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Abstract. We exploit the presence of a subfield to solve the NTRU problem for large moduli
q: norming-down the public key h to a subfield may lead to an easier lattice problem, and any
sufficiently good solution may be lifted to a short vector in the full NTRU-lattice.
We restrict ourselves to choices of dimensions n(λ) and modulus q(λ) that were previously thought
to offer resistance against attacks in time exponential in the security parameter λ. For any super-
polynomial q(λ), the subfield attack can be made sub-exponential in λ, or even polynomial as q(λ)
gets larger.
The subfield lattice attack directly affects the asymptotic security of the bootstrappable homomorphic
encryption schemes LTV and YASHE. It also makes GGH-like Multilinear Maps vulnerable to
principal ideals attacks — therefore leading to a quantum break — and almost vulnerable to a
statistical attack a-la Gentry-Szydlo. No encodings of zero nor zero-testing parameter are required.
We also provide meaningful practical experiments. Using just LLL in dimension 512 we obtain
vectors that would have required running BKZ with block-size 130 in dimension 8192.
Finally, we discuss concrete aspects of this attack, the potential immunity of NTRUEncrypt and
Bliss parameters, issue preliminary recommendations and suggest countermeasures.

1 Introduction

Lattice-based cryptography relies on the presumed hardness of lattice problems such as the
shortest vector problem (SVP) and its variants. For efficiency, many practical lattice-based
cryptosystems are based on assumptions on structured lattices such as the NTRU lattice.
Introduced by Hoffstein, Pipher and Silverman [HPS96,HPS98], the NTRU assumption states
that it is hard to find a short vector in the R-module

Λqh = {(x, y) ∈ R2 s.t. hx− y = 0 mod q}

with the promise that a very short solution —the private key— (f, g) exists. The ring R =
Z[X]/(P (X)) is a polynomial ring of rank n over Z, typically a circular convolution ring
(P (X) = Xn − 1) or the ring of integers in a cyclotomic number field (P = Φm, n = φ(m)).

Following on the pioneer scheme NTRUencrypt [HPS98], the NTRU assumption has been
re-used in various cryptographic constructions such as signatures schemes [HHGP+03,DDLL13],
fully homomorphic encryption [LTV12,BLLN13] and a candidate construction for cryptographic
multi-linear maps [GGH13a,LSS14,ACLL15]. After two decades of cryptanalysis, the NTRU-
encrypt scheme remains essentially unbroken, and is one of the fastest candidates for the
public-key cryptosystems in the post-quantum era.

Coppersmith and Shamir [CS97] were the first to notice that recovering a short enough vector,
potentially different from the actual secret key (f, g), may be sufficient for an attack and claimed
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that the celebrated LLL algorithm of Lenstra, Lenstra and Lovász [LLL82] would lead to an
attack. However, it turned out [HPS98] that much stronger lattice reduction is required and that
the NTRUencrypt scheme is asymptotically secure. Meanwhile, parameters have been updated
to take account for progress in lattice reduction and potential quantum speed-ups [HPS+15].

Other types of attack have been considered, such as Odlyzko’s meet-in-the-middle attack
described in [JHW06]. In practice, the best known algorithm for attacking NTRU lattices is
the combined lattice-reduction and meet-in-the-middle attack of Howgrave-Graham [HG07].
Asymptotically, a slightly sub-exponential attack against the ternary-NTRU problem was
proposed by Kirchner and Fouque [KF15], with a heuristic complexity 2Θ(n/ log log q), which is to
our knowledge the only sub-exponential attack when q is polynomial in n.

As of today, those NTRU lattices remained essentially as intractable as lattices with similar
parameters4, but without the structure of R-module. An exception —discussed below— is an
attack of Gentry [Gen01] tackling the case of composite rings.

In the present work, we describe how to use lattice reduction in a subfield to attack the
NTRU assumption for large moduli q. This subfield lattice attack is asymptotically faster than
the previously known attacks as soon as q is super-polynomial, and may also be relevant for
polynomially-sized q.

Asymptotics. We are mostly concerned with the NTRU assumption when q is super-polynomial
in n, in which case the best known attacks are already sub-exponential in n. For cryptographic
relevance, we will therefore state all our asymptotics in terms of what was previously thought
as the security parameter λ: given q = q(λ) we constrain n = n(λ) so that the previously best
known attack requires exponential time 2Θ(λ).

In this cryptographic metric, the subfield lattice attack is sub-exponential as soon as q is
super-polynomial, and gets polynomial for larger parameters q = 2Θ̃(λ) = 2Θ̃(

√
n).

Our contribution. We present a new subfield lattice attack which consists of norming down to a
subfield, running lattice reduction to solve a smaller, easier lattice problem and lifting the solution
back up. We then show that the proposed algorithm solves the NTRU problem in sub-exponential
time when the modulus q is quasi-polynomial in the security parameter λ and in polynomial
time when the modulus q is super-exponential in λ (equivalently, q = 2Θ̃(

√
n)). Applying this

algorithm, we show that it gives a subexponential attack on parameter choices for NTRU-based
FHE schemes [LTV12,BLLN13] which were believed secure previously. We also show that this
algorithm enables new attacks on GGH-like graded encoding schemes [GGH13a,LSS14,ACLL15].
These attacks lead to subexponential classical and polynomial-time quantum attacks on GGH-like
constructions. We stress that our attacks do not require encodings of zero nor do they use the
zero-testing parameter in contrast to previous work [HJ15].

We also report on experimental results for the subfield lattice attack which show that the
attack is meaningful in practice. Using LLL in dimension 512 we have obtained vectors that
would have required running BKZ with block-size about 130 in dimension 8192. We note that
the behavior of the lattice reduction algorithms on the special instances considered in this work
seems not to be captured by current lattice reduction models: we are yet unable to provide
practical predictions for the hidden constants in our asymptotic results.

Previous work. Our work is very similar in spirit to an attack of Gentry [Gen01] against the
NTRU-composite assumption. His attack tackles NTRU problems over rings R that can be
written as direct products R ' R1 ×R2. More specifically he targets circulant convolution rings
Z[X]/(Xn − 1) ' Z[X]/(Xn1 − 1) × Z[X]/(Xn2 − 1) where n = n1n2. Under this condition,

4 Volume, dimension and length of unusually short vectors.
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there exists a projection π : R → R1 that is a ring morphism, and he shows that this projection
can only increase the euclidean length of secret polynomials by a factor

√
n2. This makes this

attack very powerful (even when the modulus q is quite small). Because this projection is a
ring morphism, this approach is not limited to NTRU, and would also apply to Ring-SIS or
Ring-LWE.

In some sense, the line of work by Lauter et al. [ELOS15,EHL14,CLS15] falls in this framework,
except that the direct factorization of the rings R happens modulo q: (R/qR) ' (R1/qR1)×
(R2/qR2). This requires the —seemingly sporadic— property that the projection map πq :
(R/qR)→ (R1/qR1) induces only a manageable geometric distortion. Similar ideas are being
explored to attack schemes based on certain quasi-cyclic binary codes [Loi14,LJ14,HT15].

In comparison, this work tackles NTRU when R = OK is a the ring of integer of a number field
K (and therefore can not be a direct product), and that K admit proper subfields. Due to Gentry’s
attack and others, direct product rings are now avoided for lattice-based cryptography, and the
typical choice is to use the rings of integer of cyclotomic number fields R = OQ(ωm) = Z[ωm].
This setting allows to argue worst-case hardness of certain problems (Ring-SIS [Mic02], Ring-
LWE [LPR10]). Yet all those number fields admit proper subfields (at least, the maximal real
subfield). Instead of a projection map π, we exploit a relative norm map NK/L : OK → OL, which
is only a multiplicative map. This induces a significant yet manageable blow-up on the euclidean
length of secret polynomials and requires a large modulus q. This seems to also limit this attack
to the NTRU setting.

Our work also resonates with the logarithm-subfield strategy of Bernstein [Ber14], which
anticipated other works towards a logarithm attack [CGS14,CDPR15]. While the presence of
subfields was in the end not necessary for the recovery of short generators of principal ideals
in cyclotomic rings, we show in this work that, indeed, the presence of proper subfields can be
exploited in other specifics set-ups.

Outline. Section 2 gives preliminaries on the geometry of NTRU lattices and a brief introduction of
the lattice reduction algorithms. Section 3 then presents the subfield lattice attack; Subsection 3.4
analyzes its asymptotic performances. In Section 4, we apply our attack to the FHE and MLM
constructions proposed in recent literature. In Section 5, we report experimental results for the
subfield lattice attack. Finally, Section 6 presents the conclusions and suggests directions for
future research.

Acknowledgments. We are grateful to Alice Silverberg, and to the participant of the Conference
on Mathematics of Cryptography for enlightening talks and discussions. We thank Dan J.
Bernstein, Ronald Cramer, Hendrik Lenstra and Damien Stehlé for helpful discussions and
comments. Finally, we thank the PSMN (Pôle Scientifique de Modélisation Numérique, Lyon,
France) for providing computing facilities.

2 Preliminaries

Vectors will be considered as row vectors. The notation [ · ]q denotes reduction modulo an integer
q.

2.1 Number fields and subfields

We assume some familiarity with algebraic number theory. The reader may refer to [Sam70] for
an introduction to the topic.

Let K be a number field of degree n = [K : Q] over Q, and assume K is a Galois extension
of Q, of Galois group G. The fundamental theorem of Galois Theory states an one-to-one
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correspondence between the subgroups G′ of G, and the subfields L of K, G′ being the subgroup
of G fixing L. Let therefore L be a subfield of K and G′ be the subgroup of G fixing L, and
denote n′ = [L : Q], r = [K : L] (so we have r = n/n′). The number fields K, L and therefore
the degrees n, n′ and relative degree r are fixed in the rest of this work.

The relative norm NK/L : K→ L (resp. relative trace TrK/L : K→ L) is the multiplicative
(resp. additive) map defined by

NK/L : a 7→
∏
ψ∈G′

ψ(a), resp. TrK/L : a 7→
∑
ψ∈G′

ψ(a). (1)

The canonical inclusion L ⊂ K will be written explicitly as L : L→ K. The ring of integers of K
and L are denoted by OK and OL.

A number field of degree n admits n embeddings– i.e. field morphisms– to the complex.
Writing K = Q(X)/(P (X)) for some monic irreducible polynomial P , and letting α1, . . . , αn ∈ C
be the distinct complex roots of P , each embedding ei : K→ C consist at evaluating a ∈ K at a
root αi, formally ei : a 7→ a(αi). The Galois group acts by permutation on the set of embeddings.

Cyclotomic Number Field. We denote by ωm an arbitrary primitive m-th root of unity. For
cryptanalytic purposes, we are mostly interested in the case where K = Q(ωm) is the m-th
cyclotomic number field, but we want to instantiate our attack for subfields L of K that are not
necessary cyclotomic number fields.

The number field K = Q(ωm) has degree n = φ(m), and has a Galois group isomorphic to
Z∗m: explicitly i ∈ Z∗m corresponds to the automorphism ψi : ωm 7→ ωim. Any number field Q(ωm′)
for m′|m is a subfield of Q(ωm), but there are other proper subfields. In particular, the maximal
real subfield Q(ωm + ω̄m) is a proper subfield of degree n/2, and more generally, K = Q(ωm)
admits a subfield of degree n′ for any divisor n′|n 5.

We recall (see [Was97], Theorem 2.6) that the ring of integers of K = Q(ωm) is exactly
OK = Z[ωn].

2.2 Coprimality in OK

Below, we will rely on two principal ideals in OK being coprime in some proofs. The density
of coprime pairs of ideals [Sit10] and elements [FM14] in OK is 1/ζK(2) where ζK denotes the
Dedekind zeta function over K. The next lemma shows that ζK(2) ≤ ζ(2) where ζ is the Riemann
zeta function for any K.

Lemma 1. If K is an extension of L, then ζK(s) ≤ ζL(s) for any real s > 1. In particular

ζK(2) ≤ ζ(2) = π2/6

where ζ is the Riemann zeta function.

Proof. We have

ζK(s) =
∏
P⊆OK

1

1− (NK/Q(P ))−s

Each prime ideal P of K contains a prime ideal p that lies below in L. The absolute norm of
P is no smaller than that of p; and hence the claim follows. ut
5 For example, 7 is prime, so Q(ω7) admits no cyclotomic number fields as proper subfields, yet it admits two

proper subfields: Q(ω7 + ω̄7) of degree 3 and Q(ω7 + ω2
7 + ω4

7) of degree 2.
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We have a lower bound 6/π2 for the density. Further, we numerically approximated ζ−1K (2)
for K = Q[x]/(xn + 1) for n = 128 and n = 256 by computing the first 222 terms of the Dirichlet
series of the Dedekind zeta function for K and then evaluated the truncated series at 2. In both
cases we get a density ≈ 0.75.

We stress that our pairs f , g are principal ideals with short generators under the addi-
tional condition that f is invertible modulo q. However, our experiments indicate that we may
heuristically use the density discussed above as the probability of our pairs being coprime.

2.3 Euclidean geometry

The number field K (or L) is viewed as a Euclidean Q-vector space by endowing it with the
inner product

〈a, b〉 =
∑
e

e(a)ē(b) (2)

where e ranges over all the n (or n′) embeddings K→ C. This defines a Euclidean norm denoted
by ‖ · ‖. In addition to the Euclidean norm, we will make use of the operator norm | · | defined by:

|a| = sup
x∈K∗

‖ax‖/‖x‖. (3)

It is easy to check that the operator norm |a| of a equals to the maximal absolute complex
embedding of a:

|a| = max
e
|e(a)| (4)

where e ranges over all the embeddings e : K→ C. We note that if ω ∈ K is a root of unity, then
|ω| = 1.

The Euclidean norm and the operator norm are invariant under automorphisms ψ : K 7→ K,

‖a‖ = ‖ψ(a)‖, |a| = |ψ(a)| (5)

since the group of automorphisms acts by permutation on the set of embeddings. One also
verifies that ‖L(a)‖2 = r‖a‖2 for all a ∈ L. Additionally, the algebraic norm can be bounded in
term of geometric norms:

NK/Q(a) ≤ |a|n ≤ ‖a‖n. (6)

The inner product (and therefore the Euclidean norm) are extended in a coefficient-wise
manner to vectors of Kd: 〈(a1, . . . , ad), (b1, . . . , bd)〉 =

∑
〈ai, bi〉.

Definition 1. A distribution D over Kd is said to be isotropic of variance σ2 ≥ 0 if, for any
y ∈ Kd it hold that

Ex←D[〈x, y〉2] = σ2‖y‖2

where E[ · ] denotes the expectation of a random variable.

Remark. In most theoretical work, the distributions of secrets or errors are spherical discrete
Gaussian distribution over OK which are isotropic —up to negligible statistical distance. For
simplicity, some practically oriented work instead chose random ternary coefficients. In the
typical power-of-two case cyclotomic case, such distribution is isotropic of variance n2/3. Yet,
for more general choices K = Q(ωm), in the worse case (when m is composed of many small
distinct prime factor), this may induce up to quasi-polynomial distortion nlog(n) (see [LPR10]).
Such set-up choice should only marginally affect our asymptotic results.
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2.4 OK modules and lattices

To avoid confusion, we shall speak of the rank of OK-modules and of K-vectors-spaces when
K 6= Q, and restrict the term of dimension to Z-modules and Q-vector spaces.

The dimension dim(Λ) of a lattice Λ is the dimension over Q of the Q-vector space it spans6.
We recall that the minimal distance of a lattice Λ is defined as λ1(Λ) = minv∈Λ\{0} ‖v‖. Also,
the volume of a lattice Vol(Λ) is defined as square root of the absolute determinant of the Gram
matrix of any basis {b1 . . . bdim(Λ)} of Λ Vol(Λ) =

√
det([〈bi, bj〉]i,j). For any set of Q-linearly

independent vectors {v1, . . . , vdim(Λ)} ⊂ Λ, we have the inequality:

Vol(Λ) ≤
∏
‖vi‖. (7)

The rank of an OK module M ⊂ Kd can be defined as the rank over K of the K vector-space
it spans, but it does not necessary equal to the size of a minimal set of OK-generators7. The
Euclidean vector space structure of Kd allows to view any discrete OK-module M ⊂ Kd as
a lattice. The discriminant ∆K of a number field relates to the volume of its ring of integers√
|∆K| = Vol(OK). It is a positive integer. More generally, we have the identity:

Vol(aOK) = NK/Q(a)
√
|∆K|. (8)

This gives rise to a lower bound on the volume OK-modules of rank 1 in term of its minimal
distance:

Lemma 2. Let M ⊂ Kd be a discrete OK-module of rank 1. Then Vol(M) ≤ λ1(M)n
√
|∆K|.

Proof. Without loss of generality, we may assume that d = 1 (by constructing a K-linear isometry
ι : SpanK(M)→ K⊗QR). Let a ∈ K⊗QR be a shortest vector of M , we have M ⊃ aOK, therefore
Vol(M) ≤ Vol(aOK) = NK/Q(a)

√
|∆K|, and we conclude noting that NK/Q(a) ≤ ‖a‖n. ut

2.5 NTRU assumption

Let us first describe the NTRU problem as follows.

Definition 2 (NTRU problem). The NTRU problem is defined by four parameters: a ring R
(of rank n and endowed with an inner product), a modulus q, a distribution D, and a target
norm τ . Precisely, NTRU(R, q,D, τ) is the problem of, given h = [gf−1]q (conditioned on f being
invertible mod q) for f, g ← D, finding a vector (x, y) ∈ R2 such that (x, y) 6= (0, 0) mod q and
of Euclidean norm less than τ

√
2n in the lattice

Λqh = {(x, y) ∈ R2 s.t. hx− y = 0 mod q}. (9)

We may abuse notation and denote NTRU(R, q, σ, τ) for NTRU(R, q,D, τ) where D is any
reasonable isotropic distribution of variance σ2.

Note that NTRU(R, q, σ, σ) is essentially the problem of recovering the secret key (f, g).
Yet, in many cases, solving NTRU(R, q, σ, τ) for some τ > σ is enough to break NTRU-like
cryptosystems.

6 Or equivalently, the size of a minimal sets of Z-generators, since Z is a principal ideal domain.
7 Non-principal ideals of K being a counter-example.

6



The NTRU lattice Λqh. The lattice Λqh defined by the instance h← NTRU(OK, q, σ, τ) has dimen-
sion 2n and volume Vol(R)2qn. Consequently, if h were to be uniformly random, the Gaussian
heuristic predicts that the shortest vectors of Λqh have norm Vol(R)1/n

√
nq/πe. Therefore,

whenever σ < Vol(R)1/n
√
q/2πe, the lattice Λqh admits an unusually short vector. This vector

is not formally a unique shortest vector: for example if K = Q(ωm), R = OK, all rotations
(ωimf, ω

i
mg) of that vector have the same norm.

Target parameter τ for attacks. Because no solution would be expected if h was uniformly
random, note that solving h← NTRU(R, q, σ, τ) for τ < Vol(R)1/n

√
q/πe already constitutes

a distinguishing attack on the NTRU problem. The problem of distinguishing h from uniform
is also known as the Decisional Small Polynomial Ratio problem [LTV12]. As we discuss in
Section 4, solving NTRU for such τ would break the FHE scheme based on NTRU from [LTV12]
and typical parameter choices for the scheme presented in [BLLN13].

2.6 Lattice reduction algorithms

Theoretically, one of the best lattice-reduction algorithm beyond LLL [LLL82] is the slide
algorithm [Sch87,GN08].

Theorem 1 (from [GN08]). There is an algorithm that, given ε > 0, the basis B of a lattice
L of dimension d, and performing at most

poly(d, 1/ε,bitsize(B))

many operations and calls to an SVP oracle in dimension β, outputs a vector v ∈ L whose length
verify both following bounds:

– the approximation-factor bound:

‖v‖ ≤ ((1 + ε)γβ)
d−β
β−1 · λ1(L) (10)

where λ1(L) is the length of a shortest vector in L.
– the Hermite-factor bound:

‖v‖ ≤ ((1 + ε)γβ)
d−1
2β−2 ·Vol(L)1/d (11)

where γβ ≈ β is the β-dimensional Hermite constant.

Alternatively, one may use BKZ with early termination, and a similar Hermite-factor inequality
may be proved [HS07]. However, we are not aware of any proof of a similar approximation factor
is known unless we leave BKZ running for super-polynomial time.

It is well known [CN11] that in practice lattice reduction algorithms achieve much shorter
results and are more efficient, but the factors remains of the order of βΘ(n/β), for a computational
cost in poly(λ) · 2Θ(β).

3 The subfield lattice attack

The subfield lattice attack works in three steps. First we map the NTRU instance to the chosen
subfield, then we apply lattice reduction, and finally we lift the solution to the full field. We
first describe the three steps of the attacks in Subsections 3.1, 3.2 and 3.3. We then analyze in
Subsection 3.4 the asymptotic performances compared to direct reduction in the full field for
cryptographically relevant asymptotic parameters.

We are given an instance h ← NTRU(OK, q, σ, τ), and (f, g) ∈ OK is the associated secret.
We wish to recover a short vector of Λqh.
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3.1 Norming down

We define f ′ = NK/L(f), g′ = NK/L(g), and h′ = NK/L(h). The subfield attack follows from the
following observation: (f ′, g′) is a vector of Λqh′ and depending on the parameters it may be an
unusually short one.

Lemma 3. Let f, g ∈ OK ⊗Q R be sampled from continuous spherical Gaussians of variance σ2.
For any constant c > 0, there exists a constant C, such that,

‖g′‖ ≤
(
σnC

)r
, ‖f ′‖ ≤

(
σnC

)r
, |f ′| ≤

(
σnC

)r
, |f ′−1| ≤

(
nC/σ

)r
except with probability O(n−c).

Proof. For all embeddings e : K 7→ C, it simultaneously holds that

σ/nC ≤ |e(f)| ≤ σnC (12)

except with polynomially small probability O(n−c). Once this is established, the conclusion
follows using the invariant |ψ(a)| = |a| since f ′ =

∏
ψ(f), where ψ ranges over r automorphisms

of K.
To prove inequality (12), note that for each embedding e, the <(e(f)) and =(e(f)) follow

a Gaussian distribution of parameter Θ(n)σ. Classical tails inequality gives the upper bound
|e(f)| ≤ σnC . For the lower bound, we remark that the probability density function of a Gaussian
of parameter Θ(n)σ is bounded by 1/(Θ(n)σ). This implies that the probability that a sample
falls in the range 1

Θ(n)σ [−ε, ε] is less than 2ε. It remains to choose ε = Θ(n−c−1) which gives the
conclusion by the union-bound. ut

In this work, we assume that Lemma 3 holds also for all reasonable distributions considered
in cryptographic constructions.

Heuristic 1 For any m and any f, g ∈ OK with reasonable isotropic distribution of variance
σ2, and any constant c > 0, there exists a constant C, such that,

‖g′‖ ≤
(
σnC

)r
, ‖f ′‖ ≤

(
σnC

)r
, |f ′| ≤

(
σnC

)r
, |f ′−1| ≤

(
nC/σ

)r
except with probability O(n−c).

3.2 Lattice reduction in the subfield

We now apply a lattice reduction algorithm with block-size β to the lattice Λqh′ , and according
to the approximation factor bound (10) we obtain a vector (x′, y′) ∈ Λqh′ of norm:

‖(x′, y′)‖ ≤ βΘ(2n′/β) · λ1(Λqh′) (13)

≤ βΘ(n/βr) · ‖(f ′, g′)‖ (14)

≤ βΘ(n/βr) · (nσ)Θ(r). (15)

Next, we argue that if the vector (x′, y′) is short enough, then it must be an OK-multiple of
(f ′, g′). In turn, this will allow us to lift (x′, y′) to a short vector in the full lattice Λqh.

Theorem 2. Let f ′, g′ ∈ OL be such that 〈f ′〉 and 〈g′〉 are coprime ideals and that h′f ′ =
g′ mod qOL for some h′ ∈ OL. If (x′, y′) ∈ Λqh′ has length verifying

‖(x′, y′)‖ < q

‖(f ′, g′)‖
, (16)

then (x′, y′) = v(f ′, g′) for some v ∈ OL.
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Proof. We first prove that that B = {(f ′, g′), (F ′, G′)} is a basis of the OL-module Λqh′ for some
(F ′, G′) ∈ O2

L. The argument is adapted from [HHGP+03], Section 4.1. By coprimality, there
exists (F ′, G′) such that f ′G′ − g′F ′ = q ∈ OL. We note that:

f ′(F ′, G′)− F ′(f ′, g′) = (0, q)

g′(F ′, G′)−G′(f ′, g′) = (−q, 0)

[f−1]q(f
′, g′) = (1, h′) mod q.

That is, the module M generated by B contains qO2
L and (1, h′): we have proved that Λqh′ ⊂M .

Because detL(B) = f ′G′ − g′F ′ = q = detL({(1, h′), (0, q)}) we have Vol(M) = |∆L|qn
′

=
Vol(Λqh′), and therefore M = Λqh′ .

We denote Λ = (f ′, g′)OL and Λ∗ the projection of (F ′, G′)OL orthogonally to Λ. Let s∗ of
length λ∗1 be a shortest vector of Λ∗. We will conclude using the fact that any vector of Λqh′ of
length less than λ∗1 must belong to the sublattice Λ. It remains to give an lower bound for λ∗1.

We will rely on the identity Vol(Λ) ·Vol(Λ∗) = Vol(Λqh′) = |∆L|qn
′
. By Lemma 2, we have

Vol(Λ) ≤ |∆L|1/2‖(f ′, g′)‖n
′

and Vol(Λ∗) ≤ |∆L|1/2‖s∗‖n
′

(17)

We deduce that λ∗1 = ‖s∗‖ ≥ q
‖(f ′,g′)‖ . Therefore, the hypothesis (16) ensures that ‖(x′, y′)‖ < λ∗1,

and we conclude that (x′, y′) ∈ Λ = (f ′, g′)OL. ut

We note that according to Heuristic 1, the length condition of Theorem 2 are satisfied
asymptotically when

βΘ(n/βr) · (nσ)Θ(r) ≤ q. (18)

The probability of satisfying the coprimality condition for random f ′, g′ is discussed in
Section 2.2, where we argue it to be larger than a constant. On the other hand, experiments (cf.
Section 5) show that the co-primality condition does not seems necessary in practice for the
subfield lattice attack to succeed.

The partial conclusion is that, one may recover non-trivial information about f and g —
namely, a small multiple of (f ′, g′) — by solving an NTRU instance in a subfield. Depending
on the parameters, this new problem is potentially easier as the dimension n′ = n/r of OL is
significantly smaller than the dimension 2n of the full lattice Λqh.

3.3 Lifting the short vector

It remains to lift the solution from the sub-ring OL to OK. Simply compute the vector (x, y)
where

x = L(x′) and y = L(y′) · h/L(h′) mod q. (19)

We set f̃ = L(f ′)/f , g̃ = L(g′)/g and h̃ = L(h′)/h and note that f̃ , g̃ and h̃ are integers of K.
We rewrite

x = L(v) · f̃ · f mod q.

y = L(v) · L(g′)/h̃ = L(v) · gg̃/h̃ mod q

= L(v) · f̃ · g mod q.
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That is, under condition (18) we have found a short multiple of (f, g):

(x, y) = u · (f, g) ∈ Λqh with u = L(v) · f̃ ∈ OK

‖(x, y)‖ ≤ |v| · |f |r−1 · ‖(f, g)‖
≤ |x| · |f ′−1| · |f |r−1 · ‖(f, g)‖
≤ βΘ(n/βr) · (nσ)Θ(r).

Not only we have found a short vector of Λqh, but also have the guarantee that it is an
OK-multiple of the secret key (f, g). This second property will prove useful to mount attacks on
the graded encoding schemes [GGH13a].

3.4 Asymptotic performance

We demonstrate the complexity of the subfield attack for two extreme cases. In both cases, all
parameters are expressed in term of a security parameter λ, and are such that the previously
best known attack required time greater than 2λ. Additionally, it is assumed that K contains
enough subfield so that a subfield L of the desired relative degree r exists . This condition is
verified asymptotically for the typical choice K = Q(ω2k).

In the first case, we set q = 2Θ̃(λ), and the subfield attack is polynomial in the security
parameter. For the second case, we show that as soon as the gap q gets super-polynomial, the
subfield attack can be made sub-exponential.

Remark. Our analysis does not rule out that the attack may even be relevant even for polynomial
gaps q/σ: it could be that it remains exponential but with a better constant than the direct
attack.

Exponential and super-exponential q. We set:

n = Θ(λ2 log2 λ), q = exp(Θ(λ log2 λ)), σ = poly(λ) . (20)

Complexity of the direct lattice attack. With such parameters, using 2λ operations, we argue
that one may not find any vector shorter than λ1(qOK) = q

√
n. Indeed, one may run lattice

reduction up to block-size β = Θ(λ). Either from approximation bound or hermit bound, the
vector found should not be shorter than:

βΘ(n/β) = exp
(
Θ(λ2 log3 λ/λ)

)
> λ1(qOK). (21)

We verify that having such choice of super-quadratic n makes the Kirchner-Fouque [KF15] attack
at least exponential in λ: exp(Θ(n/ log log q)) = exp(Θ(λ2 log2 λ/ log λ)) > exp(Θ(λ)).

Complexity of the subfield attack. In contrast, the same parameters allows the subfield attack to
recover a vector of norm less than

√
q in polynomial time: set r = Θ(λ) and β = Θ(log λ). Then,

the vector found will have norm

βΘ(n/βr) · nΘ(r) = exp

(
Θ

(
λ2 log λ log log λ

λ log λ
+ λ log λ

))
(22)

= exp (Θ(λ log λ log log λ)) <
√
q. (23)

Similarly, setting n = Θ
(
λ2
)
, q = exp(Θ(λ)), β = Θ

(
log1+ε λ

)
, r = Θ (λ/ (log (λ) log log λ))

leads to a quasi-polynomial version of the subfield attack for exponential q.
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Quasi-polynomial q. We set

n = Θ (λlog (λ)ε log log (λ)) , q = exp(Θ(log1+ε λ)), σ = poly(λ) .

Complexity of the direct lattice attack. With such parameters, using 2λ operations, we argue
that one may not find any vector shorter than λ1(qOK) = q

√
n. Indeed, one may run lattice

reduction up to block-size β = Θ(λ). Either from approximation bound or hermit bound, the
vector found should not be shorter than:

βΘ(n/β) = exp
(
Θ
(

log (λ)1+ε log log (λ)
))

> λ1(qOK). (24)

We verify that having such choice of super-linear n makes the Kirshner-Fouque [KF15] attack
at least exponential in λ: exp(Θ(n/ log log q)) = exp(Θ (λlog (λ)ε log log (λ)/ log log1+ε λ)) >
exp(Θ(λ)).

Complexity of the subfield attack. In contrast, the same parameters allows the subfield attack to
recover a vector of norm less than

√
q in sub-exponential time exp(λ/ logε/3 λ): set r = Θ(log2ε/3 λ)

and β = Θ(λ/ logε/3 λ). Then, the vector found will have norm

βΘ(n/βr) · nΘ(r) = exp

(
Θ

(
log1+

4
3
ε(λ) log log(λ)

log
2
3
ε(λ)

+ log1+2/3 ε(λ)

))
= exp

(
Θ
(

log1+2/3 ε (λ) log log (λ)
))

<
√
q. (25)

4 Applications

We apply our attack to FHE and MLM constructions from the literature. To match the definitions
of rings and lengths often used in this literature, we restrict our discussion to cyclotomic fields
K = Q(ωm), m a power of 2, and speak of the ring R = Zq[X]/(Xn + 1) ' OK endowed with the
cannonical inner product of its coefficients vector. The ring isomorphism µ : R → OK is a scaled
isometry: ‖µ(x)‖ =

√
n‖x‖. This normalization is quite convenient, for example ‖1R‖ = 1.

4.1 Fully Homomorphic Encryption

NTRU-like schemes are used to realise fully homomorphic encryption starting with the LTV
scheme from [LTV12]; the scheme was optimized and implemented in [DHS15].

LTV is motivated by [SS11] which shows that under certain choices of parameter the security
of an NTRU-like scheme can be reduced to security of Ring-LWE. That is, [SS11] shows that if
f and g have norms >

√
q · poly(λ), then h = [f/g]q ∈ Zq[X]/(Xn + 1) — with n a power of

two — is statistically indistinguishable from a uniformly sampled element. Note that under this
choice of parameters the subfield lattice attack does not apply.

However, this choice of parameters rules out even performing one polynomial multiplication
and hence the schemes in [LTV12,DHS15] are based on an additional assumption that [f/g]q is
computationally indistinguishable from random even when f and g are small. This assumption

— which essentially states that Decisional-NTRU is hard — is called the Decisional Small
Polynomial Ratio assumption (DSPR) in [LTV12]. Note that this work shows that DSPR does
not hold for all choices of parameters.

LTV can evaluate circuits of depth L = O(nε/ log(n)) for q = 2n
ε

with ε ∈ (0, 1) and its
decryption circuit can be implemented in depth O(log log(q) + log(n)). This implies

log(nε+1) < nε/ log(n),

log(nε+1) < log(q)/ log(n),
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i.e. that q must be super-polynomial in n to realise fully homomorphic encryption from LTV.

A scale-invariant variant of the scheme in [LTV12] called YASHE was proposed in [BLLN13].
This variant does away with the need for the DSPR assumption by reducing the noise growth
during multiplication. This allows f and g to be sampled from a sufficiently wide Gaussian, such
that the reduction in [SS11] goes through. Sampling f and g this way allows to evaluate circuits

of depth L = O
(

log(q)
log log(q)+log(n)

)
[BLLN13, Theorem 2] for Z2 being the plaintext space.

On the other hand, setting the bounds on f, g to ‖f‖∞ = ‖g‖∞ = Bkey = 1, the plaintext
space to Z2 via t = 2, the multiplicative expansion factor of the ring to δ = n by assuming n
is a power of two and w = O(1), then the multiplicative expansion factor of YASHE is O

(
n2
)
.

For correctness, it is required that the noise is < q/4. Hence, to evaluate a circuit of depth

L, YASHE requires q/4 > O
(
n2L

)
or L = O

(
log(q)
log(n)

)
under this choice of parameters. As a

consequence, YASHE is usually instantiated with f and g very short, cf. [LN14].

Following [BV11, Lemma 4.5], Appendix H of [BLLN13] shows that YASHE is bootstrapable
if it can evaluat depth L = O(log(log(q)) + log(n)) circuits. For ‖f‖∞ = ‖g‖∞ = Bkey = 1 this
implies

log log(q) + log(n) < log(q)/ log(n),

log(n log(q)) < log(q)/ log(n),

i.e. q must be super-polynomial in n for YASHE to provide fully homomorphic encryption.

To establish a target size, recall that NTRU-like encryption of a binary message µ ∈ Z2 is
given by c = h · e1 + e2 + µbq/2c for random errors of variance ς2. To decrypt from a solution
(F,G) to the instance h← NTRU(R, q, σ, τ), simply compute Fc = G · e1 + F · e2 + F · µbq/2c.
The error term G · e1 +F · e2 will have entries of magnitudes ςτ

√
n which we require to be < q/2

to decrypt correctly. Hence, we require F,G < q/(2 ς
√
n). In [LTV12,BLLN13] like in other FHE

schemes, ς is chosen to be bounded by a very small, constant value.

In [CS15] several Ring-based FHE schemes are compared. For comparability amongst the
considered schemes and performance, the authors choose the coefficients of f, g from {−1, 0, 1}
with the additional guarantee that only 64 coefficients are non-zero in f or g. Then, to establish
hardness they assume that an adversary which can find an element < q in a q-ary lattice with
dimension m and volume qn wins for all schemes considered. Now, to achieve security against
lattice attacks, the root Hermite factor δ0 in q = δm0 q

n/m should be small enough, where “small
enough” depends on which prediction for lattice reduction is used. In [DHS15] the same approach
is used to pick parameters, but for a slightly smaller target norm of q/4.

The attack presented in this work results in a subexponential attack in the security parameter
λ for LTV and YASHE, if L is sufficiently big to enable fully homomorphic encryption and if n
is chosen to be minimal such that a lattice attack on the full field does not succeed. Set

q = exp
(
Θ
(
(ε+ 1) log2 n

))
to satisfy correctness. Now, to rule out lattice attacks on the full field set n = Θ

(
λ log (λ) log log2 (λ)

)
.

Hence, for β = λ we have

βΘ(n/β) >
√
q

Θ
(
log2 (λ) log log2 (λ)

)
> Θ

(
log2 (λ)

)

Now, for the subfield attack, pick β = Θ
(
λ/log1/3(λ)

)
and r = Θ

(
log (λ)2/3

)
and we get

12



βΘ(n/β r) · nΘ(r) <
√
q

Θ
(

log
5
3 (λ) log log2 (λ)

)
< Θ

(
log2 (λ)

)
.

4.2 Graded Encoding Schemes

In [GGH13a] a candidate construction for graded encoding schemes approximating multilinear
maps was proposed. The GGH construction was improved in [LSS14] and implemented and
improved further in [ACLL15]. In these schemes, short elements mi ∈ Z[X]/(Xn+1) are encoded
as [(ri · g +mi)/z]q ∈ R/qR for some ri, g with norms of size poly(λ) and some random z. For
correctness, the latest improvements [ACLL15] require a modulus q = poly(λ)κ, where κ is
the multi-linearity level. The subfield attack is therefore applicable in sub-exponential time for
any κ = logε λ, according to Section 3.4, and would become polynomial for κ > Θ(λ log λ). In
practice, the fact that the constants in the exponent q = λΘ(κ) is quite large could make this
attack quite powerful even for small degrees of multi-linearity.

While initially these constructions permitted the inclusion of encodings of zero (mi = 0) to
achieve multilinear maps, it was shown that these encodings break security [HJ15]. Without
such encodings, the construction still serves as building-block for realizing Indistinguishability
Obfuscation [GGH+13b].

To estimate parameters, [ACLL15] proceeds as follows8. Given encodings x0 = [(r0 · g +m0)/z]q
and x1 = [(r1 · g +m1)/z]q for unknown m0,m1 6= 0 we may consider the NTRU lattice Λqh
where h = [x0/x1]q. This lattice contains a short vector (r0 · g +m0, r1 · g +m1). In [ACLL15]
all elements of norm ≈ ‖r0 · g + m0‖ = σ?1 are considered “interesting” and recovering any
such element is considered an attack. This is motivated by the fact that if an attacker recovers
r0 · g +m0 exactly, then it can recover z. This completely breaks the scheme.

The subfield lattice attack does not yield the vector (r0 · g + m0, r1 · g + m1) exactly but
only a relatively small multiple of it u(r0 · g +m0, r1 · g +m1). We provide two approaches to
completely break the scheme from this small multiple. The first approach consists of solving a
principal ideal problem and leads to quantum polynomial-time attack. The second approach
relies on a statistical leak using the Gentry-Szydlo algorithm [GS02,LS14], but is just outside
reach with our current tools [GGH13a]. This approach is arguably worrisome, and the authors
of [GGH13a] spent significant efforts to rule this approach out completely.

We remark, that unlike previous cryptanalysis advances of multi-linear maps [HJ15] this
attack does not rely either on the zero testing parameter, neither on encodings of zero. Our
cryptanalytic result therefore impact all applications of multilinear maps, from multi-party key
exchange to jigsaw puzzles and Indistinguishability Obfuscation [GGH+13b]. For completeness,
we note that the CLT construction [CLT13] of Graded Encoding Schemes also is suspect to a
quantum polynomial-time attack, because it relies on the hardness of factoring large integers.

The principal ideal problem and short generator recovery. The problem of recovering
a short principal ideal generator from any generator received a lot of attention recently, and a
series of works has lead to subexponential classical and polynomial-time quantum attacks against
principal ideal lattices [EHKS14,CGS14,CDPR15,BS16]. Precisely, given the ideal I = 〈g〉, Biasse
and Song [BS16] showed how to recover an arbitrary generator ug of I in quantum polynomial
time, extending the recent breakthrough of Eisentrager et al. [EHKS14] on quantum algorithms
over large degree number fields. Such results were conjectured already in a note of Cambell

8 The attack is attributed to Steven Galbraith in [ACLL15].
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et al. [CGS14], where a classical polynomial time algorithm is also suggested to recover the
original g from ug (namely, LLL in the log-unit lattice). The correctness of a similar algorithm
was formally established using analytical number theory by Cramer et al. [CDPR15], when g is
sampled according to a spherical Gaussian (may it be discrete or continuous).

In combination with this subfield lattice attack, this directly implies a polynomial quantum
attack. Indeed, the subfield lattice attack allows to recover u(r0 · g + m0) for some relatively
short u. Repeating this attack several time, and obtaining u(r0 · g+m0) for various u eventually
leads to the reconstruction of the ideal 〈r0 · g+m0〉. Because r0 · g+m0 follows exactly a discrete
Gaussian distribution, the approach sketched above can be applied, and reveals r0 · g + m0

exactly, and therefore z.

In conclusion, for any degree of multi-linearity κ the subfield attack can be complemented with
a quantum polynomial step to a complete break. Alternatively, when κ = O(λc) for any c < 1/2,

— leading according to the previous best known attacks to a choice of dimension n = Θ̃(λ1+c)—

the 2Õ(n2/3) algorithm of Biasse [Bia14] leads to a classical attack in time sub-exponential in λ.

The statistical attack. This attacks consists in recovering uū and 〈u〉 and use the Gentry-
Szydlo algorithm [GS02,LS14] to recover u.

To recover 〈u〉, note that we are given u(a0, a1). We will assume that 〈a0〉, 〈a1〉 are coprime
with constant probability, cf. Section 2.2. Under this assumption, 〈u〉 can be recovered as
〈u〉 = 〈ua0〉+ 〈ua1〉.9

To recover more information on u, we can compute ua0 · [xi/x0]q = uai for other i > 1,
and the equation hold over R because u and ai are small. For i > 1, ai is a independent of u
and follows a spherical Gaussian of parameter σ. It follows that the variance of uai leaks uū:
E[uai · uai] = σ2uū.

Given polynomially many samples xi on can therefore recover uū up to a 1 + 1
poly(λ) ap-

proximation factor. The original attack of Gentry-Szydlo algorithm [GS02,LS14] requires the
exact knowledge of uū that could be obtained by rounding when u has poly-sized coefficient,
but unfortunately the u provided by the subfield lattice attack is much larger. In [GGH13a]
this algorithm is revisited and extended to when uū is only known up to a 1 + (log n)−Θ(logn)

approximation factor.

In conclusion, with the current algorithmic tools this approach is asymptotically inapplicable
if we assume only a polynomial number of available samples, but only barely so. This raises
the question of how to improve the tolerance of the Gentry-Szydlo algorithm10. Yet, because
(log n)Θ(logn) is arguably not so large, it is unclear whether this approach is really infeasible in
practice.

We concur with the decision made in [GGH13a], to attempt to rule out such an attack by
design even if it is not yet known how to fully exploit it.

5 Experimental Verification

We report on the experiments we performed. As in the previous section, this report considers
the ring R = Zq[X]/(Xn + 1) ' OK for n a power of 2, and endowed with the cannonical inner
product of its coefficients vector: Euclidean lengths are scaled so that ‖1R‖ = 1.

9 Note that the subfield lattice attack may be tweaked to obtain a triplet u(a0, a1, a2) (or more) increasing the
probability to recover 〈u〉.

10 Asymptotically, the natural idea of replacing LLL by slightly stronger lattice reduction does not seems to help,
but should help in practice. The quasi-polynomial factor relates to a number theoretic heuristic. See Section 7.6
of [GGH13a].
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We chose q to be the first prime greater than 2k for integers k in certain range, with the
additional constraint that the field of order q should have a 2n-th root of unity to allow the
application of the number theoretic transform (NTT). In each case, the secret (f, g) was chosen
as a uniform ternary vector, which, in the power of two case is an isotropic distribution of
variance σ2 = 2/3.

There are two trials for each set of parameters. We used LLL11 for the lattice reduction
step in the subfield case. For comparison, we also provide the prediction of the required BKZ
block-size for a full field attack (ffa).

Instance blog2 qc Modulus bitsize.
log2 ‖(f ′, g′)‖ Euclidean length of the secret in the subfield.

LLL log2 ‖(x′, y′)‖ Euclidean length of LLL’s output in the subfield.

in the α Tentative root approximation factor
(
‖(x′,y′)‖
‖(f ′,g′)‖

)1/2n′

.

subfield ∃v? Do we have (x′, y′) = v(f ′, g′) for some v ∈ OL?

Lifted log2 ‖(x, y)‖ Euclidean length of vector found by lifting to the full field.

solution Success Is the attack successful, i.e. do we have ‖(x, y)‖ < q3/4?

BKZ in the δ (ffa) Root-hermite factor required for the ffa, with target length q.
full field β (ffa) Block size to reach root hermite factor δ.

Table 1: Explanation of reported parameters.

Our experimental results are summarized in Tables 2, 3 and 4, corresponding to parameter
sets (n, n′) = (211, 27), (n, n′) = (211, 28) and (n, n′) = (212, 28) respectively.

Remark. In several cases, the value v such that (x′, y′) = v(f ′, g′) exists in L, but is only a half
integer: 2v ∈ OL, yet v 6∈ OL. Those exceptions are marked with a asterisk (Yes∗) in the “∃v?”
column. Those exceptions happened only when both NK/Q(f ′) and NK/Q(g′) where even: the
coprimality conditions of Theorem 2 was not verified, precisely, both norms had 2 as a common
factor, and therefore 〈1 + ω2n′〉 as a common factor12. Note that this nevertheless lead to a
successful lift.

6 Conclusions

Practicality of the attack. The largest instance we were able to break in practice with our limited
resources is for the set of parameter n = 212, q ≈ 2190. Choosing a relative degree r = 16, the
attack required to run LLL in 512 dimensions, which took 120 hours, single-threaded, using
Sage [Dev15] and Fplll [ABC+]. The direct lattice reduction attack, according to root-hermite-
factor based predictions [CN11], should have required running BKZ with block-size ≈ 130, and
in 8192 dimensions, which is hardly feasible with the current state-of-the art [CN11] (requiring
more than 270 CPU cycles). We conclude that the attack is not only theoretical but also practical.

Obstructions to concrete predictions. We are currently unable to predict precisely how a given set
of parameters would be affected, for example to predict the power of this attack against concrete
parameter choices of NTRU-based FHE [LTV12,BLLN13] and Multilinear Maps [GGH13a].

There are two issues for those predictions. The first issue is that we make use of LLL/BKZ
in the approximation-factor regime, not in the Hermite-factor regime. While the behavior of

11 More precisely, we used Fplll [ABC+] packaged in Sage [Dev15].
12 The prime 2 totally ramifies in L = Q(ω2t): 〈1 + ω2n′〉n

′
= 〈2〉.
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LLL/BKZ is quite well modeled in the latter regime, we are not aware of precise models for
the former. Unlike the Hermite-factor regime, this case could very well be influenced by the
presence of many short vectors rather than just a few. Our preliminary experiments exhibited
undocumented behavior, and a careful study is required.

The second issue is that we do not know the actual size of the shortest vector of Λqh′ ,
all we know is that it is no larger than (f ′, g′). In several cases (Table 2) we found vectors
(x′, y′) = v(f ′, g′) that were actually shorter than (f ′, g′)— the tentative root-approximation
factor α is less than 1. One may expect that (f ′, g′) may still be the shortest vector for small
relative degree r as it is most surely the shortest in the full field (i.e. when r = 1).

Immunity of NTRU encryption and BLISS signature schemes? If q is small enough, then our
attacks should become inapplicable, even with the smallest possible relative dimension r = 2.
Precisely, if (f ′, g′) is not an unusually short vector of Λqh′ , then there is little hope that any
lattice reduction strategy would lead to information on this vector. Quantitatively, this total
immunity happens when ‖(f ′, g′)‖ ≈ σ2 ·n′ >

√
n′q/πe. This is unfortunately not the case of the

parameters of NTRUencrypt [HPS+15] and Bliss [DDLL13], for which (f ′, g′) is an unusually
short vector, but not by a very large factor (ranging from 2 to 10). It is plausible, especially for
NTRUencrypt, that this is close enough to total immunity to make the sub-field attack more
costly than the full attack, but calls for further study.

Note that the immunity to our attack is achieved asymptotically around σ ≈ Θ(q1/4),
parameter for which h does not have enough entropy to be statistically close to random. For
comparison, it was shown that for σ = ω(q1/2), h is statistically close to uniform [SS11]. We
note that σ > Θ(q1/4) could provide enough entropy for the normed-down public key h′ to be
almost uniform. it would be interesting to see if the proof of [SS11] can be extended.

Recommendations. Even if credible predictions were to be made, we strongly discourage basing
a scheme on a set-up where this attack applies. Indeed, it is quite likely that the performance of
the attack may be improved in several ways. For example, after having found several subfield
solutions (x′, y′) = v(f ′, g′), it is possible to run lattice reduction in the lattice (f ′, g′)OL of
dimension n′ rather than 2n′ to obtain significantly shorter vectors. Additionally, the lifting
step may also be improved in the case where OL is a real subfield using the Gentry-Syzdlo
algorithm [GS02,LS14] to obtain shorter vector in the full field (i.e. recovering a from N(a)).
More generally, the lifting step may be improved by considering the relative norm equation
problem [FJP97]. One may recover a from NK/L(a) using ideal factorization problem, followed by
a recovery of short generator of principal ideals step; as mentionned before, those problems are
now known to be classically sub-exponential [Bia14,CDPR15] or even polynomial for quantum
computers [EHKS14,BS16].

Evaluating concrete security against regular lattice attacks is already a difficult exercise,
and leaving open additional algebraic and statistical attack surfaces will only make security
assessment intractable. We therefore recommend that this set-up —NTRU assumption, presence
of subfields, large modulus— be considered insecure.

Designing Immune Rings. We believe that our work further motivates the design and the study
of number fields without subfields fit for the lattice-based cryptographic purposes, as already
recommended in [Ber14]. Even for assumptions that are not directly affected by this attack
(Ring-SIS [Mic02], Ring-LWE [LPR10]), it could be considered desirable to have efficient fall-back
options ready to use, in case subfields induces other unforeseen weaknesses. While this work
does not suggest an immediate threat to Ring-SIS and Ring-LWE, such a precaution is not
unreasonable.
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A worthy option was suggested in [Ber14]: rings of the form Z[X]/(Xp −X − 1). We are
unfortunately unaware of a detailed study of that ring for lattice-based cryptography purposes. It
has been remarked that the total absence of non-trivial automorphisms could be quite problematic
for the batch-efficiency of certain FHE schemes as HElib [HS14]. Similarly, the alternative scheme
FHEW [DM15] would suffer from the absence of roots of unity.

Another interesting option is to choose p as a safe prime13 and to work with the ring of integer
of the totally real number field K = Q(ζp + ζ̄p). The field remains Galois, and its automorphism
group may still allow a quantum worst-case (Ideal-SVP) to average-case (Ring-LWE) reduction
a-la [LPR10] thanks to a generalization of the search to decision step presented in [CLS15].
Nevertheless because the Galois group has prime order p−1

2 , it has no proper subgroups, and K
has no proper subfields. In practice, such rings may perform decently well, since, for example,
the fast Fourier transform can benefit from a two-fold acceleration when the Fourier coefficients
are all reals.
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Table 2: Experiment report. Parameters set n = 211, r = 24, n′ = 27.

Instance Subfield LLL Lifted Fullfield BKZ

blg qc lg ‖(f ′, g′)‖ lg ‖(x′, y′)‖ α (traf) ∃v? lg ‖(x, y)‖ Success δ (ffa) β (ffa)

180 81.16 82.21 1.0028 Yes 82.81 Yes 1.0153 11
82.42 82.52 1.0003 Yes 82.95 Yes 1.0153 11

179 82.28 82.42 1.0004 Yes 82.76 Yes 1.0153 13
82.90 82.92 1.0001 Yes 83.26 Yes 1.0153 13

178 81.93 82.74 1.0022 Yes 83.33 Yes 1.0152 14
82.63 82.28 0.9990 Yes 82.88 Yes 1.0152 14

177 82.41 82.62 1.0006 Yes 83.50 Yes 1.0151 15
83.35 82.48 0.9977 Yes 82.97 Yes 1.0151 15

176 81.97 82.62 1.0018 Yes 83.74 Yes 1.0150 16
84.37 83.04 0.9964 Yes 83.58 Yes 1.0150 16

175 81.60 81.82 1.0006 Yes 82.63 Yes 1.0149 17
80.94 81.84 1.0024 Yes 82.62 Yes 1.0149 17

174 83.85 82.76 0.9971 Yes 83.30 Yes 1.0148 18
82.15 82.77 1.0017 Yes 83.47 Yes 1.0148 18

173 82.10 82.41 1.0008 Yes 83.15 Yes 1.0147 19
82.20 82.56 1.0010 Yes 83.22 Yes 1.0147 19

172 82.23 82.15 0.9998 Yes 82.79 Yes 1.0147 20
83.12 82.75 0.9990 Yes 83.33 Yes 1.0147 20

171 83.05 83.37 1.0009 Yes 84.11 Yes 1.0146 21
83.00 83.03 1.0001 Yes 83.54 Yes 1.0146 21

170 84.24 83.02 0.9967 Yes 83.45 Yes 1.0145 22
82.45 82.84 1.0011 Yes∗ 83.15 Yes 1.0145 22

169 83.31 82.82 0.9987 Yes 83.53 Yes 1.0144 23
83.99 82.50 0.9960 Yes 83.44 Yes 1.0144 23

168 84.01 82.69 0.9965 Yes 83.32 Yes 1.0143 24
82.91 82.13 0.9979 Yes 82.56 Yes 1.0143 24

167 83.33 82.66 0.9982 Yes 83.31 Yes 1.0142 25
82.67 82.96 1.0008 Yes∗ 83.76 Yes 1.0142 25

166 82.88 82.38 0.9986 Yes 82.85 Yes 1.0141 26
83.44 82.50 0.9975 Yes 82.87 Yes 1.0141 26

165 82.75 82.99 1.0006 Yes 83.50 Yes 1.0141 27
82.74 82.55 0.9995 Yes 83.33 Yes 1.0141 27

164 82.43 89.67 1.0198 No 167.67 No 1.0140 28
81.44 89.78 1.0228 No 167.73 No 1.0140 28

163 81.16 89.45 1.0227 No 166.69 No 1.0139 29
84.57 89.25 1.0128 No 166.69 No 1.0139 29

162 82.60 88.73 1.0168 No 165.71 No 1.0138 30
82.67 88.95 1.0172 No 165.71 No 1.0138 30

161 82.84 88.44 1.0153 No 164.70 No 1.0137 31
81.97 88.20 1.0170 No 164.72 No 1.0137 31

160 80.82 87.73 1.0189 No 163.68 No 1.0136 32
83.96 87.90 1.0107 No 163.72 No 1.0136 32

Each of this run took about 3.5 Hours.
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Table 3: Experiment report. Parameters set n = 211, r = 23, n′ = 28.

Instance Subfield LLL Lifted Fullfield BKZ

blg qc lg ‖(f ′, g′)‖ lg ‖(x′, y′)‖ α (traf) ∃v? lg ‖(x, y)‖ Success δ (ffa) β (ffa)

110 42.27 47.72 1.0074 Yes 49.20 Yes 1.0094 98
41.85 47.55 1.0078 Yes 48.01 Yes 1.0094 98

109 42.15 47.64 1.0075 Yes 48.22 Yes 1.0093 100
41.88 47.48 1.0076 Yes 47.93 Yes 1.0093 100

108 42.12 48.11 1.0081 Yes 48.71 Yes 1.0092 102
42.04 48.13 1.0083 Yes 48.51 Yes 1.0092 102

107 42.28 47.89 1.0076 Yes 48.07 Yes 1.0091 104
42.19 47.69 1.0075 Yes 48.21 Yes 1.0091 104

106 42.11 47.98 1.0080 Yes 48.46 Yes 1.0090 106
42.15 48.01 1.0080 Yes 48.58 Yes 1.0090 106

105 41.53 47.52 1.0081 Yes∗ 47.94 Yes 1.0089 108
41.73 47.53 1.0079 Yes 48.23 Yes 1.0089 108

104 42.18 47.94 1.0078 Yes 48.17 Yes 1.0088 110
42.19 47.79 1.0076 Yes∗ 48.26 Yes 1.0088 110

103 42.67 47.89 1.0071 Yes 48.36 Yes 1.0088 112
41.85 47.59 1.0078 Yes 47.94 Yes 1.0088 112

102 42.26 47.77 1.0075 Yes 48.52 Yes 1.0087 114
41.72 47.52 1.0079 Yes 47.91 Yes 1.0087 114

101 41.77 47.72 1.0081 Yes 47.96 Yes 1.0086 117
42.07 47.76 1.0077 Yes 48.26 Yes 1.0086 117

100 41.48 47.77 1.0085 Yes 48.16 Yes 1.0085 119
42.14 47.71 1.0076 Yes 48.15 Yes 1.0085 119

99 41.83 47.67 1.0079 Yes 48.11 Yes 1.0084 121
42.02 47.70 1.0077 Yes 48.03 Yes 1.0084 121

98 42.57 48.05 1.0074 Yes 48.42 Yes 1.0083 123
41.74 47.88 1.0084 Yes 48.78 Yes 1.0083 123

97 42.60 47.80 1.0071 Yes 48.36 Yes 1.0082 126
42.51 48.10 1.0076 Yes 48.47 Yes 1.0082 126

96 41.89 47.46 1.0076 Yes 48.01 Yes 1.0082 128
41.87 48.09 1.0085 Yes 48.36 Yes 1.0082 128

95 42.25 47.75 1.0075 Yes 48.15 Yes 1.0081 131
41.85 47.96 1.0083 Yes 48.59 Yes 1.0081 131

94 41.99 63.63 1.0297 No 97.71 No 1.0080 133
42.57 63.32 1.0285 No 97.70 No 1.0080 133

93 41.87 62.75 1.0287 No 96.69 No 1.0079 136
41.90 63.02 1.0290 No 96.69 No 1.0079 136

92 42.01 62.05 1.0275 No 95.70 No 1.0078 139
42.79 62.12 1.0265 No 95.69 No 1.0078 139

91 42.10 62.08 1.0274 No 94.70 No 1.0077 141
41.74 61.39 1.0270 No 94.69 No 1.0077 141

90 42.15 61.28 1.0262 No 93.73 No 1.0076 144
42.07 61.08 1.0261 No 93.72 No 1.0076 144

89 41.86 60.54 1.0256 No 92.72 No 1.0076 147
42.20 60.82 1.0255 No 92.70 No 1.0076 147

Each of this run took about 50 Hours.
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Table 4: Experiment report. Parameters set n = 212, r = 24, n′ = 28.

Instance Subfield LLL Lifted Fullfield BKZ

blg qc lg ‖(f ′, g′)‖ lg ‖(x′, y′)‖ α (traf) ∃v? lg ‖(x, y)‖ Success δ (ffa) β (ffa)

240 90.60 94.55 1.0054 Yes 95.13 Yes 1.0102 82
90.78 94.67 1.0053 Yes 95.22 Yes 1.0102 82

235 91.16 95.06 1.0053 Yes 95.63 Yes 1.0100 86
91.08 94.50 1.0046 Yes 95.17 Yes 1.0100 86

230 90.44 95.00 1.0062 Yes 95.70 Yes 1.0098 90
90.58 94.62 1.0055 Yes 95.40 Yes 1.0098 90

225 91.57 95.56 1.0054 Yes∗ 96.28 Yes 1.0096 94
90.19 94.68 1.0061 Yes 95.32 Yes 1.0096 94

220 90.62 95.01 1.0060 Yes 95.74 Yes 1.0094 98
90.98 94.65 1.0050 Yes 95.34 Yes 1.0094 98

215 90.33 94.57 1.0057 Yes∗ 95.13 Yes 1.0091 103
91.52 94.77 1.0044 Yes 95.26 Yes 1.0091 103

210 91.43 95.33 1.0053 Yes 95.81 Yes 1.0089 108
90.48 94.73 1.0058 Yes 95.28 Yes 1.0089 108

205 91.59 94.64 1.0041 Yes∗ 95.04 Yes 1.0087 113
92.93 94.50 1.0021 Yes 95.10 Yes 1.0087 113

200 90.44 94.57 1.0056 Yes 95.10 Yes 1.0085 119
90.03 94.84 1.0065 Yes 95.51 Yes 1.0085 119

195 92.52 94.59 1.0028 Yes 95.37 Yes 1.0083 125
92.60 94.74 1.0029 Yes 95.90 Yes 1.0083 125

190 90.27 94.57 1.0058 Yes 95.14 Yes 1.0081 131
90.20 94.17 1.0054 Yes∗ 94.74 Yes 1.0081 131

185 91.02 108.99 1.0246 No 189.20 No 1.0079 137
91.17 108.66 1.0240 No 189.22 No 1.0079 137

180 91.27 106.31 1.0206 No 184.20 No 1.0076 144
91.29 106.39 1.0207 No 184.21 No 1.0076 144

175 90.08 103.93 1.0189 No 179.20 No 1.0074 151
91.30 103.31 1.0164 No 179.21 No 1.0074 151

Each of this run took about 120 Hours.
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