
On the Complexity of Scrypt and Proofs of
Space in the Parallel Random Oracle Model

Joël Alwen1, Binyi Chen2, Chethan Kamath1, Vladimir Kolmogorov1,
Krzysztof Pietrzak1, and Stefano Tessaro2

1 IST Austria
2 UC Santa Barbara

Abstract. We investigate lower bounds in terms of time and memory on
the parallel complexity of an adversary A computing labels of randomly
selected challenge nodes in direct acyclic graphs, where the w-bit label
of a node is the hash h (modelled as a random oracle with w-bit output)
of the labels of its parents. Specific instances of this general problem
underlie both proofs-of-space protocols [Dziembowski et al. CRYPTO’15]
as well as memory-hardness proofs including scrypt, a widely deployed
password hashing and key-derivation function which is e.g. used within
Proofs-of-Work for digital currencies like Litecoin.
Current lower bound proofs for these problems only consider restricted
algorithms A which perform only a single h query at a time and which
only store individual labels (but not arbitrary functions thereof). This
paper substantially improves this state of affairs;
Our first set of results shows that even when allowing multiple paral-
lel h queries, the “cumulative memory complexity” (CMC), as recently
considered by Alwen and Serbinenko [STOC ’15], of scrypt is at least
w · (n/ log(n))2, when scrypt invokes h n times. Our lower bound holds
for adversaries which can store (1) Arbitrary labels (i.e., random ora-
cle outputs) and (2) Certain natural functions of these labels, e.g., lin-
ear combinations. The exact power of such adversaries is captured via
the combinatorial abstraction of parallel “entangled” pebbling games on
graphs, which we introduce and study.
We introduce a combinatorial quantity γn and under the conjecture that
it is upper bounded by some constant, we show that the above lower
bound on the CMC also holds for arbitrary algorithms A, storing in
particular arbitrary functions of their labels. We also show that under the
same conjecture, the time complexity of computing the label of a random
node in a graph on n nodes (given an initial kw-bit state) reduces tightly
to the time complexity for entangled pebbling on the same graph (given
an initial k-node pebbling). Under the conjecture, this solves the main
open problem from the work of Dziembowski et al.
In fact, we note that every non-trivial upper bound on γn will lead to
the first non-trivial bounds for general adversaries for this problem.

1 Introduction

The common denominator of password hashing and proofs-of-work is that they
both require a certain computation to be sufficiently expensive, while still re-

maining feasible. In this domain, “expensive” has traditionally meant high time
complexity, but recent hardware advances have shown this requirement to be
too weak, with fairly inexpensive tailored-made ASIC devices for Bitcoin mining
and password cracking gaining increasingly widespread usage.

In view of this, a much better requirement is memory-hardness, i.e., the
product of the memory (a.k.a. space) and the time required to solve the task
at hand should be large. This is often referred to as the space-time (ST) com-
plexity which in turn has been used as an estimate of the product of the area
and the time (AT) complexity of a circuit solving the task. Thus increasing ST
complexity of a task appears to incur a higher dollar cost for building custom
circuits to solve the task compared to increase in dollar cost obtained by simply
increasing the required raw computing power alone. This observation motivated
Percival to introduce the concept of memory-hardness along with a candidate
memory-hard function scrypt in [Per09]. In particular, memory-hardness was
one of the main desiderata in the recent password-hashing competition, and its
winner, Argon2 [BDK15], has been designed to be memory-hard. Dziembowski
et al [DFKP15] introduce the concept of proofs of space (PoSpace), where the
worker (or miner) can either dedicate a large amount of storage space, and then
generate proofs extremely efficiently, or otherwise must pay a large time cost
for every proof generated. The PoSpace protocol has also found its way into a
recent proposal for digital currency [PPA+15].

Our contributions, in a nutshell. Cryptanalytic attacks [BK15,AS15,CJM14] tar-
geting candidates for memory-hard functions [FLW13,AABS14] have motivated
the need for developing constructions with provable security guarantees. More-
over security proofs complement cryptanalytic results by highlighting which
classes of attacks remain worth considering and which can be ruled out. With
the exception of [AS15], most candidate memory-hard functions come without
security proofs and those that do (e.g. [Per09,FLW13]) only consider a severely
restricted class of algorithms while using non-amortized notions of memory-
hardness which don’t capture the memory requirments of computing these func-
tions on multiple inputs; a key requirment when considering their intended use
for, say, brute-force resistant password hashing. A primary goal of this paper is
to advance the foundations of memory-hardness, and we make progress along
several fronts.

We develop a new class of randomized pebbling games on graphs – called
entangled pebbling games – which are used to prove results on the memory-
hardness of tasks such as computing scrypt for large non-trivial classes of ad-
versaries. Moreover, we show how to boost these results to hold against arbitrary
adversaries in the parallel random oracle model (pROM) of Alwen and Ser-
binenko [AS15] under the conjecture that a new combinatorial quantity which
we introduce is (sufficiently) bounded.

A second application of the techniques introduced in this paper considers
Proofs of Space. We show that time lower bounds on the pebbling complexity
of a graph imply time lower bounds in the pROM model agains any adversary.
The quantitative bounds we get depend on the combinatorial value we intro-

duce, and assuming our conjecture, are basically tight. This solves, modulo the
conjecture, the main problem left open in the Proofs of Space paper [DFKP15].
As we’ll discuss in more detail below, pebbling lower bounds have been used ex-
tensively for lower bounding time/space complexity in the random oracle model
before, but in most cases the adversary did not have any state depending on the
random oracle, and the underlying graph was fixed and known. In this case, a
standard ”ex-post facto” argument sufficies to translate pebbling lower bounds
to time/memory lower bounds in the random oracle model. Once a state depend-
ing on the RO is available (as in proofs of space), or the graph is data dependent
(as in scrypt), this standard technique fails, and currently in these cases bounds
in the RO are only known against very restricted classes of adversaries which
just store plain labels.

Sequentially memory-hard functions. Percival [Per09] gave the first proposal of a
memory-hard hash function, called scrypt. The function has been well received
in practice. For example it is currently in the process of being standerdized by
the IETF [PJ] as a Key Derivation Function and also underlies the Proof of Work
protocols of several cryptocurrencies e.g. Lightcoin [Lee11], one of the currently
most prevelant cryptocurrencies in terms of market capitalization [Mar]. scrypt3

uses a hash function h : {0, 1}∗ → {0, 1}w (e.g., SHA-256), and proceeds in two
phases, given an input X. It first computes Xi = hi(X) for all i ∈ [n], and with
S0 = Xn, it then computes S1, . . . , Sn where

Si = h(Si−1 ⊕Xint(Si−1))

where int(S) reduces an w-bit string S to an integer in [n]. The final output
is Sn. Note that is possible to evaluate scrypt on input X using n · w bits of
memory and in linear time in n, by keeping the values X1, . . . , Xn stored in
memory once they are computed. However, the crucial point is that there is no
apparent way to save memory – for example, to compute Si, we need to know
Xint(Si−1), and under the assumption that int(Si−1) is (roughly) random in [n],
an evaluator without memory needs to do linear work (in n) to recover this value
before continuing with the execution. This gives a constant-memory, O(n2) time
algorithm to evaluate scrypt. In fact, as pointed out already in Percival [Per09],
the actual expectation is that no matter how much time T (n) and how much
memory S(n) an adversarial evaluator invests, we always have S(n)·T (n) ≥ n2−ε
for all ε > 0, even if the evaluator can parallelize its computation arbitrarily.

Percival’s analysis of scrypt assumes that h is a random oracle. The anal-
ysis is limited in two ways: (1) It only considers adversaries which can only
store random oracle outputs in their memory. (2) The bound measures memory

3 In fact, what we describe here is only a subset of the whole scrypt function, called
ROMix. ROMix is the actual core of the scrypt function, and we will use the generic
name “scrypt” for in the following. ROMix (with some minor modification and ex-
tensions) also underlies one of the two variants of the winner Argon [BDK15] of the
recent password hashing competition https://password-hashing.net/, namely the
data-dependent variant Argon2d.

complexity in terms of the maximum memory resources S(n). The latter is unde-
sirable, since the ultimate goal of an adversary performing a brute-force attack is
to evaluate scrypt on as many inputs as possible, and if the large memory usage
is limited to a small fraction of the computing time, a much higher amortized
complexity can be achieved.

Alwen and Serbinenko [AS15] recently addressed these shortcomings, and
delivered provably sequentially memory-hard functions in the so-called parallel
random oracle model (pROM), developing new and better complexity metrics
tailored to capturing amortized hardness. While their work falls short of deliver-
ing guarantees for scrypt-like functions, it serves as an important starting point
for our work, and we give a brief overview.

From sequential memory-hardness to pebbling. Their work explicitly consider ad-

versaries attempting to evaluate a function Hh (which make calls to some under-
lying hash function h, modeled as a random oracle) which proceed in multiple
rounds, and in each round i, the adversary can make an unbounded number of
parallel queries to h, and then pass on a state σi to the next round. The com-
plexity of the adversary is captured by its cumulative memory complexity (CMC)
given by

∑
i |σi|. One then denotes as cmcpROM(H) the expected CMC of the best

adversary where the expectation is over the choice of RO h and coins of the
adversary. We stress that CMC exhibits some very important features: First, a
lower bound appears to yield a reasonable lower bound on the AT complexity
metric. Second, In contrast to the ST complexity the CMC of a task also gives
us a lower-bound on the electricity consumption of performing the task. This is
because storing data in volatile memory for, say, the time it takes to evaluate
h consumes a significant amount of electricity. Thus CMC tells us something
not only about the dollar cost of building a custom circuit for computing a task
but also about the dollar cost of actually running it. While the former can be
amortized over the life of the device, the later represents a recurring fee.

A natural candidate for a sequentially memory-hard function studied in [AS15]
is defined by a single source and sink directed acyclic graph (DAG) G = (V,E)
and a hash function h. The label of a vertex i ∈ V with parents {p1, . . . , pd}
(i.e., (pj , v) ∈ E for i = 1, . . . , d) is defined as `i = h(i, `p1 , . . . , `pd). Note that
the labels of all vertices can be recursively computed starting with the sources.
The function label(G, h) is now simply the label `v of the sink v. There is a
natural connection between cmcpROM(label(G, h)) for a randomly chosen h and
the cumulative pebbling complexity (CC) of the graph G. This connection was
first exploited in the to construct functions for which evaluation requires many
cache memory in [DNW05] and more recently to build one-time computable
functions [DKW11] as well as in the security proof the memory-hard function
in [FLW13]. CC is defined in a game where one can place pebbles on the vertices
of V , according to the following rules: In every step of the game, a new pebble
can be placed on any vertex for which all parents of v have pebbles on them (in
particular, pebbles can always be placed on sources), and pebbles can always be
removed. The game is won when a pebble has been placed on the sink. The CC
of a strategy for pebbling G is defined as

∑
i |Si|, where Si is the set of vertices

on which a pebble is placed at the end of the ith step, and the cc of G – denoted
cc(G) – is the CC of the best strategy.

Indeed, cc(G) naturally captures the CMC of restricted pROM adversaries
computing label(G, h) for which every state σi only consists of random oracle
outputs, i.e., of vertex labels. A pebble on v is equivalent to the fact that σi con-
tains `v. However, a full-fledged pROM adversary has no reason to be restricted
to such a strategy – it could for example store as part of its state σi a particular
encoding of the information accumulated so far. Nonetheless, the main result
of [AS15] shows that (up to a negligible extent) such additional freedom does
not help in computing label(G, h).

Informal theorem. For every DAG G = (V,E), with overwhelming
potability (over the choice of h from the family of all functions) we have
(w denotes the length of the labels `i)

a-cmcpROM(label(G, h)) ≈ w · cc(G)

where a-cmcpROM is the CMC per labeling computed amortized across
multiple labelings being computed simultanously.

This result is then complemented with a concrete class of constant-degree DAGs
Gn on n vertices (which is efficiently constructible for every n) such that cc(Gn) =
Ω(n2/polylog(n)).

Unfortunately however, the framework of [AS15] does not extend to scrypt

like functions, for which we would hope to prove a similar Ω(n2) lower bound on
the CMC – indeed, the crucial point in functions like scrypt is that the values
which need to be input to h are determined at run-time in a data-dependent
fashion. While this makes the design far more intuitive, the proofs in [AS15]
crucially rely on the layout of the computation being laid out a priori in a data-
independent fashion.

Our contributions. This paper supports the security of scrypt-like functions via
two types of results – results for restricted adversaries, as well as results for
arbitrary adversaries under a combinatorial conjecture. Our results also have
direct implication on proofs of space, but we postpone this discussion below to
ease presentation.

1) Randomized pebbling games. As our first step, we introduce a general-
ization pebble of pebbling games on a DAG G = (V,E) with dynamic challenges
randomly sampled from a set C ⊆ V . With the same pebbling rules as before, we
now proceed over n rounds, and at every round, a challenge ci is drawn uniformly
at random from C. The player’s goal is to place a pebble on ci, before moving
to the next round, and learning the next challenge ci+1. The game terminates
when the last challenge has been covered by a pebble. One can similarly associate
with G a labeling game computeLabel in the pROM, where the goal is instead
to compute the label `ci of ci, rather than placing a pebble on it. For instance,
the computation of scrypt is tightly connected to the computeLabel played on
the chain graph Ln with vertices [n] = {1, 2, . . . , n}, with edges (i, i + 1) for

i ∈ [n − 1], and challenges C = [n] (as detailed in Section 2.5). The labels to
be computed in this game are those needed to advance the computation in the
second half of the scrypt computation, and the challenges (in the actual scrypt
function) are computed from hash-function outputs.

In fact, it is not hard to see that in computeLabel for some graph G a pROM
adversary that only stores random-oracle generated outputs can easily be turned
into a player for the pebble for graph G. This is particular true for G = Ln, and
thus lower bounding the CC of an adversary playing pebble on Ln also yields a
lower bound on the CMC of computing (the second half of) scrypt. Our first
result provides such a lower bound.

Theorem 1. For any constant δ > 0, the CC of an adversary playing
pebble on the chain graph Ln with challenges [n] is Ωδ(n

2/ log2(n)) with
probability 1− δ over the choice of all challenges.4

To appreciate this result, it should be noted that it inherently relies on the choice
of the challenges being independent of the adversary playing the game – indeed,
if the challenges are known a priori, techniques from [AS15] directly give a
strategy with CC O(n1.5) for the above game. Also this result already improves
on Percival’s analysis (which, implictely, place similar restrictions on class of
pROM algorithms considered), as the lower bound is uses the CC of (simple)
pebbling of a graph, and thus it actually generalized to a lower bound on the
amortized complexity of computing multiple scrypt instances in the pROM.5

2) Entangled pebbling. The above result is an important first step – to the
best of our knowledge all known evaluation attacks against memory-hard func-
tions indeed only store hash labels directly or not at all and thus fit into this model
– but we ask the question whether the model can be strengthened. For example,
an adversary could store the XOR `i⊕ `j of two labels (which only takes w bits)
and depending on possible futures of the game, recover both labels given any one
of them. As we will see, this can help. As a middle ground between capturing
pROM security for arbitrary adversaries and the above pebbling adversaries, we
introduce a new class of pebbling games, called entanglement pebbling games,
which constitutes a combinatorial abstraction for such adversaries.

In such games, an adversary can place on a set Y ⊆ V an “entangled pebble”
〈Y〉t for some integer 0 ≤ t ≤ |Y|. The understanding here is that placing an
individual pebble on any t vertices v ∈ Y – which we see as a special case of 〈v〉0
entangled pebble – is equivalent to having individual pebbles on all vertices in
Y. The key point is that keeping an entangled pebble 〈Y〉t costs only |Y|− t, and
depending on challenges, we may take different choices as to which t pebbles we
use to “disentangle” 〈Y〉t. Also, note that in order to create such an entangled
pebble, on all elements of Y there must be either an individual pebble, or such
pebble can easily be obtained by disentangling existing entangled pebbles.

4 The subscript δ in Ωδ denotes that the hidden constant depends on δ.
5 This follows from a special case of the Lemma in [AS15] showing that CC of a graph

is equal to the sum of the CCs the graphs disconnected components.

In the pROM labeling game, an entangled pebble 〈Y〉t corresponds to an
encoding of length w · (|Y| − t) of the w-bit labels {`i : i ∈ Y} such that given
any t of those labels, we can recover all the remaining ones. Such an encoding
can be obtained as follows: Fix 2d − t elements x1, . . . , x2d−t in the finite field
F2w . Let Y = {y1, . . . , yd}, and consider the (unique) degree d − 1 polynomial
p(.) over the finite field F2w (whose element are represented as w-bit strings)
such that

∀i ∈ [d] : p(xi) = `yi .

The encoding now simply contains {p(xd+1), . . . , p(x2d−t)}, i.e., the evaluation
of this polynomial on d− t points. Note that given this encoding and any t labels
`i, i ∈ Y, we have the evaluation of p(.) on d points, and thus can reconstruct
p(.). Once we know p(.), we can compute all the labels `yi = p(i) in Y.

We prove (in Appendix A) that in general, entangled pebbling is strictly
more powerful (in terms of minimizing the expected CC) than regular pebbling
by giving a concrete graph and set of challenge nodes for which no pebbling
strategy using only unentangled pebbles can match a strategy we describe which
uses entangled pebbles. Fortunately, we will also show that for the randomized
pebbling game on the chain graph Ln entangled pebbling cannot outperform
regular ones. We show:

Theorem 2. For any constant δ > 0, the CC of an entangled pebbling
adversary playing pebble on graph Ln is Ω(n2/ log2(n)) with probability
1− δ over the choice of all challenges.

Interestingly, the proof is a simple adaptation of the proof of for the non-
entangled case. This result can again be interpreted as providing a guarantee
in the label game in the pROM for Ln for the class of adversaries that can be
abstracted by entangled pebbling algorithms.

3) Arbitrary Adversaries. So far we have only discussed (entangled) peb-
bling lower bounds, which then imply lower bounds for restricted adversaries
in the pROM model. In Section 4 we consider security against arbitrary adver-
saries. Our main results there show that there is a tight connection between the
complexity of playinsolg computeLabel and a combinatorial quantity γn that we
introduce. We show two results. The first lower-bounds the time complexity of
playing computeLabel for any graph G while the second lower-bounds the CMC
of playing computeLabel for Ln (and thus scrypt).

1. For any DAG G = (V,E) with |V | = n, with high probability over the
choice of the random hash function h, the pROM time complexity to play
computeLabel for graph G, for any number of challenges, using h and when
starting with any state of size k ·w is (roughly) at least the time complexity
needed to play pebble on G with the same number of challenges and starting
with an initial pebbling of size roughly γn · k.

2. The pROM CMC for pebble for Ln is Ω(n2/ log2(n) · γn).

At this point, we do not have any non-trivial upper bound on γn but we conjec-
ture that γn is upper bounded by a constant γ (i.e., ∀n ∈ N : γn ≤ γ). The best

lower bound we have is γ5 > 3/2. Still, we note that our results are concrete, and
remain meaningful for other values of γn. Indeed, we would get non-trivial state-
ments even if γn were to grow moderately as a function of n, i.e. γn = polylog(n)
or γn = nε for some small ε > 0.

Therefore, assuming our conjecture on γn, the first result in fact solves the
main open problem from the work of Dziembowski et al [DFKP15] on proofs of
space. The second result yields, in particular, a near-quadratic lower bound on
the cc of evaluating scrypt for arbitrary pROM adversaries.

2 Pebbling, Entanglement, and the pROM

In this section, we first introduce different notions of pebbling graphs with chal-
lenges. In particular, we present both a notion of parallel pebbling of graphs with
probabilistic challenges, and then extend this to our new notion of entangled
pebbling games. Next, we discuss some generic relations between entangled and
regular pebbling, before finally turning to defining the parallel random-oracle
model (pROM), and associated complexity metrics.

Notation We use the following notation for common sets N := {0, 1, 2, . . .}, N+ :=
N\{0}, N≤c := {0, 1, . . . , c} and [c] := {1, 2, . . . , c}. For a distribution D we write
x ∈ D to denote sampling x according to D in a random experiment.

2.1 Pebbling Graphs

Throughout, let G = (V,E) denote a directed acyclic graph (DAG) with vertex
set V = [n]. For a vertex i ∈ V , we denote by parent(i) = {j ∈ V : (j, i) ∈ E}
the parents of i. The m-round, probabilistic parallel pebbling game between a
player T on a graph G = (V,E) with challenge nodes C ⊆ V is defined as
follows.

pebble(G,C,m, T, Pinit) : The m-round parallel pebbling game on a DAG
G = (V,E) with challenge set C ⊆ V and an initial pebbling configuration
Pinit ⊆ V is played between a challenger and a pebbler T.

1. Initialise cnt := 0, round := 0, Pcnt := Pinit and cost := 0.
2. A challenge c← C is chosen uniformly from C and passed to T.
3. cost := cost + |Pcnt|.
4. T choses a new pebbling configuration Pcnt+1 which must satisfy

∀i ∈ Pcnt+1 \ Pcnt : parent(i) ∈ Pcnt (1)

5. cnt := cnt + 1.
6. If c 6∈ Pcnt go to step 3. c not yet pebbled
7. round := round+1. If round < m go to step 2, otherwise if round = m the

experiment is over, the output is the final count cnt and the cumulative
cost cost.

The cumulative black pebbling complexity which is now defined as

cc(G,C,m, T, Pinit) := E
pebble(G,C,m,T,Pinit)

[cost]

cc(G,C,m, k) := min
T,Pinit⊆V
|Pinit|≤k

{cc(G,C,m, T, Pinit)}

We sometimes use the shorthand cc(G,C,m) = maxk cc(G,C,m, k). Similary,
the time cost is defined as

time(G,C,m, T, Pinit) := E
pebble(G,C,m,T,Pinit)

[cnt]

time(G,C,m, k) := min
T,Pinit⊆V
|Pinit|≤k

{time(G,C,m, T, Pinit)}

The above notions consider the expected cost of a pebbling, thus even if, say
cc(G,C,m, k), is very large, this could be due to the fact that for a tiny fraction
of challenge sequences the complexity is very high, while for all other sequences
it is very low. To get more robust security notions, we will define a more fine-
grained notion which will guarantee that the complexity is high on all but some
ε fraction on the runs.

ccε(G,C,m, T, Pinit) := inf

{
γ

∣∣∣∣ P
pebble(G,C,m,T,Pinit)

[cost ≥ γ] ≥ 1− ε
}

ccε(G,C,m, k) := min
T,Pinit⊆V
|Pinit|≤k

{ccε(G,C,m, T, Pinit}

ccε(G,C,m) := max
k

ccε(G,C,m, k)

timeε(G,C,m, T, Pinit) := inf

{
γ

∣∣∣∣ P
pebble(G,C,m,T,Pinit)

[cnt ≥ γ] ≥ 1− ε
}

timeε(G,C,m, k) := min
T,Pinit⊆V
|Pinit|≤k

{timeε(G,C,m, T, Pinit}

In general, we cannot upper bound cc in terms of ccε if ε > 0 (same for time in
terms of timeε), but in the other direction it is easy to show that

cc(G,C,m, T, Pinit) ≥ ccε(G,C,m, T, Pinit)(1− ε)

2.2 Entangled Pebbling

In the above pebbling game, a node is always either pebbled or not and there is
only one type of pebble which we will hence forth refer to as a “black” pebble. We
will now introduce a more general game, where T can put “entangled” pebbles.

A t-entangled pebble, denoted 〈Y〉t, is defined by a subset of nodes Y ⊆
[n] together with an integer t ∈ N≤|Y . Having black pebble on all nodes Y
now corresponds to the special case 〈Y〉0. Entangled pebbles 〈Y〉t now have the
following behaviour. Once any subset of Y of size (at least) t contains black

pebbles then all v ∈ Y immediatly recieve a black pebble (regardless of whether
their parents already contained black pebbles or not). We define the weight of
an entangled pebble as:

w(〈Y〉t) := |Y| − t.

More generally, an (entangled) pebbling configuration is defined as a set P =
{〈Y1〉t1 , . . . , 〈Yz〉ts} of entangled pebbles and its weight is

w(P) :=
∑
i∈[s]

w(〈Yi〉ti).

The rule governing how a pebbling configuration Pcnt can be updated to config-
uration Pcnt+1 – which previously was the simple property eq.(1) – are now a bit
more involved. To describe them formally we need the following definition.

Definition 1 (Closure). The closure of an entangled pebbling configuration
P = {〈Y1〉t1 , . . . , 〈Ys〉ts} – denoted closure(S) – is defined recursively as follows:
initialise Λ = ∅ and then

while ∃j ∈ [s] : (Yj 6⊆ Λ) ∧ (Λ ∩ Yj ≥ tj) set Λ := Λ ∪ Yj

once Λ cannot be further extended using the rule above we define closure(S) = Λ.

Note that closure(S) is non-empty iff there’s at least one set of t-entangled peb-
bles 〈Y〉t in P with t = 0. Equipped with this notion we can now specify how a
given pebbling confugration can be updated.

Definition 2 (Valid Update). Let P = {〈Y1〉t1 , . . . , 〈Ym〉ts} be an entangled
pebbling configuration. Further,

– Let V1 := closure(P).

– Let V2 := {i : parent(i) ⊆ V1}. These are the nodes that can be pebbled
using the black pebbling rules (eq.1).

Now

P ′ = {〈Y ′1〉t′1 , . . . , 〈Y
′
s′〉t′s′}

is a valid update of P if for every 〈Y ′j′〉t′j′ one of the two conditions is satisfied

1. Y ′j′ ⊆ (V1 ∪ V2).

2. ∃i with Y ′j′ = Yi and t′j ≥ ti. That is, 〈Y ′j′〉t′j′ is an entangled pebble 〈Yi〉ti
that is already in P , but where we potentially have increased the threshold
from ti to t′j′ .

The entangled pebbling game pebblel(G,C,m, T) is now defined like the game
pebble(G,C,m, T) above, except that T is allowed to choose entangled pebblings:

pebblel(G,C,m, T, Pinit) : The m-round parallel, entangled pebbling game
on a DAG G = (V,E) with challenge set C ⊆ V and an initial entagled
pebbling configuration Pinit

1. Initialise cnt := 0, round := 0, Pcnt := Pinit and cost := 0.
2. A challenge c← C is chosen uniformly from C and passed to T.
3. cost := cost + w(Pcnt).
4. T choses a new pebbling configuration Pcnt+1 which must be a valid

update of Pcnt.
5. cnt := cnt + 1.
6. If c 6∈ closure(Pcnt) go to step 3. c not yet pebbled
7. round := round+1. If round < m go to step 2, otherwise if round = m the

experiment is over, the output is the final count cnt and the cumulative
cost cost.

The cumulative entangled pebbling complexity and the entangled time com-
plexity of this game are defined analogously to those of the simple pebbling
game.

ccl(G,C,m, T, Pinit) := E
pebblel(G,C,m,T,Pinit)

[cost]

ccl(G,C,m, k) := min
T,Pinit

w(Pinit)≤k

{cc(G,C,m, T, Pinit)}

cclε(G,C,m) := max
k

ccl(G,C,m, k)

timel(G,C,m, T, Pinit) := E
pebblel(G,C,m,T,Pinit)

[cnt]

timel(G,C,m, k) := min
T,Pinit

w(Pinit)≤k

{time(G,C,m, T, Pinit)}

The more fine-grained versions are again defined much as before.

cclε (G, C,m, T, Pinit) := inf

{
γ

∣∣∣∣ P
pebblel(G,C,m,T,Pinit)

[cost ≥ γ] ≥ 1− ε
}

cclε (G,C,m, k) := min
T,Pinit

w(Pinit)≤k

{
cclε (G,C,m, T, Pinit)

}
cclε (G,C,m) := max

k
cclε (G,C,m, k)

timelε (G, C,m, T, Pinit) := inf

{
γ

∣∣∣∣ P
pebblel(G,C,m,T,Pinit)

[cnt ≥ γ] ≥ 1− ε
}

timelε (G,C,m, k) := min
T,Pinit

w(Pinit)≤k

{
timelε (G,C,m, T, Pinit)

}
In Appendix A, we show that entanglement can indeed improve the cumulative
complexity with respect to unentangled pebbling. However, in the next section,
we will show that this is not true with respect to time complexity. This fact will
be useful below for several reasons.

2.3 Entanglement Does not Improve Time Complexity

In terms of time complexity, entangled pebbling are no more efficient than normal
pebbles.

Lemma 3 (Entangled Time = Simple Time). For any G,C,m, Tl, Pinit
l

and ε ≥ 0 there exist a T, Pinit such that |Pinit| ≤ w(Pinit
l) and

time(G,C,m, T, Pinit) ≤ timel(G,C,m, Tl, Pinit
l) (2)

timeε(G,C,m, T, Pinit) ≤ timelε (G,C,m, T
l, Pinit

l) (3)

in particular

timel(G,C,m, k) = time(G,C,m, k) timelε (G,C,m, k) = timeε(G,C,m, k)
(4)

Proof. The ≥ directions in eq.(4) follows directly from the fact that a black
pebbling is a special case of an entangled pebbling. The ≤ direction follows from
eq.(2) and eq.(3). Below we prove eq.(2), the proof for eq.(3) is almost analogous.

We say that a player Agreedy for a normal or entangled pebbling is “greedy”,
if its strategy is simply to pebble everything possible in every round and never
remove pebbles. Clearly, Agreedy is optimal for time complexity, i.e.,

∀G,C,m, Pinit : min
T

time(G,C,m, T, Pinit) = time(G,C,m, Agreedy, Pinit) (5)

∀G,C,m, Pinit
l : min

T
timel(G,C,m, T, Pinit

l) = timel(G,C,m, Agreedy, Pinit
l)(6)

We next describe how to derive an initial black pebbling Pinit
∗ from an entangled

pebbling Pinit
l of cost |Pinit

∗| ≤ w(Pinit
l) such that

time(G,C,m, Agreedy, Pinit
∗) ≤ timel(G,C,m, Agreedy, Pinit

l) (7)

Note that this then proves eq.(2) (with Agreedy, Pinit
∗ being T, Pinit in the statement

of the lemma) as

timel(G,C,m, Tl, Pinit
l) ≥ timel(G,C,m, Agreedy, Pinit

l) (8)

≥ time(G,C,m, Agreedy, Pinit
∗) (9)

It remains to prove eq.(7). For every share 〈Y〉t ∈ Pinit
l we observe which

|Y| − t pebbles are the last ones to become available6 in the random experi-

ment pebblel(G,C,m, Tl, Pinit
l), and we add these pebbles to Pinit if they’re not

already in there.
Note that then |Pinit| ≤ w(Pinit

l) as required. Moreover eq.(7) holds as at any

timestep, the nodes available in pebblel(G,C,m, Agreedy, Pinit
l) are nodes already

pebbled in pebble(G,C,m, Agreedy, Pinit
∗) at the same timestep.

6 A pebble is available if it’s in the closure of the current entangled pebbling con-
figuration, also note that Agreedy’s strategy is deterministic and independent of the
challenges it gets, so the ”last nodes to become available” is well defined.

2.4 The Parallel Random Oracle Model (pROM)

We now turn to an analogue of the above pebbling games but this time in the
parallel random oracle model (pROM) of [AS15].

Let G = (V,E) be a DAG with a dedicated set C ⊆ V of challenge edges, we
identify the vertices with V = [n]. A labelling `1, . . . , `n of G’s verticies using a
hash functiotn h : {0, 1}∗ → {0, 1}w is defined as follows. Let parent(i) = {j ∈
V : (j, i) ∈ E} denote the parents of i, then

`i = h(i, `p1 , . . . , `pd) where (p1, . . . , pd) = parent(i) (10)

Note that if i is a source, then its label is simply `i = h(i).

computeLabel(G,C,m, A, σinit, h : {0, 1}∗ → {0, 1}w) :

1. Initialise cnt := 0, round := 0, σcnt := σinit and cost := 0.
2. A challenge c← C is chosen uniformly from C.
3. (q1, . . . , qs, `)← A(c, σcnt) A choses parallel h queries and (optionally) a

guess for `c
4. cost := cost + |σcnt|+ s · w.
5. (σcnt+1)← A(c, σcnt, h(q1), . . . , h(qs)) A outputs next state
6. cnt := cnt + 1
7. If ` = ⊥ (no guess in this round) go to step 3.
8. If ` 6= `c (wrong guess) set cost =∞ and abort.
9. round := round + 1. If round = m the experiment is over, otherwise go

to step 2.
10. round := round+1. If round < m go to step 2, otherwise if round = m the

experiment is over, the output is the final count cnt and the cumulative
cost cost.

We consider a game computeLabel(G,C,m, A, σinit, h) where an algorithm A must
m times consecutively compute the label of a node chosen at random from C. A
gets an initial state σ0 = σinit. The cumulative memory complexity is defined as
follows.

cmcpROM(G, C,m, A, σinit, h) = E
computeLabel(G,C,m,A,σinit,h)

[cost]

cmcpROM(G,C,m, σinit) = min
A

E
h←H

cmcpROM(G,C,m, A, σinit, h)

The time complexity of a given adversary is

timepROM(G,C,m, A, σinit, h) = E
computeLabel(G,C,m,A,σinit,h)

[cnt]

We will also consider this notion against the best adversaries from some restricted
class of adversaries, in this case we put the class as subscript, like

cmcpROMA (G,C,m, σinit) = min
A∈A

E
h←H

cmcpROM(G,C,m, A, σinit, h)

As for pebbling, also here we will consider the more meaningful ε variants of
these notions

cmcpROMε (G, C,m, A, σinit, h) = inf

{
γ

∣∣∣∣ P
computeLabel(G,C,m,A,σinit,h)

[cost ≥ γ] ≥ 1− ε
}

cmcpROMε (G,C,m, σinit) = min
A

E
h←H

cmcpROMε (G,C,m, A, σinit, h)

timepROMε (G, C,m, A, σinit, h) = inf

{
γ

∣∣∣∣ P
computeLabel(G,C,m,A,σinit,h)

[cnt ≥ γ] ≥ 1− ε
}

2.5 scrypt and the computeLabel Game

We briefly discuss the relation between evaluating the memory-hard function
candidate scrypt in the pROM and the computeLabel game for the line graph
(described bellow) and, and explain why we will focus on the latter.

Recall that Percival [Per09] gave the first proposal of a memory-hard hash
function, called scrypt. scrypt7 uses a hash function h : {0, 1}∗ → {0, 1}w (e.g.,
SHA-256), and proceeds in two phases, given an input X. In the first phase it
computes Xi = hi(X) for all i ∈ [n],8 and in the second phase, setting S0 = Xn,
it computes S1, . . . , Sn defined recursively to be

Si = h(Si−1 ⊕Xint(Si−1))

where int(S) reduces a w-bit string S to an integer in [n] such that if S is
uniform random then int(S) is (close to) uniform over [n]. The final output of
scrypthn(X) = Sn.

To show that scrypt is memory-hard we would like to lower-bound the cu-
mulative memory complexity (CMC) of computing scrypt in the pROM.9

We argue that to obtain a bound on the CMC of scrypt it suffices to re-
strict our attention to the minimal final value of cost in cmcpROM(Ln, [n], n) where
Ln = (V,E) is the line graph where V = [n] and E = {(i, i+ 1) : i ∈ [n− 1]}.
Intuitively this is rather easy to see. Clearly any algorithm which hopes to eval-
uate scrypt with more than negligble probability must, at some point, compute
all Xi values and all Sj values since guessing them is almost impossible. More-
over until Si−1 has been computed the value of int(Si−1) – i.e. the challenge
label needed to compute Si – is uniform random and independent, just like
the distribution of ith challenge c←C in the computeLabel game. In other words

7 In fact, what we describe here is only a subroutine of the whole scrypt function,
called ROMix. However ROMix is the actual core of the scrypt function, and we will
use the generic name “scrypt” for it in the following.

8 Here hi(X) denotes iteratively applying h i times to the input X.
9 For a given execution in the pROM, the CMC is the sum of the size of each interme-

diary state between batches of calls to the ROM. In particular the cost variable in
the computeLabel experiment is a special case of CMC when computing a particular
task. For the details of the definition of CMC for a arbitrary computation we refer
the interested reader to [AS15].

once an algorithm has computed the values X1, . . . , Xn computing the values of
S1, . . . , Sn corresponds exactly to playing the computeLabel game on graph Ln
with challenge set [n] for n rounds. The initial state is exactly the state given to
the algorithm as input in the step where it first computes Xn. It is immediate
that, when restricted to strategies which don’t simply guess relevant outputs
of h, then any strategy for computing the values S1, . . . , Sn corresponds to a
strategy for playing computeLabel(Ln, [n], n).

In summery, once A has finished the first phase of evaluating scrypt, the sec-
ond phase essentially corresponds to playing the computeLabel game on the graph
Ln with challenge set [n] for n rounds. The initial state σinit in computeLabel
is the state given to A as input in the first step of round 1 (i.e. in the step
when A first computes Xn). It is now immediate that (when restricted to strate-
gies which don’t simply guess relevant outputs of h) then any strategy A for
computing the second phase of scrypt is essentially a strategy for playing
computeLabel(Ln, [n], n). Clearly the total CMC of A when computing both
phases of scrypt is at least the CMC of computing just the second. Thus our
lowerbound on cmcpROM(Ln, [n], n) in Theorem 15 also gives us a lower bound on
the CMC of scryptn.

Simple Algorithms. Theorem 15 is very general in that it makes no restrictions
on the algorithm playing computeLabel. However this comes at the cost of relying
on Conjecture 13. If we are willing to restrict our class of algorithms evaluating
scrypt to simple algorithms ASA then we obtain an unconditional lower-bound
on the CMC of scrypt by using Theorem 4. Intuitively a simple algorithms
A ∈ ASA is one which either stores a value Xi directly in its intermediary states10

or stores nothing about the value of Xi at all. (They are however permitted to
store arbitrary other information in their states.) For example a simple algorithm
may not store, say, Xi ⊕Xj or just the first 20 bits of Xi. We note that, to the
best of our knowledge, all algorithms in the literature for computing scrypt are
indeed of this form.

Much as in the more general case above, for the set of algorithms ASA we can
now draw a parallel between computing phase two of scrypt in the pROM and
playing the game pebble on the graph Ln with challenge set [n] for n rounds. In
particular, having a pebble on a node v ∈ [n] in some pebbling configuration Pcnt

corresponds to A having stored the value of Xv in state σcnt which it recieved
as input in that step cnt. Given this analogy, any A ∈ ASA which computes
scryptn (without guessing some intermediary value Xi or Sj) implements a
strategy T for playing pebble such that Equation 1 is satisfied at each step of
each round of pebble and the CMC of A when computing phase two is at least
cc(Ln, [n], n, T, σinit) where σinit is the state given to A at the first step of phase
two. Therefor Theorem 4 immediatly gives us a lower-bound on the CMC of
scryptn for all algorithms in ASA.

Entangled Adversaries. In fact we can even relax our restrictions on algorithms
computing scrypt to the class AEA of entangled algorithms while still obtaining

10 or at least an equivalent encoding of Xi

an unconditional lower-bound on the CMC of scrypt. In adition to what is
permitted for simple algorithms we also allow storing “entangled” information
about the values of X1, . . . , Xn of the following form. For any subset L ⊆ [n] and
integer t ∈ [|L|] an algorithm can store an encoding of XL = {Xi}i∈L such that
if it obtains any t values in L then it can immediatly output all remaining |L|− t
values in L with no further information or queries to h. One such encoding uses
polynomial interpolation as described in the introduction. Indeed, this motivates
our definition of entangled pebbles above.

As demonstrated in Appendix A, the class AEA is (in general) strictly more
powerful ASA when it comes to minimizing CMC. Thus we obtain a more general
unconditional lower-bound on the CMC of scrypt using Theorem 9 which lower-
bounds ccl(Ln, [n], n) the entangled cumulative pebbling complexity of Ln.

3 Pebbling Lower Bounds for the Chain Graph

In this section, we provide lower bounds for the cumulative complexity of the
n-round probabilistic pebbling game on the line graph Ln with challenges from
[n]. We will start with the case without entanglement (i.e., dealing only with
black pebbles) which captures the essence of our proof, and then below, explain
how our proof approach can be extended to the entangled case.

Theorem 4 (Pebbling Complexity of the line graph). For all 0 ≤ k ≤ n,
and constant δ > 0 ,

ccδ(Ln, C = [n], n, k) = Ωδ

(
n2

log2(n)

)
.

We note in passing that the above theorem can be extended to handle a
different number of challenges t 6= n, as it will be clear in the proof. We dispense
with the more general theorem, and stick with the simpler statement for the
common case t = n motivated by scrypt. The notation Ωδ indicates that the
constant hidden in the Ω depends on δ.

In fact, we also note that our proof allows for more concrete statements as
a function of δ, which may be constant. However, not surprisingly, the bound
becomes weaker the smaller δ is, but note that if we are only interested in the
expectation cc(Ln, C = [n], n, k), then applying the result with δ = O(1) (e.g.,
1
2 is sufficient to obtain a lower bound of Ω

(
n2

log2 n

)
.

Proof intuition – the expectation game. Before we turn to the formal proof, we
give some high level intuition of how the bound is proved. It turns out that most
of the proof is going to in fact lower bound the cc of a much simpler game, where
the goal is far simpler than covering challenges from [n] with a pebble. In fact,
the game will be completely deterministic.

The key observation is that every time a new challenge ci is drawn, and the
player has reached a certain pebbling configuration P , then there is a well-defined

expected number Φ(P) of steps the adversary needs to take at least in order to
cover the random challenge. We refer to Φ(P) as the potential of P . In particular,
the best strategy is the greedy one, which looks at the largest j = j(ci) ≤ ci on
which a pebble is placed, i.e., j ∈ P , and then needs to output a valid sequence
of at least ci− j further pebbling configurations, such that the last configuration
contains ci. Note if j = ci, we still need to perform one step to output a valid
configuration. Therefore, Φ(P) is the expected value of max(1, ci − j(ci)). We
will consider a new game – called the expectation game – which has the property
that at the beginning of every stage, the challenger just computes Φ(P), and
expects the player T to take Φ(P) legal steps until T can move to the next stage.

Note that these steps can be totally arbitrary – there is no actual challenge
any more to cover. Still, we will be interested in lower bounding the cumulative
complexity of such a strategy for the expectation game, and it is not obvious
how T can keep the cc low. Indeed:

– If the potential is high, say Φ(P) = Ω(n), then this means that linearly many
steps must be taken to move to the next stage, and since every configuration
contains at least one pebble, we pay a cumulative cost of Ω(n) for the present
stage.

– Conversely, if the potential Φ(P) is low (e.g., O(1)), then we can expect to be
faster. However we will show that this implies that there are many pebbles
in P (at least Ω(n/Φ(P))), and thus one can expect high cumulative cost
again, i.e,, linear Ω(n).

However, there is a catch – the above statements refer to the initial configu-
rations. The fact that we have many pebbles at the beginning of a stage and
at its end, does not mean we have many pebbles throughout the whole stage.
Even though the strategy T is forced to pay Φ(P) steps, the strategy may try
to drop as many pebbles as possible for a while, and then adding them back
again. Excluding that this can happen is the crux of our proof. We will indeed
show that for the expectation game, any strategy incurs cumulative complex-
ity Ω(n2/ log2(n)) roughly. The core of the analysis will be understanding the
behavior of the potential function throughout a stage.

Now, we can expect that a low-cc strategy T for the original parallel pebbling
game on Ln gives us one for the expectation game too – after all, for every
challenge, the strategy T needs to perform roughly Φ(P) steps from the initial
pebbling configuration when learning the challenge. This is almost correct, but
again, there is a small catch. The issue is that Φ(P) is only an expectation,
yet we want to have the guarantee that we go for Φ(P) steps with sufficiently
high probability (this is particularly crucial if we want to prove a statement
which parameterized by δ). However, this is fairly simple (if somewhat tedious)
to overcome – the idea is that we partition the n challenges into n/λ groups of
λ challenges. For every such group, we look at the initial configuration P when
learning the first of the next λ challenges, and note that with sufficiently high
probability (roughly e−Ω(λ2) by a Chernoff bound) there will be one challenge
(among these λ ones) which is at least (say) Φ(P)/2 away from the closest pebble.
This allows us to reduce a strategy for the n-challenge pebbling game on Ln to

a strategy for the (n/λ)-round expectation game. The value of λ can be chosen
small enough not to affect the overall analysis.

Proof (Theorem 4). As the first step in the proof, we are going to reduce playing
the game pebble(Ln, C = [n], n, T, Pinit), for an arbitrary player T and initial
pebbling configuration Pinit (|Pinit| ≤ k), to a simpler (and somewhat different)
pebbling game, which refer to as the expectation game.

To this end, we introduce first the concept of a potential of a pebbling con-
figuration. For a pebbling configuration P = {`1, `2, . . . , `m} ⊆ [n], we define the
potential function Φ : 2[n] → N as

Φ(P) := m
n + 1

n

m∑
i=0

(1 + . . .+ (li+1 − li − 1))

= m
n + 1

2n

m∑
i=0

(`i+1 − `i) · (`i+1 − `i − 1) = 1
2n

m∑
i=0

(`i+1 − `i)2 − n+1−2m
2n

where m = |P |, where we let `0 = 0 and `m+1 = n + 1. Indeed, Φ(P) is the
expected number of moves required (by an optimal strategy) to pebble a random
challenge starting from the pebbling configuration P , where the expectation is
over the choice of the random challenge. (Note in particular that Φ(P) requires
to pay at least one move even if we have already a pebble on the challenge.) In
other words, Φ(P) is exactly time(Ln, [n], 1, T∗, P) for the optimal strategy T∗

(which is Agreedy from the proof of Lemma 3).
The potential is used in the definition of the game expect(n, t, T, Pinit) which

is played by a pebbler T as follows.

expect(n, t, T, Pinit): The t-round expectation game of parameter n and an
initial pebbling configuration Pinit ⊆ V is played by challenger and player T
as follows.

1. Initialize cnt := 0, round := 0, Pcnt := Pinit and cost := |Pinit|.
2. Player T submits a sequence of non-empty pebbling configurations

(Pround,1, . . . , Pround,tround) ⊂ [n]×tround ,
3. Let Pround,0 := Pcnt. Check if tround ≥ Φ(Pcnt) and ∀i ∈ [tround]

∀v ∈ Pround,i \ Pround,i−1 : parent(v) ∈ Pround,i−1 .

If check fails, output cnt = cost =∞ and halt.
4. cnt := cnt + tround.
5. cost := cost +

∑tround
j=1 |Pround,j |.

6. Pcnt := Pround,tround .
7. round := round + 1. If round < t go to step 2, otherwise if round = t the

experiment is over, the output is the final count cnt and the cumulative
cost cost.

For a (randomized) pebbler T and initial configuration Pinit, we write expectn,t(T, Pinit)
for the output of the expectation game, noting that here this random variable

only depends on the randomness of the pebbler and configuration Pinit. We also
define

ccδ(expectn,t(T, Pinit)) := inf

{
γ

∣∣∣∣ P
expect(n,t,T,Pinit)

[cost ≥ γ] ≥ 1− ε
}

ccδ(expectn,t,k) := min
T,Pinit⊆V
|Pinit|≤k

{
ccδ(expectn,t(T, Pinit))

}
The expectation game expectn,t,k has however an important feature: Be-

cause the randomness is only over the pebbler’s coins, these coins can be fixed
to their optimal choice without making the overall cc worse. This implies that
ccδ(expectn,t,k) = cc0(expectn,t,k) for all δ ≥ 0. In particular, we use the short-
hand cc(expectn,t,k) for the latter.

In the remainder of the proof, we are going to prove the following two lemmas.
Below, we combine these two lemmas in the final statement, before turning to
their proofs. (The proof of Lemma 5 is deferred to Appendix C.

Lemma 5 (Reduction to the expectation game). For all n, t, k, λ, and any
δ > 3µ(t, λ), we have

cc(expectn,t,k) = ccδ−3µ(t,λ)(expectn,t,k) ≤ 2 · ccδ(Ln, C = [n], t · λ, k) ,

where µ(t, λ) = t · e−λ2/8.

We note that in general, for every δ′ ≤ δ, we have ccδ′(expectn,t,k) ≤ ccδ(expectn,t,k).
This is because if a c is such that for all T and Pinit we have P(expectn,t(T, Pinit) ≥
c) ≥ 1− δ′, then also P(expectn,t(T, Pinit) ≥ c) ≥ 1− δ. Thus the set from which

we are taking the supremum only grows bigger as δ increases. In the specific case
of Lemma 5, the 3µ(t, λ) offset captures the loss of our reduction.

Lemma 6 (cc complexity of the expectation game). For all t, 0 ≤ k ≤ n
and ε > 0, we have

cc(expectn,t,k) ≥
⌊
εt

2

⌋
· n

1−ε

6
.

To conclude the proof, before we turn to the proofs of the above two lemmas,
note that we need to choose t, λ such that t · λ = n, and µ(t, λ) = t · e−λ2/8 <
δ/3. We also set ε = 0.5 log log(n)/ log(n), and note that in this case n1−ε =
n/
√

log(n). In particular, we can set λ = O(
√

log t), and can choose e.g. t =
n/
√

log n. Then, by Lemma 6,

cc(expectn,t,k) ≥
⌊
εt

2

⌋
· n

1−ε

6
= Ω

(
n2

log2(n)

)
.

This concludes the proof of Theorem 4.

Proof (Proof of Lemma 6). It is not difficult to see that if a pebbling configura-
tion P has potential φ, then the size |P | of the pebbling configuration (i.e., the
number of vertices on which a pebble is placed) is at least n

6·φ . We give formal

proof for completeness.11.

Lemma 7. For every non-empty pebbling configuration P ⊆ [n], we have

Φ(P) · |P | ≥ n

6
.

Proof. Let m = |P | ≥ 1, by definition:

Φ(P) ·m =

[
1

2n

m∑
i=0

(`i+1 − `i)2 −
n+ 1− 2m

2n

]
·m ,

where `0 = 0 and `m+1 = n+ 1 are notational placeholders. Since configuration
P is non-empty and Φ(P) ≥ 1, we have m ≥ m+1

2 and: n+1−2m
2n ≤ 1

2 ≤
1
2 ·Φ(P).

Therefore

1

2n

m∑
i=0

(`i+1 − `i)2 ≤
3

2
· Φ(P) ,

and then

Φ(P) ·m ≥ 2

3

(
1

2n

m∑
i=0

(`i+1 − `i)2
)
· m+ 1

2
.

The fact that Φ(P) ·m ≥ n
6 follows because by the Cauchy-Schwarz Inequality,

m∑
i=0

(`i+1 − `i)2 · (m+ 1) ≥

(
m∑
i=0

(`i+1 − `i)

)2

≥ n2 .ut

Also, the following claim provides an important property of the potential
function.

Lemma 8. In one iteration, the potential can decrease by at most one.

Proof. Consider any arbitrary configuration P = {`1, `2, . . . , `m} ⊆ [n]. The best
that a pebbling algorithm can do is to place new pebbles next to all the current
pebbles – let’s call the new configuration P ′. That is,

P ′ = {`1, `1 + 1, `2, `2 + 1, . . . , `m, `m + 1} ⊆ [n].

11 Note that the contra-positive is not necessarily true. A simple counter-example is
when pebbles are placed on vertices [0, n/2] of Cn (that is, |P | = O(n)). The expected
number of moves in this case is still Ω (n).

It’s not difficult to see that that the potential of the new configuration is

Φ(P ′) =
1

2n

(
`21 +

m∑
i=1

1 + (`i+1 − (`i + 1))2

)
− n+ 1− 2|P ′|

2n
(11)

≥ 1

2n

(
m+

m∑
i=0

((`i+1 − `i)2 − 2(`i+1 − `i) + 1)

)
− n+ 1− 2m

2n
(12)

≥ Φ(P) +
m

n
− 1

n

m∑
i=0

(`i+1 − `i) ≥ Φ(P)− 1 (13)

The first inequality holds because |P ′| ≥ m. ut

Assume without loss of generality the pebbler T is legal and deterministic.
Consider a particular round i ∈ [t] of the expectation game. Let P and P ′ denote
the initial and final pebbling configurations in the i-th round, and let us denote
φi = Φ(P), the potential of the initial configuration in round i. Depending on
the value of Φ(P ′), we classify the pebbling sequence from P to P ′ into three
different categories:

Type 1: Φ(P ′) > φi · nε/2; or

Type 2: Φ(P ′) ≤ φi · nε/2 – we have two sub-cases:
Type 2a: the potential was always less than φi · nε for all the intermediate

pebbling configurations; or
Type 2b: the potential went above φi · nε for some intermediate configura-

tion.

With each type, we associate a cost that the pebbling algorithm has to pay, which
lower bounds the contribution to the cumulative complexity of the pebbling
configurations generated during this stage. The pebbling algorithm can carry
out pebbling of Type 1 for free12 – however, the latter two have accompanying
costs.

– For pebbling sequences of Type 2a, it is not difficult to see that the cumu-
lative cost is at least φi

n
6nε·φi = 1

6n
1−ε since by Lemma 7, the size of the

pebbling configuration is never less than n/(6φin
ε) during all intermediate

iterations and in stage i valid pebbler must produce at least φi configura-
tions.

– For sequences of Type 2b, by Lemma 8, it follows that in a Type 2b sequence
it takes at least φi(n

ε − nε/2) steps to decrease the potential from φnε to
φi · nε/2, and the size of the pebbling configuration is at least n

6φinε
in every

intermediate step by Lemma 7. Therefore, the cumulative cost is at least

φi(n
ε − nε/2)× n

6φinε
≥ n

6
− n1−ε/2

6
≥ 1

6
n1−ε ,

where the last inequality follows for sufficiently large n.

12 The cost is might be greater than zero, but setting it to zero doesn’t affect the lower
bound.

To conclude the proof, we partition the t ≥ d2/εe phases into groups of
consecutive d2/εe phases. It is not difficult to see that any group must contain
at least one sequence of Type 2: otherwise, with φ being the potential at the
beginning of the first of theses 2/ε phases, the potential at the end would be
strictly larger than

φn
ε
2

2
ε ≥ φ · n > n/2

which cannot be, as the potential can be at most n
2 . By the above, however, the

cumulative complexity of each group of phases is at least n1−ε

6 , and thus we get

cc(expectn,t,k) ≥
⌊
εt

2

⌋
· n

1−ε

6
, (14)

which concludes the proof of Lemma 6. ut

As the second result, we show that the above theorem also holds for the
entangled case.

Theorem 9 (Entangled Pebbling Complexity of the Chain Graph). For
all 0 ≤ k ≤ n and constant δ > 0,

cc
l
δ(Ln, C = [n], n, k) = Ω

(
n2

log2 n

)
.

Luckily, it will not be necessary to repeat the whole proof. We will give now a
proof sketch showing that in essence, the proof follows by repeating the same
format and arguments as the one for Theorem 4, using Lemma 3 as a tool.

Proof (Sketch). One can prove the theorem following exactly the same frame-
work of Theorem 4, with a few differences. First off, we define a natural entangled
version of the expectation game where, in addition to allowing entanglement in
a pebbling configuration, we define the potential as

Φl(P) = timel(Ln, C = [n], 1, T∗,l, P) ,

i.e., the expected time complexity for one challenge of an optimal entangled
strategy T∗,l starting from the (entangled) pebbling configuration P .

First off, a proof similar to the one of Lemma 5, based on a Chernoff bound,
can be used to show that if we separate challenges in t chunks of λ challenges
each, and we look at the configuration P at the beginning of each of the t chunks,
then there exists at least one challenge (out of λ) which requires spending time
Φl(P) to be covered, except with small probability.

A lower bound on the cumulative complexity of the (entangled) expectaton
game follow exactly the same proof as Lemma 6. This is because the following
two facts (which correspond to the two lemmas in the proof of Lemma 6) are
true also in the entanglement setting

– First off, for every P and T∗,l such that Φl(P) = timel(Ln, C = [n], 1, T∗,l, P),
Lemma 3 guarantees that there exist a (regular) pebbling strategy T

′
and a

(regular) pebbling configuration P ′ such that w(P) ≥ |P ′| and

Φl(P) = timel(Ln, C = [n], 1, T∗,l, P)

≥ time(Ln, C = [n], 1, T
′
, P ′) ≥ Φ(P ′) .

Therefore, by Lemma 7,

w(P) · Φl(P) ≥ |P ′| · Φ(P ′) ≥ n

6
.

– Second, the potential can decrease by at most one when making an arbitrary
step from one configuration P to one configuration P ′. This is by definition
– assume it were not the case, and Φl(P ′) < Φl(P)− 1. Then, there exists a
strategy to cover a random challenge starting from P wich first moves to P ′

in one step, and then applies the optimal strategy achieving expected time
Φl(P ′). The expected number of steps taken by this strategy is smaller than
Φl(P), contradicting the fact that Φl(P) is the optimal number of steps
required by any strategy. ut

4 From Pebbling to pROM

4.1 Trancscipts and Traces

We will now define the notion of a trace and transcript, which will allow us
relate the computeLabel and pebblel experiments. For any possible sequence of
challenges c ∈ Cm, let cntc denote the number of steps (i.e., the variable cnt)
made in the computeLabel(G,C,m, A, σinit, h) experiment conditioned on the m
challenges being c (note that once c is fixed, the entire experiment is deter-
ministic, so cntc is well defined). Let τc = q1|q2| . . . |qcntc be the trace of the
computation: here q1 ⊂ [n] means that the first batch of parallel queries were
the queries required to output the labels {`i, i ∈ q1}, etc..

For example τ7 = 2|4, 5|7 in the example below corresponds to a first query
`2 = h(2), then two parallel queries `4 = h(4, `1), `5 = h(5, `2), and then the final
query computing the label of the challenge `7 = h(7, `4, `5, `6).

A trace as a pebbling. We can think of a trace as a parallel pebbling, e.g.,
τ7 = 2|4, 5|7 means we pebble node 2 in the first step, nodes 4, 5 in the second,
and 7 in the last step. We say that an initial (entangled) pebbling configuration
Pinit is consistent with a trace τ if starting from Pinit, τ is a valid pebbling
sequence. E.g., consider again the traces τ7 = 2|4, 5|7, τ8 = 3|6|8 for the graph in
Figure 1, then Pinit = {1, 5, 6} is consistent with τ7 and τ8, and it’s the smallest

initial pebbling having this property. In the entangled case, Pinit
l = {〈1〉0, 〈5, 6〉1}

is consistent with τ7, τ8. Note that in the entangled case we only need a pebbling
configuration of weight 2, whereas the smallest pebbling configuration for the
standard pebbling game has weight 3. In fact, there are traces where the gap
between the smallest normal and entangled pebbling configuration consistent
with all the traces can differ by a factor Θ(n).

Turning a trace into a transcript. We define the implications Tc of a trace τc =
q1|q2| . . . |qcntc as follows. For i = 1, . . . , cntc, we add the implication (vi)→ (fi),
where vi ⊂ [n] denotes all the vertices whose labels have appeared either as
inputs or outputs in the experiment so far, and fi denotes the labels contained
in the inputs from this round which have never appeared before (if the guess for
the challenge label in this round is non-empty, i.e., ` 6= ⊥, then we include ` in
fi).

1

2

3

4

5

6

7

8

Fig. 1

Example 10. Consider the graph from Figure 1 with m = 1 and challenge set
C = {7, 8} and the traces

τ7 = 2|4, 5|7 and τ8 = 3|6|8

We get
T7 = {(2)→ 1, (1, 2, 4, 5)→ 6} T8 = {(3, 6)→ 5} (15)

Where e.g. (2) → 1 is in there as the first query is `2 = h(2), and the second
query is `4 = h(4, `1) and in parallel `5 = h(5, `2). At this point we so far only
observed the label v2 = {`2}, so the label f2 = {`1} used as input in this query
is fresh, which means we add the implication (2)→ 1.

Above we formalised how to extract a transcript Tc from (G,C,m, A, σinit, h),
with

T (G,C,m, A, σinit, h) = ∪c∈CmTc
we denote the union of all Tc’s.

4.2 Extractability and Coverability

In this section we introduce the notion of extractability and coverability of a
transcript. Below we first give some intuition what these notions have to do
with the computeLabel and pebblel experiments.

Extractability intuition. Consider the experiment computeLabel(G,C,m, A, σinit, h).
We can invoke A on some particular challenge sequence c ∈ Cm, and if at some
point A makes a query whose input contains a label `i which has not appeared
before, we can “extract” this value from (A, σinit) without explicit queuing h
for it. More generally, we can run A on several challenge sequences scheduling

queries in a way that will maximise the number of labels that can be extracted
from (A, σinit). To compute this number, we don’t need to know the entire in-
put/output behaviour of A for all possible challenge sequences, but the tran-
script T = T (G,C,m, A, σinit, h) is sufficient. Recall that T contains implication
like (1, 5, 6) → 3, which means that for some challenge sequence, there’s some
point in the experiment where A has already seen the labels `1, `5, `6, and at this
point makes a query whose input contains a label `3 (that has not been observed
before). Thus, given σinit and `1, `5, `6 we can learn `3.

We denote with ex(T) the number of labels that can be extracted using an
optimal strategy. If the labels are uniformly random values in {0, 1}w, then it
follows that σinit will almost certainly not be much smaller than ex(T) · w, as
otherwise we could compress w ·ex(T) uniformly random bits (i.e., the extracted
labels) to a string which is shorter than their length, but uniformly random
values are not compressible.

Coverability intuition. In the following, we say that an entangled pebbling ex-
periment pebblel(G,C,m,P, Pinit

l) mimics the computeLabel(G,C,m, A, σinit, h)
experiment if for every challenge sequence the following is true: whenever A makes
a query to compute some label `i = h(i, `p1 , . . . , `pt), P puts a (normal) pebble

on i. For this Pinit
l must contain (entangled) pebbles that allow to cover every

implication in T (as defined above), e.g., if (1, 5, 6)→ 3 ∈ T , then from the initial

pebbling Pinit
l together with the pebbles 〈1〉0, 〈5〉0, 〈6〉0 seen so far it must be

possible derive 〈3〉0, i.e., 〈3〉0 ∈ closure(Pinit ∪ 〈1〉0, 〈5〉0, 〈6〉0}). We say that such

an initial state Pinit
l covers T . We’re interested in the maximum possible ratio

of maxT minPinit
l,Pinit

l covers T
w(Pinit

l)
ex(T) , and conjecture that it’s a constant. That

is, whenever T is k extractable, it can be covered by an initial pebbling Pinit
l of

weight O(k). Assuming this conjecture we will be able to prove that pebbling
time complexity implies the best possible pROM time complexity for any graph,
and that cc complexity implies cumulative complexity in the pROM model for
the scrypt graph. This section is self-contained (except for Definition 1) so people
only interested in (dis)proving the conjecture just need to read the remaining
part of this section.

Definitions. Let n ∈ N, and [n] = {1, 2, . . . , n). An “implication” (X) → z
given by a value z ∈ [n] and a subset X ⊂ [n] \ z means that “knowing X
gives z for free”. We use (X) → Z as a shortcut for the set of implications
{(X)→ z : z ∈ Z}.

A transcript is a set of of implications. Consider a transcript T = {α1, . . . , α`},
each αi being an implication. We say that a transcript T is k (0 ≤ k ≤ n) ex-
tractable if there exists an extractor E that makes at most n− k queries in the
following game:

– At any time E can query for a value in [n].
– Assume E has values L ⊂ [n] and there exists an implication (X) → z ∈ T

where X ⊂ L, then E gets the value z “for free”.

– The game is over when E has received all of [n].

Every (even an empty) transcript T is 0 extractable as E can always simply
ignore T and query for 1, 2, . . . , n. Let

ex(T) = max
k

(T is k-extractable)

Example 11. Let n = 5 and consider the transcript

T = {(1, 2)→ 3, (2, 3)→ 1, (3, 4)→ 2, (1)→ 4} (16)

This transcript is 2 but not 3 extractable. To see 2 extractability consider the
E which first asks for 1, then gets 4 for free (due to (1)→ 4), next E asks for 2
and gets 3 for free (due to (1, 2)→ 3).

A set S of entangled pebbles covers an implication (X)→ z if z ∈ closure(S∪
〈X〉0), with closure as defined in Definition 1.

Definition 12 (k-coverable). We say that a transcript T is k-coverable if there
exists a set of entangled pebbles S of total weight k such that every implication in
T is covered by S. With w(T) we denote the minimum weight of an S covering
T :

w(T) = min
S that covers T

w(S)

Note that every transcript is trivially n coverable by using the pebble 〈1, . . . , n〉0
of weight n which covers every possible implication. For the 2 extractable tran-
script from Example 11, a set of pebbles of total weight 2 covering it is

S = {〈1, 2, 3〉2, 〈1, 4〉1} (17)

For example (3, 4) → 2 is covered as 2 ∈ closure(〈1, 2, 3〉2, 〈1, 4〉1, 〈3, 4〉0) =
{1, 2, 3, 4}: we first can set Γ = {3, 4} (using 〈3, 4〉0), then Γ = {1, 3, 4} using
〈1, 4〉1, and then Γ = {1, 2, 3, 4} using 〈1, 2, 3〉2.

We will be interested in the size of the smallest cover for a transcript T .
One could conjecture that every k-extractable transcript is k-coverable. Unfor-
tunately this is not true, consider the transcript

T ∗ = {(2, 5)→ 1, (1, 3)→ 2, (2, 4)→ 3, (3, 5)→ 4, (1, 4)→ 5} (18)

We have ex(T ∗) = 2 (e.g. via query 2, 4, 5 and extract 1, 3 using (2, 5) →
1, (2, 4)→ 3), but it’s not 2-coverable (a cover of weight 3 is e.g. {〈5, 1〉1}, 〈2, 3, 4〉1}).
With γn we denote the highest coverability vs extractability ration that a tran-
script over [n] can have:

Conjecture 13. Let

γn = max
T over [n]

min
S that covers T

w(S)

ex(T)
= max
T over [n]

w(T)

ex(T)

then for some fixed constant γ, γn ≤ γ for all n ∈ N.

By the example eq.(18) eq.(18) above γ is at least γ ≥ γ5 ≥ 3/2.
In Appendix B we’ll introduce another parameter shannon(w), which can

give better lower bounds on the size of a state required to realize a given tran-
script in terms of Shannon entropy.

4.3 Pebbling time complexity implies pROM time complexity
under Conjecture 13

We are ultimately interested in proving lower bounds on time or cumulative com-
plexity in the parallel ROM model. We first show that pebbling time complexity
implies time complexity in the ROM model, the reduction is optimal up to a
factor γn. Under conjecture 13, this basically answers the main open problem
left in the Proofs of Space paper [DFKP15]. In the theorem below we need the
label length w to in the order of m log(n) to get a lower bound on |σinit|. For the
proofs of space application, where m = 1, this is a very weak requirement, but
for scrypt, where m = n, this means we require rather long labels (the number
of queries q will be ≤ n2, so the log(q) term can be ignored).

Theorem 14. Consider any G = (V,E), C ⊆ V,m ∈ N, ε ≥ 0 and algorithm
A. Let n = |V | and γn be as in Conjecture 13. Let H contain all functions
{0, 1}∗ → {0, 1}w, then with probability 1 − 2−∆ over the choice of h ← H the
following holds for every σinit ∈ {0, 1}∗. Let q be an upper bound on the total
number of h queries made by A and let

k =
|σinit|+∆

(w −m log(n)− log(q))

(so |σinit| ≈ k · w for sufficiently large w), then

timepROM(G,C,m, A, σinit, h) ≥ time(G,C,m, dk · γne)

and for every 1 > ε ≥ 0

timepROMε (G,C,m, A, σinit, h) ≥ timeε(G,C,m, dk · γne)

In other words, if the initial state is roughly k · w bits large (i.e., it’s sufficient
to store k labels), then the pROM time complexity is as large as the pebbling
time complexity of pebble(G,C,m) for any initial pebbling of size k · γn (which
is O(k) assuming our conjecture). Note that the above theorem is basically tight
up to the factor γn: consider an experiment time(G,C,m,P, Pinit), then we can
come up with a state σinit of size k · w, namely σinit = {`i, i ∈ Pinit}, and define
A to mimic P, which then implies

timepROMε (G,C,m, A, σinit, h) = timeε(G,C,m,P, Pinit) with |σinit| = k · w

in particular, if we let P, Pinit be the strategy and initial pebbling of size k
minimising time complexity we get

timepROMε (G,C,m, A, σinit, h) ≥ timeε(G,C,m, k) with |σinit| = k · w

Wlog. we will assume that A is deterministic (if A is probabilistic we can always
fix some “optimal” coins). We’ll now prove two claims which will imply the
theorem

Claim. With probability 1 − 2−∆ over the choice of h ← H. If the transcript
T (G,C,m, A, σinit, h) is k-extractable, then

|σinit| ≥ k · (w −m log(n)− log(q))−∆ (19)

where q is an upper bound on the total number of h queries made by A.

Proof. Let L be an upper bound on the length of queries made by A, so we can
assume that the input domain of h is finite, i.e., h : {0, 1}≤L → {0, 1}w. Let |h|
denote the size of h’s function table.

Let `i1 , . . . , `ik be the indices of the k labels (these must not be unique) that
can be “extracted”, and let h− denote the function table of h, but where the
rows are in a different order (to be defined), and the rows corresponding to the
queries that output the labels to be extracted are missing, so |h| − |h−| = k · w.

Given the state σinit, the function table of h− and some extra information α
discussed below, we can reconstruct the entire function table of h. As this table
is uniform, and a uniform string of length s cannot be compressed below s−∆
bits except with probability 2−∆, we get that with probability 1− 2−∆ eq.(19)
must hold, i.e.,

|σinit|+ |h−|+ |α| ≥ |h| −∆

as |h| − |h−| = k · w we get

|σinit| ≥ k · w − |α| −∆

It remains to define α and the order in which the values in h− are stored. For
every label to be extracted, we specify on what challenge sequence to run the
adversary A, and where exactly in this execution the label we want to extract
appears (as part of a query made by A). This requires up to m log(n) + log(q)
bits for every label to be extracted, so

|α| ≤ k · (m · log(n) + log(q))

The first part of h− now contains the outputs of h in the order in which they are
requested by the extraction procedure just outlined (if a query is made twice,
then we have to remember it and not simply use the next entry in h−). Let us
stress thaw we only store the w bit long outputs, not the inputs, this is not a
problem as we learn the corresponding inputs during the extraction procedure.
The entries of h which are not used in this process and are not extracted labels,
make up the 2nd part of the h− table. As we know for which inputs we’re still
missing the outputs, also here we just have to store the w bit long outputs such
that the inputs are the still missing inputs in lexicographic order.

Let us mention that if A behaved nice in the sense that all its queries were
the real requires required to compute labels, then we would only need log(n) bits
extra information per label, namely the indices i1, . . . , ik. But as A can be have
arbitrarily, we can’t tell when A actually uses real labels as inputs or some junk,
and thus must exactly specify where the real labels to be extracted show up.

Claim. If the transcript T = T (G,C,m, A, σinit, h) is k-extractable (i.e., ex(T) =
k), then

timepROM(G,C,m, A, σinit, h) ≥ time(G,C,m, dk · γne) (20)

and for any 1 > ε ≥ 0

timepROMε (G,C,m, A, σinit, h) ≥ timeε(G,C,m, dk · γne) (21)

Proof. We will only prove the first statement eq.(20). As T is k-extractable,
there exist (P, P l) where P l is of weight ≤ dk · γne such that

timel(G,C,m,P, P l) = timepROM(G,C,m, A, σinit, h)

The claim now follows as

timel(G,C,m,P, P l) ≥ timel(G,C,m, dk · γne) = time(G,C,m, dk · γne)

where the first inequality follows by definition (recall that w(P l) ≤ dk · γne)
and the second by Lemma 3 which states that for time complexity, entangled
pebblings are not better than normal ones.

Theorem 14 follow directly from the two claims above.

4.4 The cumulative pROM complexity of the chain graph under
Conjecture 13

Throughout this section Ln = (V,E), V = [n], E = {(i, i + 1) : i ∈ [n − 1]}
denotes the chain of length n, and the set of challenge nodes C = [n] contains
all verticies. In Section 3 we showed that – with overwhelming probability over
the choice of a function h : {0, 1}∗ → {0, 1}w – the cumulative parallel entangled
pebbling complexity for pebbling n challenges on a chain of length n is

ccl(Ln, C = [n], n, n) = Ω

(
n2

log2(n)

)
this then implies a lower bound on he cumulative memory complexity in the
pROM against the class Al of adversaries which are only allowed to store “en-
coding” of labels.

cmcpROMAl (Ln, C = [n], n, n) = Ω

(
w · n2

log2(n)

)
This strengthens previous lower bounds which only proved lower bounds for cc
complexity, which then implied security against pROM adversaries that could
only store plain labels. In Section A we showed that ccl can be strictly lower
than cc, thus, at least for some graphs, the ability to store encodings, not just
plain labels, can decrease the complexity.

In this section we’ll show a lower bound on cmcpROM(G, C,m), i.e., without
making any restrictions on the algorithm. Our bound will again depend on the
parameter γn from Conjecture 13. We only sketch the proof as it basically follows
the proof of Theorem 4.

Theorem 15. For any n ∈ N, let Ln = (V = [n], E = {(i, i+ 1) : i ∈ [n− 1]}
be the chain of length n and γn be as in Conjecture 13, and the label length
w = Ω(n log n), then

cmcpROM(Ln, C = [n], n, σinit) = Ω

(
w · n2

log2(n) · γn

)
and for every ε > 0

cmcpROMε (Ln, C = [n], n, σinit) = Ωε

(
w · n2

log2(n) · γn

)
Proof (Proof sketch). We consider the experiment computeLabel(Ln, C, n, A, σinit, h)
for the A achieving the minimal cmcpROM complexity if h is chosen at random (we
can assume A is deterministic). Let (P, Pinit) be such that pebblel(Ln, C, n,P, Pinit)
mimics (as defined above) this experiment. By Theorem 9, ccl(Ln, C = [n], n, n) =
Ω
(
n2/log2(n)

)
, unfortunately – unlike for time complexity – we don’t see how

this would directly imply a lower bound on cmcpROM.
Fortunately, although Theorems 4 and 9 are about cc complexity, the proof

is based on time complexity: At any timepoint the “potential” of the current
state lower bounds the time required to pebble a random challenge, and if the
potential is small, then the state has to be large (cf. Claim 7).

For any 0 ≤ i ≤ n and c ∈ Ci let σc denote the state in the experiment
computeLabel(Ln, C, n, A, σinit = ∅, h) right after the i’th label has been computed
by A and conditioned on the first i challenges being c (as A is deterministic and
we fixed the first i challenges, σc is well defined).

At this point, the remaining experiment is computeLabel(Ln, C, n−i, A, σc, h).
Similarly, we let Pc denote the pebbling in the “mimicing” pebblel(Ln, C, n −
i,P, Pc) experiment after P has pebbled the challenge nodes c. Let P ′c be the
entangled pebbling of the smallest possible weight such that there exists a P′

such that pebblel(Ln, C, n − i,P, Pc) and pebblel(Ln, C, n − i,P′, P ′c) make the
same queries on all possible challenges.

The expected time complexity to pebble the i+1’th challenge in pebblel(Ln, C, n−
i,P′, P ′c) – and thus also in computeLabel(Ln, C, n − i, A, σc, h) – is at least
n/2 · w(P ′c) by Claim 7. And by Theorem 14, we can lower bound the size
of the state σc as (assuming w is sufficiently larger than log(n))

|σc| ≥ Ω(w · w(P ′c)/γn)

The cc cost of computing the next (i + 1)th label in computeLabel(Ln, C, n −
i, A, σc, h) – if we assume that the state remains of size at lest |σc| until this label
is computed – is

n

2 · w(P ′c)
· |σc| = Ω

(
n

w(P ′c)
· w · w(P ′c)

γn

)
= Ω

(
n · w
γn

)
As there are n challenges, this would give an Ω(n2 · w/γn) bound on the overall
cc complexity. Of course the above assumption that the state size never decreases
is not true in general, we don’t want to make any assumptions on A’s behaviour.

In the above argument, we don’t actually use the size |σc| of the current
state, but rather the potential of the lightest pebbling P ′c necessary to mimic
the remaining experiment. Following the same argument as in Theorem 4 (in
particular, using Claim 8) on can show that the potential must remain almost
constant for some of the n challenges. This argument will lose us a 1/ log2(n)

factor in the cc complexity, giving a Ω
(
w · n2

log2(n)·γn

)
as claimed.

Acknowledgments

Joël Alwen, Chethan Kamath, and Krzysztof Pietrzak’s research is partially
supported by an ERC starting grant (259668-PSPC). Vladimir Kolmogorov is
partially supported by an ERC consolidator grant (616160-DOICV). Binyi Chen
was partially supported by NSF grants CNS-1423566 and CNS-1514526, and
a gift from the Gareatis Foundation. Stefano Tessaro was partially supported
by NSF grants CNS-1423566, CNS-1528178, and the Glen and Susanne Culler
Chair.

This work was done in part while the authors were visiting the Simons Insti-
tute for the Theory of Computing, supported by the Simons Foundation and by
the DIMACS/Simons Collaboration in Cryptography through NSF grant CNS-
1523467.

References

[AABS14] Leonardo C. Almeida, Ewerton R. Andrade, Paulo S. L. M. Barreto, and
Marcos A. Simplicio Jr. Lyra: Password-based key derivation with tunable
memory and processing costs. Cryptology ePrint Archive, Report 2014/030,
2014. http://eprint.iacr.org/2014/030.

[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and
memory-hard functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors,
47th ACM STOC, pages 595–603. ACM Press, June 2015.

[BDK15] Alex Biryukov, Daniel Dinu, and Dmitry Khovratovich. Fast and tradeoff-
resilient memory-hard functions for cryptocurrencies and password hashing.
Cryptology ePrint Archive, Report 2015/430, 2015. http://eprint.iacr.

org/2015/430.
[BK15] Alex Biryukov and Dmitry Khovratovich. Tradeoff cryptanalysis of memory-

hard functions. Cryptology ePrint Archive, Report 2015/227, 2015. http:

//eprint.iacr.org/2015/227.
[CJM14] Time memory tradeoff analysis of graphs in password hashing constructions.

pages 256–266, 2014.
[DFKP15] Stefan Dziembowski, Sebastian Faust, Vladimir Kolmogorov, and Krzysztof

Pietrzak. Proofs of space. In Rosario Gennaro and Matthew J. B. Rob-
shaw, editors, CRYPTO 2015, Part II, volume 9216 of LNCS, pages 585–605.
Springer, Heidelberg, August 2015.

[DKW11] Stefan Dziembowski, Tomasz Kazana, and Daniel Wichs. One-time com-
putable self-erasing functions. In Yuval Ishai, editor, Theory of Cryptog-
raphy, volume 6597 of Lecture Notes in Computer Science, pages 125–143.
Springer Berlin Heidelberg, 2011.

[DNW05] Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work.
In Victor Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume
3621 of Lecture Notes in Computer Science, pages 37–54. Springer Berlin
Heidelberg, 2005.

[FLW13] Christian Forler, Stefan Lucks, and Jakob Wenzel. Catena: A memory-
consuming password scrambler. Cryptology ePrint Archive, Report
2013/525, 2013. http://eprint.iacr.org/2013/525.

[Lee11] Lee, Charles. Litecoin, 2011.
[Mar] Crypto-Currency Market Capitalizations. http://coinmarketcap.com/. Ac-

cessed: 2015-10-07.
[Per09] Colin Percival. Stronger key derivation via sequential memory-hard func-

tions. 2009.
[PJ] C. Percival and S. Josefsson. The scrypt password-based

key derivation function. https://datatracker.ietf.org/doc/

draft-josefsson-scrypt-kdf/?include_text=1. Accessed: 2015-10-
07.

[PPA+15] Sunoo Park, Krzysztof Pietrzak, Joël Alwen, Georg Fuchsbauer, and Pe-
ter Peter Gaži. Spacecoin: A cryptocurrency based on proofs of space. Cryp-
tology ePrint Archive, Report 2015/528, 2015. http://eprint.iacr.org/

2015/528.

A Entanglement Can Improve Cumulative Complexity.

In this section we show that – unlike for time complexity – for cumulative
complexity entanglement helps: For the graph in Figure 2 given challenge set
C = {C1, . . . , C8} and letting m = k = 1 we get

ccl(G,C,m = 1, k = 1, 0) = 3n+ 4 (22)

cc(G,C,m = 1, k = 1, 0) ≥ 3.5n (23)

Thus, the cumulative complexity of the best standard pebbling (form = 1 rounds
with an initial pebbling of weight 1) is a factor 7/6 more expensive than the best
entangled pebbling with the same parameters. This constant can be improved
arbitrarily close to 1.5. We leave it as an interesting open question whether it is
possible to come up with a family of graphs where this gap is a superconstant
factor.

To see eq.(22), consider the initial pebbling configuration Pinit = {〈A,B〉1}
and suppose we are given a challenge Ci with i ∈ [n]. We keep the entangled
pebble 〈A,B〉1, and if i ≤ 4 then pebble the nodes n and 2n simultaneously (by
pebbling 1, n + 1, then 2, n + 2, etc.). Otherwise, when i ≥ 5, pebble nodes 3n
and 4n simultaneously. In either case the is cost 3n (as it takes n steps where
at any step the entire entangled pebbling configuration has weight 3). Once we
have n and 2n pebbled (or 3n and 4n as the case may be), one more step gives
us A (or B), and then from 〈A,B〉1 we get B (or A). Thus, in the next step we
can immediatly pebble the challenge node Ci. So, cumulative complexity (sum
of the weight of the pebbling over all timesteps) is 3n+ 4.

To see eq.(23), one first must convince oneself that the best initial pebbling
is to put a pebble on either A or B (the reason we have as many as 8 challenge

nodes is to make sure that putting the pebble on any one of them will not be
optimal). If we have a pebble on A, then we can pebble Ci for any i ≥ 5 at a
cost of 3n+O(1), while for i ≤ 4 this pebble is useless, and the cost is 4n+O(1),
thus, in expectation the cc cost will be 3.5n+O(1).

1 2 n− 1 n

n+ 1 n+ 2 2n− 1 2n

2n+ 1 2n+ 2 3n− 1 3n

3n+ 1 3n+ 2 4n− 1 4n

A

B C5 C6 C7 C8

C1 C2 C3 C4

Fig. 2: A graph whose entangled pebbling complexity is lower than its classical
pebbling complexity.

B Neither Extractability nor Coverability are Optimal

As we’ll show in Section 4.3, given a transcript T := T (G,C,m, A, σinit, h), the ex-
tractability ex(T) implies a lower bound on the size of the state σinit of w · ex(T)
(w being the length of the labels, in this informal discussion we ignore addi-
tive terms of size O(n log n)). Whereas the weight w(T) gives a lower bound of

timel(G,C,m,w(T)) (i.e., in terms of lower bonds on time complexity of the en-
tangled pebbling game) on the time complexity of computeLabel(G,C,m, A, σinit, h).
At the same time w·w(T) is an upper bound on the necessary size of the state σinit
in the sense that there exists an algorithm A′ (which depends only on A) such that
we always can find a σinit

′, |σinit′| ≤ w · w(T) where T (G,C,m, A′, σinit
′, h) = T .

Thus, the bound we will prove is tight up to a factor w(T)/ex(T), which
we conjecture to be constant. For the transcript T ∗ from eq.(18) we showed
w(T)/ex(T) = 3/2 = 1.5, which raises the question which of the two quantities
is not “optimal”. The answer is both, and T ∗ is an example for which neither
quantity is optimal.

Using an automated prover for Shannon inequalities13, we showed that any
state which is sufficient to realize the implications form T ∗ must have size at
least 2.5 ·w. Concretely, if the labels are uniform of length w, which in particular
implies their Shannon entropy is at least w, i.e.,

H(`1) = H(`2) = . . . = H(`5) = w

13 http://xitip.epfl.ch/

and the implications from T ∗ can be satisfied given some initial state σinit, which
means

H(`1|`5, `2, σinit) = H(`2|`1, `3, σinit) = . . . = H(`5|`4, `1, σinit) = 0 (24)

and moreover the `i are all independent, then the basic Shannon inequalities
imply that the state must be of size at least

H(σinit) ≥ 2.5 · w

For even w, we can show that a state σinit of length 2.5 ·w bits satisfying eq.(24)
exists. Let Li‖Ri = `i, Li, Ri ∈ {0, 1}w/2, then

σinit = {L1 ⊕ L2, R2 ⊕R3, L3 ⊕ L4, R4 ⊕R5, L5 ⊕R1}

satisfies eq.(24). For example H(`1|`5, `2, σinit) = 0 as `1 = R1‖L1 can be com-
puted from the conditional part (and thus has no entropy) as R1 = (L5⊕R1)⊕L5

and L1 = (L1 ⊕ L2)⊕ L2.
For a transtcript T , let shannon(T) denote the lower bound (divided by the

label length w) on the size of a state required to satisfy the implications in T , so
shannon(T ∗) = 2.5, and in general ex(T) ≤ shannon(T) ≤ w(T). We conjecture

Conjecture 16. Let

Γn = max
T over [n]

w(T)

shannon(T)

then for some fixed constant Γ , Γn ≤ Γ for all n ∈ N.

This conjecture is presumably weaker than Conjecture 13 as shannon(T) ≥
ex(T) for any T . Unfortunately Shannon entropy of a variable is the expected
length of its shortest encoding, whereas ex(T) gives us a lower bound of almost
w · ex(T) with high probability. For his reason shannon(T) seem much less
convenient to work with than ex(T), and we state our results in terms of γn
from Conjecture 13, not Γn.

C Proof of Lemma 5

Proof (Lemma 5). For an arbitrary pebbler T
′

and initial pebbling configuration
Pinit (s.t. |Pinit| ≤ k), we define lc-pebblen,t·λ(T

′
, Pinit) to be the output cost of

game pebble(Ln, C = [n], t ·λ, T′, Pinit). In particular, let c be any value such that

P(lc-pebblen,t·λ(T
′
, Pinit) ≥ c) ≤ 1− δ .

Assume without loss of generality the pebbler T
′

is legal and deterministic. We
are going to build a new pebbler T = Tλ for expectn,t such that

P(expectn,t(T, Pinit) ≥ 2c) ≤ 1− δ + 3µ(λ) . (25)

Note that this implies the theorem, since by taking the appropriate pebbler
T
′

and configuration Pinit, we can make c as close as we wish to ccδ(Ln, C =
[n], t · λ, k). But then, this implies in particular that ccδ−3µ(λ)(expectn,t,k) ≤ 2c

by (25).

More concretely, the (randomized) pebbler T is going to internally simulate
the (t·λ)-round execution of game lc-pebblen,t·λ with pebbler T

′
and configuration

Pinit. Here, for simplicity of explanation, we denote P ′i,j to be the jth pebbling
configuration of round i in pebbling game; and Pi,j to be the jth pebbling con-
figuration of round i in expectation game. In each round i ∈ [t], T simulates the λ
consecutive rounds r(i)+1, . . . , r(i)+λ of the execution of T

′
with the challenger

from lc-pebblen,t·λ, where r(i) = (i − 1) · λ. This in particular entails sampling

λ challenges vr(i)+1, . . . , vr(i)+λ
$←− [n], and running T

′
(from its current state)

being fed these challenges. Then, T simply checks that the returned sequence P ′

of configurations (which includes the configurations returned in all λ rounds)

P ′ = (P ′r(i)+1,1, . . . , P
′
r(i)+1,tr(i)+1

), . . . , (P ′r(i)+λ,1, . . . , P
′
r(i)+λ,tr(i)+λ

)

are made of at least φ(P ′r(i)+1,0) sets, i.e., t(i) :=
∑λ
j=1 tr(i)+j ≥ φ(P ′r(i)+1,0). If

so, T simply outputs Pi = P ′ for the i-th round. Otherwise, T simply obtains
Pi by extending P ′ to contain φ(P ′r(i)+1,0) sets before outputting, for example

by repeating every configuration in P ′ v times, for the smallest v such that
v · t(i) ≥ φ(P ′r(i)+1,0). Note that this increases by a factor v the cumulative cost
of the pebbling output in this round by T, and thus we want to keep v as small
as possible, say v ≤ 2. In particular, note that t(i) ≥ λ, since tr(i)+j ≥ 1 for all
i ∈ [λ], thus this is guaranteed implicitly when φ(P ′r(i)+1,0) ≤ 2λ.

By construction, it is not hard to see that T is a legal pebbler for expectn,t(·, Pinit),
i.e., the game never output ∞. However, we now need to show that its cc does
not grow too much compared to that of T

′
in lc-pebblen,t·λ(T

′
, Pinit). To do this,

we are going to prove that except with probability µ over the choice of the t · λ
challenges, we have t(i) ≥ φ(P ′r(i)+1,0)/2, or in other words, we can always pick
v ≤ 2 in all t rounds with probability at least 1− µ.

Before we prove this fact, note that this is enough to conclude the proof,
as in particular this implies that with probability 1 − µ over the choices of the
challenges (denote the corresponding event as G), we have expectn,t(T, Pinit) ≤
2 · lc-pebblen,t·λ(T

′
, Pinit), and thus

P(expectn,t(T, Pinit) ≥ 2c) ≤ P(¬G) + P(expectn,t(T, Pinit) ≥ 2c | G)

≤ µ+ P(lc-pebblen,t·λ(T
′
, Pinit) ≥ c | G)

≤ µ+
1− δ
1− µ

≤ µ+ (1− δ)(1 + 2µ) = 1− δ + 3µ .

where we have used the fact that for any two events A and B, P(A | B) ≤
P(A)/P(B).

We are now left with proving that P(¬G) ≤ µ. To this end, let P ′r(i)+1,0 =

{`1, `2, . . . , `m} be the starting configuration in round i of T, respectively in
round r(i)+1 of the simulated T

′
. Consider the sampling of the next λ challenges

vr(i)+1, . . . , vr(i)+λ. Since P ′ output by T
′
is always legal, all of vr(i)+1, . . . , vr(i)+λ

must be contained in one of its configurations. For every challenge vj , let dj =
vj − `j∗ , where `j∗ is the largest element in P ′r(i)+1,0 which is not larger than vj .
Then, it is clear that we must have

t(i) ≥ max
j∈[λ]

dr(i)+j ≥
1

λ

λ∑
i=1

dr(i)+j =: d(i) ,

since we need to take at least as many pebbling steps to cover, starting in
P ′r(i)+1,0, the farthest of the λ challenges from a position which has a pebble in

P ′r(i)+1,0.

Note that the expectation of d(i) (over the choice of the λ challenges) is
exactly,

E(d(i)) =
m

n
+

1

2n

m∑
i=0

(`i+1 − `i) · (`i+1 − `i − 1) = φ(P ′r(i)+1,0) .

Moreover, E(d(i)) = E(dr(i)+j) for all j ∈ [λ]. Now let us assume that φ(P ′r(i)+1,0) ≥
λ. (Otherwise, t(i) ≥ φ(P ′r(i)+1,0)/2 already.) By the Chernoff bound, we have

P(t(i) < φ(P ′r(i)+1,0)/2) ≤ P(d(i) < φ(P ′r(i)+1,0)/2)

= P(

λ∑
i=1

dr(i)+j ≤ λφ(P ′r(i)+1,0)/2) ≤ e−λ
2/8 .

The final bound on µ follows by the union bound and the fact that there are t
rounds.

