthogonal lattices of dimensions r1, . . . rk such that:

Λ = Λ1 ⊥ . . . ⊥ Λk.

Then:

1. C(Λ) ≤
k∑
i=1

C(Λi) + pi + si,

2. C(Λi) ≤ C(Λ) for all i = 1, . . . , k,
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Here, pi and si denote the size of the minimal circuit to compute the orthogonal
projection from span(Λ) to span(Λi) and the addition of two vectors from span(Λi)
and span(Λ1 ⊥ . . . ⊥ Λi−1) respectively. It also holds that pi ≤ O(dri) and si ≤ d.

If the sum is direct, i.e. if Λ and Λ1, . . . , Λk are lattices such that

Λ = Λ1 ⊕ . . .⊕ Λk,

then we have the same inequalities with pi = si = 0 for all i = 1, . . . , k.

Proof We start with the case of the orthogonal sum. For (1), suppose that t ∈
span(Λ) is the target and t1, . . . , tk are the projections onto span(Λ1), . . . , span(Λk)
of t. For each ti we can compute a closest vector xi ∈ Λi in C(Λi) operations.
Then x = x1 + . . . + xk ∈ Λ is a closest vector to t by the orthogonality. The
projection and last summation take pi + si operations for each i = 1, . . . , k. Note
that the projection onto span(Λi) can be written as x 7→ xBiB

t
i for some matrix

Bi ∈ Rd×ri , therefore pi ≤ O(rid). The inequality si ≤ d is straightforward.

For (2) suppose ti ∈ span(Λi) ⊂ span(Λ) is our target. Suppose x ∈ Λ is a
closest vector to ti in Λ which can be obtained in C(Λ) operations. Then x ∈ Λi
by the orthogonality because ti ∈ span(Λi) and thus x is a closest vector to ti in
Λi.

For the direct sum the proof is identical by using the embedding Λ′i = 0⊕ . . .⊕
Λi⊕. . .⊕0 ⊂ Λ such that Λ = Λ′1 ⊥ . . . ⊥ Λ′k. In this case the projections are along
the coordinates and the summation is just concatenation and thus pi = si = 0 for
all i = 1, . . . , k. ut

Our second lemma allows to solve CVP in a lattice written as a union of cosets
of a sparser lattice, i.e. a glue-construction.

Lemma 5 (Gluing Lemma) Let Λ ⊂ Rd be a lattice and let Λ′ ⊂ Λ be a full
rank sublattice. Note that Λ consists of multiple translated copies of Λ′. To be more
precise, we can see Λ′ as a subgroup of Λ, and then let G = Λ/Λ′ be the so called
glue group consisting of cosets. Let [Λ : Λ′] =: |G| denote the index of Λ′ in Λ
and let G ⊂ Λ be a set consisting of a single representative for each coset in G, so
called glue vectors. Then

Λ =
⋃
g∈G

(
g + Λ′

)
and we have that

C(Λ) ≤ |G|(O(d) + C(Λ′)).

Proof We make use of the fact that if x ∈ Λ is a closest vector to t ∈ span(Λ) then
x ∈ g + Λ′ for some g ∈ G. This is equivalent to the fact that x − g is a closest
vector to t − g in Λ′. So for all g ∈ G we find the closest vector xg to t − g in
Λ′ in C(Λ′) operations and we remember the h = g for which which xg has the
minimal distance to their respective t − g. Then xh + h is a closest vector to t
in Λ. Because we are calculating a distance and adding and subtracting vectors of
length d for each g ∈ G we get the extra O(d) operations on top of C(Λ′). ut
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The key idea now is that A∗m completed with a certain orthogonal lattice
can be obtained as a glue-construction from Zm

′
, with a glue-group of size m′.

Yet completing both A∗m and A∗n and then tensoring two such glue constructions
leads to a much larger glue group G⊗ of size (m′)n

′
· (n′)m

′
. Instead, we only

complete one of them, and the completed lattice A∗m ⊗ A∗n forms a much smaller

glue construction over Zm
′
⊗ A∗n '

⊕m′

i=1A
∗
n. This approach therefore allows to

exploit the existing algorithms for CVP in A∗n.

Theorem 1 It holds that

C(A∗m ⊗A∗n) ≤ O(nmn+1).

Otherly said, given t ∈ span(A∗m ⊗A∗n) we can find a closest vector x ∈ A∗m ⊗A∗n
to t in O(n ·mn+1) arithmetic operations on real numbers.

Proof Let Im′ be the lattice with basis 1
m′ 1 ∈

1
m′Z

m′ . Note that A∗m and Im′ are

orthogonal and let A∗m := A∗m ⊥ Im′ . By adding 1
m′ 1 to every row of the generator

matrix of A∗m given in Lemma 3 it is clear that Zm
′

is a full rank sublattice of A∗m.
Now we consider the lattice A∗m ⊗A∗n ⊃ A∗m ⊗A∗n. We get that:

A∗m ⊗A∗n = (A∗m ⊗A∗n) ⊥ (Im′ ⊗A∗n)

such that C(A∗m ⊗ A∗n) ≤ C(A∗m ⊗ A∗n) by Lemma 4. Also note that Zm
′
⊗ A∗n =⊕m′

i=1A
∗
n is a full rank sublattice of A∗m ⊗ A∗n and furthermore C(Zm

′
⊗ A∗n) =

m′ · C(A∗n) ∈ O(mn) by Lemma 4 and the linear time algorithm for A∗n [10].

The glue groupG := (A∗m⊗A∗n)/(Zm
′
⊗A∗n) consists of (m′)n cosets represented

by glue vectors

G = {
n∑
i=1

(bi ⊗
aj
m′

1) : (a1, . . . , an) ∈ {0, . . . ,m}n}

where the basis b1, . . . , bn is the basis corresponding to the generator matrix of
A∗n given in Lemma 3. Summarizing we get a time complexity of

C(A∗m ⊗A∗n) ≤ C(A∗m ⊗A∗n) = C(
⋃
g∈G

g + (Zm
′
⊗A∗n))

≤ (m′)n · (O(m′n′) + C(Zm
′
⊗A∗n))

≤ O(m′n′(m′)n) = O(n(m′)n
′
)

by using Lemmas 4 and 5. ut

4 Solving the closest vector problem in Am ⊗ An

Overview In this section, we first find a characterization of the Voronoi relevant
vectors of Am ⊗ An in terms of simple cycles in the complete directed bipartite
graph Km′,n′ . Then, we weight the edges of Km′,n′ depending on a given target t
and current approximation x, in such a way that a simple cycle has negative weight
iff the corresponding relevant vector improves the distance to t. Such negative
cycles can be found efficiently via the Bellman-Ford algorithm.
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Such successive improvements do not directly lead to a polynomial-time al-
gorithm: in a general lattices, each such improvement may be minuscule. Yet,
because our lattice is an integer lattice, improvements are guaranteed to be not
too small if the target itself is rational with a small common divisor. We finally
reach a polynomial time algorithm using successive rational approximation.

4.1 Characterizing the Voronoi relevant vectors

Note that the lattice Am ⊗An consists of all x = (x11, . . . , x1n′ , x21, . . . , xm′n′) ∈
Zm

′·n′ which satisfy the following conditions:

–
m′∑
i=1

xij = 0 for all j = 1, . . . , n′

–
n′∑
j=1

xij = 0 for all i = 1, . . . ,m′.

Note that those constraints are invariant by negation x 7→ −x, and by permuta-
tions of the coordinates of the form σ × τ : (i, j) 7→ (σ(i), τ(j)) where σ ∈ Sm′

and τ ∈ Sn′ . Our first lemma allows us to limit our search space for the Voronoi
relevant vectors of Am ⊗An.

Lemma 6 For all Voronoi relevant vectors v ∈ RV (Am⊗An) we have that |vij | <
2 for all i = 1, . . . ,m′ and j = 1, . . . , n′.

Proof Let v ∈ Am ⊗ An be a Voronoi relevant vector. Assume for contradiction
that |vij | ≥ 2 for some pair i, j. Because of symmetries we can assume without
loss of generality that v11 ≥ 2. Let xij ∈ Am ⊗ An for all i = 2, . . . ,m′ and
j = 2, . . . , n′ be given by x11 = 1, xi1 = −1, x1j = −1, xij = 1 and 0 otherwise.
Note that this is indeed a lattice point of Am ⊗An and that it is not the same as
0 or v. Also note that 〈xij ,xij〉 = 4 for all i, j. Then by Definition 3 we get that

v11 − v1j − vi1 + vij = 〈v,xij〉 < 〈xij ,xij〉 = 4

for all i = 2, . . . ,m′ and j = 2, . . . , n′. Also note that because these are all integers
we even have that v11 − v1j − vi1 + vij ≤ 3. Summing multiple of these relations
for a fixed i = 2, . . . ,m′ gives

n · v11 − n · vi1 −
n′∑
j=2

v1j +
n′∑
j=2

vij =
n′∑
j=2

(v11 − v1j − vi1 + vij) ≤ 3(n′ − 1)

but we have that −
n′∑
j=2

v1j = v11 and
n′∑
j=2

vij = vi1 and thus this gives us

n′ · v11 − n′ · vi1 ≤ 3(n′ − 1).

As a result of v11 ≥ 2 we now get that n′ · vi1 ≥ −n′+ 3 and thus vi1 ≥ −1 + 3
n′ >

−1, which again means that vi1 ≥ 0 because it is an integer. So vi1 ≥ 0 for all
i = 2, . . . ,m′ and v11 ≥ 2. But in that case

0 =

m′∑
i=1

vi1 ≥ 2 + 0 + . . .+ 0 = 2

which gives a contradiction. So |v11| < 2. ut
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Now we have limited our search space for the Voronoi relevant vectors to X :=
{−1, 0, 1}m

′·n′ ∩ Am ⊗ An we can define a subgraph of the complete directed
bipartite graph Km′,n′ for every such element in quite a natural way.

Definition 9 (Graph Gx) Let x ∈ {−1, 0, 1}m
′·n′ be given. Let Km′,n′ be

the complete directed bipartite graph with m′ nodes v1, . . . , vm′ and n′ nodes
w1, . . . , wn′ . We define the subgraph Gx = (Vx, Ex) ⊂ Km′,n′ corresponding to x
where Ex is defined as

Ex = {(vi, wj) : xij = −1} ∪ {(wj , vi) : xij = 1}

and Vx as all nodes with nonzero in- or outdegree.

Now note that for any x ∈ {−1, 0, 1}m
′·n′ we have that x ∈ X iff every node

of Gx has its indegree equal to its outdegree. So for x ∈ X we have that Gx is a
union of disconnected cycles. The following lemma uses this fact to characterize
the Voronoi relevant vectors of Am ⊗An.

Theorem 2 (Voronoi relevant vectors of Am ⊗ An) The Voronoi relevant
vectors of Am ⊗An are precisely all v ∈ X \ {0} such that Gv consists of a single
simple cycle.

Proof Let v ∈ X \ {0} be given. Note that we already have

〈v,x〉 ≤
∑
i,j

|xij | ≤
∑
i,j

|xij |2 = 〈x,x〉

for all x ∈ Am ⊗ An because v ∈ X ⊂ {−1, 0, 1}m
′n′ . The second inequality can

only be an equality if also x ∈ X. The first inequality then becomes an equality
iff vijxij = |xij | for all i = 1, . . . ,m′ and j = 1, . . . , n′. So xij = 0 or xij = vij .
This makes it clear that the only candidates such that 〈v,x〉 = 〈x,x〉 are those
x ∈ X such that Gx ⊂ Gv. By Definition 3 we then get that v ∈ RV (Am ⊗ An)
iff G0 and Gv are the only subgraphs of that form of Gv.

In fact note that each Gx with x ∈ X consists of a union of disconnected
Eulerian graphs and thus a union of disconnected cycles. Furthermore note that
every cycle in Gx corresponds to a subgraph H ⊂ Gx for which there exists an
x′ ∈ X such that H = Gx′ . So Gv is a Voronoi relevant vector iff Gv contains
only the trivial cycles G0 and Gv and no other cycles. But this is the case iff Gv

itself consists of a single simple cycle. ut

4.2 Finding a closer vector in Am ⊗An

Now that we have characterized the Voronoi relevant vectors of Am ⊗ An we can
consider, given a lattice point and a target, the problem of finding an improving
Voronoi relevant vector (as in Lemma 1) if one exists. From Theorem 2 we can
deduce that Am ⊗An has

min{m′,n′}∑
i=2

(
m′

i

)(
n′

i

)
· i! · (i− 1)!
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many Voronoi relevant vectors and thus checking all of them would not be efficient.
Instead, we notice that appropriately weighting the edges of Km′,n′ allows to
evaluate the inner product of an RV vector with a given target, as the weight of
the associated simple cycle. An RV vector will be improving iff the weight of the
associated cycle is negative.

Lemma 7 Let x ∈ Am ⊗ An and let t ∈ Span(Am ⊗ An) be our target. If there
exists a Voronoi relevant vector v ∈ RV (Am ⊗ An) such that ‖(x + v)− t‖ <
‖x− t‖ we can find such a Voronoi relevant vector in O(min{m,n})mn) arithmetic
operations on reals. If it doesn’t exist this will also be detected by the algorithm.

Proof Let u := x−t be the difference vector of t and x. We construct the weighted
directed complete bipartite graph Km′,n′(u) with weight function W defined as
follows for i = 1, . . . ,m′ and j = 1, . . . , n′:

W (vi, wj) = (uij − 1)2 − u2ij = 1− 2uij

W (wj , vi) = (uij + 1)2 − u2ij = 1 + 2uij .

Now consider some Gv ⊂ Km′,n′(u) with the same weights for an arbitrary v ∈
RV (Am ⊗An). Then by construction

W (Gv) =
∑

i,j:vij 6=0

1 + 2vij · uij = 〈v, v〉+ 2〈v,u〉 = ‖u + v‖2 − ‖u‖2 .

So ‖(x + v)− t‖ < ‖x− t‖ for a v ∈ RV (Am ⊗ An) iff Gv ⊂ Km′,n′(u) has
negative weight. By Theorem 2 every simple cycle of length at least 4 in Km′,n′

corresponds to a Voronoi relevant vector. So the problem of finding a v ∈ RV (Am⊗
An) such that ‖(x + v)− t‖ < ‖x− t‖ is equivalent to finding a simple cycle of
length at least 4 with negative weight in Km′,n′ . Note that because W (vi, wj) +
W (wj , vi) = 2 ≥ 0 for all i = 1, . . . ,m′ and j = 1, . . . , n′ there exist no simple
cycles of length 2. So we just need to find a simple cycle of negative weight. This
can be done by the Bellman-Ford algorithm in O(C · |E|) = O(min{m′, n′}m′n′) =
O(min{m,n}mn) operations, where C = 2 min{m′, n′} bounds the length of the
cycles considered3. The construction of the graph itself can easily be done in
O(m+n+mn) operations and thus adds nothing to the complexity. The Bellman-
Ford algorithm also detects if simple negative weight cycles exist or not [6]. ut

4.3 Finding a closest vector in Am ⊗An

Before we can use Lemma 7 to create a polynomial iterative CVP algorithm for the
lattice Am ⊗An we first need a reasonably close starting point and a polynomial
bound on the covering radius of Am ⊗ An. To accomplish this in the following
lemma we will use Babai’s rounding technique [1] on a sparse and reduced basis
of Am ⊗An.

Lemma 8 For any t ∈ span(Am ⊗ An) we can find an x ∈ Am ⊗ An such that
‖x− t‖ ≤ 2

√
m′n′ in O(mn) arithmetic operations.

3 The algorithm is typically stated with C = |V |, the number of vertices
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Proof Let x1, . . . ,xm and y1, . . . ,yn be the basis of Am and An respectively as
given in Lemma 3. Then {bij := xi⊗yj : i = 1, . . . ,m and j = 1, . . . , n} is a basis
of Am ⊗An.

Suppose that t′ := t =
∑
i,j aijb

ij . Then we have that a11 = t′11 as all other

basis elements have coefficient 0 there. Then let t′ ← t′−a11 ·b11 and consider a12.
We again have that a12 = t′12 and after this we set t′ ← t′−a12 ·b12. This equality
will be the case for all basis elements if we continue b13, . . . , b1n, b2m, . . . , bmn.
Note that computing t′ ← t′ − aijbij can be done in a constant amount of opera-
tions as bij always has only 4 nonzero coefficients. In total calculating all aij can
thus be done in O(mn) operations. So we now have aij ∈ R such that t =

∑
i,j

aijb
ij .

Let x :=
∑
i,jbaijeb

ij ∈ Am ⊗ An. Again it is clear that x can be calculated

in O(mn) operations as every bij has only 4 nonzero coefficients. Now note that

‖x− t‖ =

∥∥∥∥∥∥
∑
i,j

(baije − aij)bij
∥∥∥∥∥∥ ≤

√
m′n′ · (4 · 1

2
)2 = 2

√
m′n′

which is the case because the (kl)-th coefficient is nonzero in at most 4 basis
vectors bij and combining this with the fact that |baije − aij | ≤ 1

2 gives us that
the (kl)-th coefficient of x − t is bounded in absolute value by 4 · 12 = 2 for all
k = 1, . . . ,m′ and l = 1, . . . , n′. ut

We finally have all the ingredients to construct a polynomial iterative CVP
algorithm for the lattice Am⊗An. To achieve a bound on the number of iterations
we will round our target to a grid. In this way we can give a lower bound on the
improvement in squared distance made to our target in each iteration and thus
bound the number of iteration from above. This grid will successively be made
finer until our target lies in it and a closest vector is found.

Algorithm 1 A polynomial CVP algorithm for the lattice Am ⊗An.

Input : m,n, l ≥ 1 and t =
∑
i,j aijb

ij ∈ span(Am ⊗An) with aij ∈ 2−lZ
Output: a closest vector to t in Am ⊗An

1 Find (akl)k,l such that t =
∑
k,l aklb

kl ;

2 a =
∑
k,lbakleb

kl;

3 for i = 0, . . . , l do
// Outer loop

4 ti =
∑
k,l 2−ib2i · aklebkl;

5 while Km′,n′(a− ti) has a negative cycle Gv do
// Inner loop

6 a = a + v;

7 xi = a;

8 return xl;

Theorem 3 Given a target t =
∑
i,j aijb

ij ∈ span (Am ⊗An) with all aij ∈
2−lZ and with l ≥ 1 we can find a closest vector to t in Am ⊗ An in O(l ·
(mn)2 min{m,n}) arithmetic operations with Algorithm 1.
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Proof First note that by Lemmas 1 and 7 it is clear that after each outer loop xi is a
closest vector to ti. Therefore we will focus on the complexity. First let akl ∈ 2−lZ
such that t =

∑
k,l aklb

kl ∈ 2−lZm
′n′ . Recall that this can be done in time O(mn).

Let ti :=
∑
k,l 2−id2i · aklcbkl for i = 0, . . . , l, so tl = t. Recall that these can also

be computed in time O(mn) each as each bkl has only 4 nonzero coefficients. Let
xi be the closest vector to ti as obtained by the algorithm for i = 0, . . . , l. Let
ei =

∑
k,l a

′
klb

kl := ti − ti−1 and note that ‖ti − ti−1‖ = ‖ei‖ ≤ 4 · 2−i
√
m′n′ as

every |a′kl| ≤ 2−i and for every coefficient there are at most 4 basis elements that
are nonzero there.

Note that if our current target is ti and our current best approximation is
a ∈ Am ⊗ An we will improve in every iteration with at least 2−i+1 between
squared distances if we improve at all as for a relevant vector v ∈ RV (Am ⊗ An)
we have

‖a + v − ti‖2 − ‖a− ti‖2 = 2〈a− ti, v〉+ 〈v, v〉 ∈ 2−i+1Zm
′n′

because a and v are integer vectors and ti ∈ 2−iZm
′n′ .

When searching a closest vector to ti we start with the approximation xi−1.
To bound the number of iterations of the inner loop to get to xi we need the
following bound for i ≥ 1:

‖ti − xi−1‖2 − ‖ti − xi‖2

= (‖ti − xi−1‖+ ‖ti − xi‖)(‖ti − xi−1‖ − ‖ti − xi‖)
≤ (‖ti−1 − xi−1‖+ ‖ei‖+ ‖ti − xi‖) (‖ti−1 − xi−1‖+ ‖ei‖ − ‖ti − xi‖)

Note that by Lemma 8 be have that ‖ti − xi‖ ≤ 2
√
m′n′ for all i ≥ 0. Therefore:

≤
(

4 + 2−i+2
)√

m′n′
(

2−i+2
√
m′n′ + dist(ti−1, Am ⊗An)− dist(ti, Am ⊗An)

)
≤
(

4 + 2−i+2
)√

m′n′
(

2−i+2
√
m′n′ + ‖ti−1 − ti‖

)
≤
(

4 + 2−i+2
)√

m′n′
(

2−i+2
√
m′n′ + 2−i

√
m′n′

)
= 10 · 2−i+1

(
1 + 2−i

)
m′n′

So for fixed i the inner loop starts with a = xi−1 and improves this approximation
until ‖ti − as‖ = ‖ti − xi‖. So we get the following

‖ti − xi−1‖2 = ‖ti − a‖2 < ‖ti − a1‖2 < . . . < ‖ti − as‖2 = ‖ti − xi‖2

and because ‖ti − xi−1‖2−‖ti − xi‖2 ≤ 10 ·2−i+1
(
1 + 2−i

)
m′n′ and in every it-

eration this decreases with at least 2−i+1 there can be at most 10·
(
1 + 2−i

)
m′n′+

1 iterations (+1 for the final check) for every i ≥ 1. So given a closest vec-
tor xi−1 to ti−1 we can find a closest vector xi to ti in O(mn) iterations. By
Lemma 7 each iteration takes O(mnmin{m,n}) operations. So in total we need
O((mn)2 min{m,n}) operations to go from xi−1 to xi for i ≥ 1. So given x0 we
can find xl in O(l · (mn)2 min{m,n}) operations. By Lemma 8 we can find an
a ∈ Am ⊗An such that ‖t0 − a‖2 ≤ 4m′n′ and thus

‖t0 − a‖2 − ‖t0 − x0‖2 ≤ 4m′n′
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and as this difference decreases with at least 2−0+1 = 2 every iteration the number
of iterations to obtain x0 from the first approximation is also in O(mn) and thus
the total number of operations to find x0 is in O((mn)2 min{m,n}). This changes
nothing to the total complexity and thus we can find a closest vector to tl = t in
Am ⊗An in O(l · (mn)2 min{m,n}) operations. ut
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