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Abstract. In this paper, we focus on the automatic differential crypt-
analysis of ARX block ciphers with respect to XOR-difference, and de-
velop Mouha et al.’s framework of finding differential characteristics by
adding a new method for constructing long characteristics from short
ones. The new method reduces the searching time a lot and makes
it possible to search differential characteristics for ARX block ciphers
with large word sizes. Also, we take the differential effect into consid-
eration and find that the differential probability increases by a factor
of 4 ∼ 210 when multiple characteristics are counted in. The efficien-
cy of our method is demonstrated by improved attacks of SPECK and
LEA, which cover 1, 1, 4 and 5 more rounds of SPECK48, SPECK64,
SPECK96 and SPECK128, respectively, and 2 more rounds of LEA-128.
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1 Introduction

ARX ciphers are a broad class of symmetric-key cryptographic algorithms that
only consists of three operations: additions modulo 2n, bit rotations and X-
ORs. Some examples of ARX ciphers are: the block cipher FEAL [15], TEA
[18], SPECK [4], LEA [11], the stream cipher Salsa20 [5], the SHA-3 finalists
Skein [9] and Blake [3]. To evaluate the security of an ARX cipher, differential
cryptanalysis [6] is one of the most important attacks that should be considered.

Even though ARX ciphers have a long history for use, their security analysis
are lagging behind. For S-box based symmetric-key ciphers, their security against
differential cryptanalysis is measured by the number of active S-boxes. On the
contrary, there is no rigorous security proof of ARX ciphers against differential
cryptanalysis in existing literature, so searching optimal differentials becomes
the only way for evaluation. In 2013, Mouha et al. introduce a framework [14]
for searching optimal differential characteristics of ARX ciphers, assuming all
the operations in the cipher are independent. From the application to Salsa20,
the assumption is shown to be invalid sometimes. In [2, 1], Biryukov et al. extend
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Matsui’s algorithm and based on partial difference distribution tables, a tool is
proposed for automatically searching differential characteristics in ARX ciphers.
This tool is applicable to differential search with respect to both XOR- and
ADD- differences. However, the searching results are not applicable for large
word sizes such as n = 48, 96.

In this paper, we focus on the automatic differential cryptanalysis of ARX
block ciphers with respect to XOR-difference. apply Mouha et al.’s framework of
finding differential characteristics to ARX block ciphers where the assumption
of independent additions holds, and develop the framework by adding a new
method for constructing long characteristics from short ones. This new method
reduces the searching time, especially for large word size. Also, we take the
differential effect into consideration and find that the differential probability
increases by a factor of 4 ∼ 210 when multiple characteristics are counted in.
The efficiency of our new method can be demonstrated by the application to
two block ciphers: SPECK and LEA, in which better differentials are found and
differential attacks against them are improved. The results are summarized in
Table 1 and compared with the best ones of previous works. As can be seen,
for SPECK we reduce the complexities of differential attack on SPECK32/64,
and attack 1, 1, 4 and 5 more rounds against SPECK48, SPECK64, SPECK96
and SPECK128, respectively; for LEA, except the attacks in the specification
we provide the first differential analysis for it and attack 13, 13 and 15 rounds
of LEA-128, LEA-192 and LEA-256, respectively.

The rest of this paper is organized as follows. Section 2 provides a background
of differential cryptanalysis; Section 3 elaborates on searching method developed
in this paper; Section 4 briefly describes the two block ciphers SPECK and LEA;
in Section 5 we provide the searching results for differentials of SPECK and LEA,
on which attacks are launched; Section 6 is a short discussion; and finally, the
last section is the conclusion.

A few words on notations: differences here are expressed using XOR; values
for differences are represented in hexadecimal.

2 Background

This section briefly reviews the differential cryptanalysis and differential prop-
erties of addition. In the end, the assumption we take in this paper is clarified.

2.1 Differential cryptanalysis

Differential cryptanalysis was introduced by Biham and Shamir in [6]. For block
ciphers, it is used to analyze how input differences lead to output differences. If
certain input/output difference happens in a non-random way, it can be used to
build a distinguisher or even to recover keys.

To consider the security of iterated block ciphers against differential crypt-
analysis, Lai et al. first introduced the theory of Markov ciphers and made a
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Table 1. Previous attacks and our new attacks on SPECK.

Variant Rounds attacked/ Time Data Memory Reference
Total rounds (CP)

SPECK32/64 14/22 263 231 222 [7]
14/22 261.41 229.41 222 This paper

SPECK48/72 14/22 265 241 222 [7]
15/22 268.31 244.31 222 This paper

SPECK48/96 15/23 289 241 222 [7]
16/23 292.31 244.31 222 This paper

SPECK64/96 18/26 293 261 222 [7]
19/26 292.56 260.56 222 This paper

SPECK64/128 19/27 2125 261 222 [7]
20/27 2124.56 260.56 222 This paper

SPECK96/96 16/28 285 285 222 [7]
18/28 285 285 222 This paper
20/28 294.94 294.94 222 This paper

SPECK96/144 17/29 2133 285 222 [7]
19/29 2133 2133 222 This paper
21/29 2142.94 294.94 222 This paper

SPECK128/128 17/32 2113 2113 222 [7]
22/32 2124.70 2124.70 222 This paper

SPECK128/192 18/33 2177 2113 222 [7]
23/33 2188.70 2124.70 222 This paper

SPECK128/256 19/34 2241 2113 222 [7]
24/34 2252.70 2124.70 222 This paper

LEA-128 12/24 284 2100 276 [11]
LEA-128 14/24 2124.02 2124.02 222 This paper
LEA-192 14/28 2124.02 2124.02 222 This paper
LEA-256 15/32 2252.02 2124.02 222 This paper
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distinction between a differential and a differential characteristic [12]. A differ-
ential is a difference propagation from an input difference to an output difference,
while a differential characteristic specifies not only the input/output difference,
but also all the internal differences after each round. For a Markov cipher, the
probability of a differential characteristic is the multiplication of difference tran-
sition probabilities of each round, and the probability of a differential is equal to
the sum of the probabilities of all differential characteristic which correspond to
the differential. Practically, an iterated block cipher is taken as a Markov cipher
when the key schedule generates (almost) random round keys.

In this paper, we consider XOR-differences, and assume the round keys are
random. If the round keys are xored in the encryption, the key part can be
neglected in differential searching.

2.2 Estimating differential probabilities for ARX ciphers

For ARX block ciphers, only additions modulo 2n are non-linear operations and
propagate differences indefinitely. So we focus on calculating differential proba-
bility of addition. In [13], Lipmaa and Moriai study the differential properties
of addition. Let xdp+(α, β → γ) be the XOR-differential probability of addition
modulo 2n, with input difference α, β and output difference γ. The authors prove
that the differential (α, β → γ) is valid if and only if

eq(α≪ 1, β ≪ 1, γ ≪ 1) ∧ (α⊕ β ⊕ γ ⊕ (β ≪ 1)) = 0, (1)

where
eq(x, y, z) := (¬x⊕ y) ∧ (¬x⊕ z). (2)

For every valid differential (α, β → γ), the weight w(α, β → γ) is defined as
follows:

w(α, β → γ) := − log2(xdp
+(α, β → γ)).

The weight of a valid differential can be calculated as:

w(α, β → γ) = h(¬eq(α, β, γ)), (3)

where h(x) denotes the number of non-zero bits in x except the most significant
bit.

Assumption of independent additions In this paper, we assume that
additions in the block cipher are independent of each other with regard to XOR-
difference due to the use of round keys. Under this assumption, the probability
of a differential characteristic is equal to the multiplication of the probabilities
of all addition operations. Specifically, we calculate the weight of a differential
characteristic as the sum of the weights of all addition operations.

3 Automatic Search for Characteristics and Differentials
in ARX Block ciphers

In this section we elaborates on the searching method used in this paper.
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3.1 Mouha’s framework to search differential characteristics of
ARX ciphers

In [14], Mouha and Preneel construct a framework to search for optimal differen-
tial characteristics of ARX ciphers and apply it to Salsa20. In their framework,
a typical Satisfiability Modulo Theory (SMT) solver STP [10] is used. STP is
built upon a SAT solver. Since many word-wise operations are included in its
input language, it is suitable for searching problems of ARX ciphers.

In the framework, they find differential characteristics up to a certain weight
W with STP as follows. First, they write simple equations in respect of XOR-
difference for every addition, rotation and XOR of the ARX cipher as follows.

– Use n-bit variables to represent input difference words.
– Introduce additional n-bit variables to represent the differences after the

addition, XOR, and rotation operations when required.
– Use Equation (1( and (2) for every addition modulo 2n of the ARX cipher to

ensure that the input and output differences correspond to a valid differential
of the addition operation.

– Include Equation (3) to calculate the weight of each addition operation, and
represent the sum of weights of all additions with W , which corresponds to
the weight of the differential characteristics under consideration.

– Specify that input difference is non-zero and restrict W to a maximum of a
certain number.

Second, they feed the equations generated into STP. STP converts these
equations into formulae of conjunctive normal form (CNF), and then invokes an
underlying SAT solver to find solutions.

Although Mouha’s framework that multiplies the differential probabilities of
all additions was originally applied to a stream cipher, it is more suitable for
ARX block ciphers where a round key is XORed each round. The reason is that
additions in an ARX stream ciphe are usually not independent, while additions
in an ARX block cipher may be independent due to the use of round keys.

3.2 Obtaining a long characteristic from two short ones

Mouha’s framework can be applied directly to ARX block ciphers where ad-
ditions are independent with regard to XOR-difference. However, due to the
limitation of computation power, it takes too much time to find a long char-
acteristic. In this paper, we introduce a method to obtain a long characteristic
from two short ones. The method lies in searching differential characteristics
from an internal difference which has only one active bit. This idea for searching
long characteristics was inspired by the phenomenon that many searched char-
acteristics with best probabilities have a special internal difference with only one
active bit which usually leads to a differential transition of the nearest round
with probability 1.

The method for obtaining long characteristics is illustrated in Fig. 1. First,
we set an internal difference after some rounds D to be a value where only
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one bit is nonzero, and then search forward and backward independently to get
two short characteristics. After that we combine these two short characteristics
together to get a long one. Since either the input or output difference is fixed, two
short characteristics with best probability can be easily searched. Note that this
method saves much time for searching long characteristics, but doesn’t always
guarantee best characteristics.

DD

Δ1 

Δ2 Δ2 

Δ1 

(1) searching backward (2) searching forward (3) connecting

r1  rounds

r2 rounds

r1+r2  rounds

Fig. 1. Obtaining a longer characteristic from two shorter ones.

This method in differential attack resembles the one used in boomerang at-
tack [17]. However, conditions for the two short characteristics are different.
Suppose the probabilities of the two short characteristics are p and q respective-
ly, and the block size is N . For differential attack, pq > 2−N and the two short
characteristics must be connected, while for boomerang attack pq > 2−N/2+1

but the two short characteristics are independent.

3.3 Characteristics to differentials

For ARX ciphers, the probability of one characteristic cannot well approximate
the probability of the corresponding differential because of a strong differential
effect, that is, between the input difference and the output difference there are
many characteristics.

To calculate the differential probability as accurately as possible, more char-
acteristics sharing the same input and output difference should be counted in.
After a good characteristic is obtained, we fix the input and output difference,
and search all characteristics with probability less or equal than that of the one
obtained. Specifically, if the characteristic obtained has a weight W , we search
all characteristics with the same input and output difference where the weight
is W,W +1,W +2, · · · , and add the probabilities of all these characteristics to-
gether. Note that STP just outputs one solution. To find all solutions, the user
can tell STP to generate the CNF formulae and exit. A special SAT solver, such
as CryptoMiniSat [16], can then be used to get all solutions.
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4 Description of SPECK and LEA

4.1 SPECK

SPECK is family of lightweight block cipher designed by researchers from the
U.S. National Security Agency (NSA)[4]. It contains 10 variants, each of which
is characterized by its block size 2n and key size mn. For example, SPECK32/64
refers to the SPECK block cipher with block size 32 bits and key size 64 bits.
The parameters of SPECK are listed in Table 2.

Table 2. The SPECK parameters.

Block Size Key Size Word Size Key Words Rounds α β
2n mn n m T

32 64 16 4 22 7 2

48 72 24 3 22 8 3
96 4 23 8 3

64 96 32 3 26 8 3
128 4 27 8 3

96 96 48 2 28 8 3
144 3 29 8 3

128 128 64 2 32 8 3
192 3 33 8 3
256 4 34 8 3

The SPECK2n encryption maps a plaintext of two n-bit words (x0, y0) into
a ciphertext (xT , yT ), using a sequence of T rounds. The key-dependent round
function is defined as

Rk(x, y) = (((x ≫ α)� y)⊕ k, (y ≪ β)⊕ ((x ≫ α)� y)⊕ k),

where k is the round key, and rotation constants α and β are given in Table 2.
The SPECK key schedule reuses the round function to generate the round

keys k0, · · · , kT . The m-word master key K = (lm−2, · · · , l0, k0) are used as
follow:

li+m−1 = (ki � (li ≫ α))⊕ i

ki+1 = (ki ≪ β)⊕ li+m−1.

Figure 2 provides a schematic view on the round function and the key schedule
of SPECK.

4.2 LEA

LEA is an ARX block cipher designed by Hong et al.[11] and provides a high-
speed software encryption on general-purpose processors. It has the block size
of 128 bits and the key size of 128, 192, or 256 bits. We denote the algorithms
with 128-bit, 192-bit, and 256-bit keys by LEA-128, LEA-192, and LEA-256,
respectively.
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>>> α 

<<< β  

xi+1 yi+1

xi yi

ki

li+m-2 li ki

li+1 ki+1

R
i

...

Fig. 2. The round function and the key schedule of SPECK. Ri is the SPECK round
function with i acting as the round key.

The encryption of LEA maps a plaintext of four 32-bit words (x0
0, x

0
1, x

0
2, x

0
3)

into a ciphertext (xr
0, x

r
1, x

r
2, x

r
3) using a sequence of r rounds, where r = 24 for

LEA-128, r = 28 for LEA-192 and r = 32 for LEA-256. The round function for
round i, 0 ≤ i < r is defined as follows:

xi+1
0 ← ((xi

0 ⊕ rki0)� (xi
1 ⊕ rki1)) ≪ 9,

xi+1
1 ← ((xi

1 ⊕ rki2)� (xi
2 ⊕ rki3)) ≫ 5,

xi+1
2 ← ((xi

2 ⊕ rki4)� (xi
3 ⊕ rki5)) ≫ 3,

xi+1
3 ← xi

0.

where rki = (rki0, rk
i
1, rk

i
2, rk

i
3, rk

i
4, rk

i
5) is the round key, which is generated by

a key schedule. We take LEA-128 as an example. Let K = (k0, k1, k2, k3) be a
128-bit key. We set t0i = ki for 0 ≤ i < 4. For round i, 0 ≤ i < r, rki is produced
through following relations:

ti+1
0 ← (ti0 � (δi ≪ i)) ≪ 1,

ti+1
1 ← (ti1 � (δi ≪ i+ 1)) ≪ 3,

ti+1
2 ← (ti2 � (δi ≪ i+ 2)) ≪ 6,

ti+1
3 ← (ti3 � (δi ≪ i+ 3)) ≪ 11,

rki ← (ti+1
0 , ti+1

1 , ti+1
2 , ti+1

1 , ti+1
3 , ti+1

1 ).

where δi is the constant for round i. Figure 3 provides a schematic view on the
round function of LEA and the key schedule of LEA-128. For key schedules of
LEA-192 and LEA-256, please refer to appendix.

5 Searching Results and Attacks of SPECK and LEA

In this section we apply the searching method explained in Section 3 to SPECK
and LEA. For ten version of SPECK and LEA, we would like to find the longest
characteristics. To this goal, we need to find the minimal weight of differential
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Fig. 3. The round function of LEA and the key schedule of LEA-128.

characteristics with given number of rounds. Suppose the block size is N . If the
weight of an r-round differential characteristic is less than N , then the corre-
sponding differential characteristic can be used to build a distinguisher or to
recover the key. On the contrary, if the minimal weight of all r-round differen-
tial characteristics is no less than N , then no useful differential characteristic
exists for that r-round cipher. Note that even though the weight of some char-
acteristics is larger than N , the weight of the corresponding differential may be
less than N . Therefore, we also evaluate the probability of the corresponding
differential by counting in more characteristics which share the same input and
output difference. For a differential, as long as its weight is less than N , it is
useful, and our attacks in this paper are mounted based on differentials. Note
that all of the characteristics are searched with STP2.0 on a 3.4GHz Itel Core
i7-2600 processor, and CryptoMiniSat4 is used as the underlying solver of STP.

5.1 Characteristics and Differentials of SPECK

Characteristics of SPECK32 and SPECK48. We directly apply Mouha
et al.’s framework to two smallest versions of SPECK. For SPECK32, the best
9-round characteristic obtained has a weight of 30, which coincides with that
of [2]. We provides the source code for searching 9-round characteristics of
SPECK32 in Appendix D for verification. In addition, from a 10-round charac-
teristic with weight 35 as shown in Table 6, we get the corresponding differential
(0040, 2040) → (A840, 0800) with weight 31. The probability calculation of the
differential is displayed in Table 3. This 10-round characteristic is the longest
distinguisher for SPECK32 in the literature. For SPECK48, our computer takes
12.5 days to find a 11-round characteristic with weight 46, and the corresponding
differential has a weight of 43.31.

Characteristics of SPECK64, SPECK96 and SPECK128. We con-
struct long characteristics for these three lager versions of SPECK from two
short ones. Take SPECK64 as an example. We set an internal difference to be
(00000080, 00000000) and search forward and backward independently. Accord-
ing to the experiments, a 4-round forward characteristic with weight 9 and an



10 L. Song et al.

Table 3. A 10-round differential of SPECK32 with (∆x0,∆y0) = (2040, 0040),
(∆x10,∆y10) = (0800, A840).

weight #sol. log2Pr. log2Σacc

35 2 -34 -34
36 4 -34 -33
37 6 -34.42 -32.54
38 16 -34 -32.09
39 38 -33.75 -31.70
40 50 -34.36 -31.48
41 88 -34.54 -31.32
42 92 -35.48 -31.24
43 180 -35.51 -31.17
44 226 -36.18 -31.12
45 284 -36.85 -31.10
46 502 -37.03 -31.07
47 802 -37.35 -31.06
48 1296 -37.66 -31.04
49 2044 -38.00 -31.03
50 3646 -38.17 -31.02
51 5974 -38.46 -31.0109
52 10272 -38.67 -31.0038

11-round backward characteristic with weight 53 can be combined to get a 15-
round characteristic of weight 62. The corresponding differential has a weight
less than 59.56. For SPECK96 and SPECK128, the searching works similarly.
However, for both of them, differentials are derived from characteristics with
weight larger or equal than the block size. Specifically, from a 17-round charac-
teristic of SPECK96 with weight 96 we get a 17-round differential with weight
less than 93.94; from a 19-round characteristic of SPECK128 with weight 129,
a 19-round differential with weight less than 123.70. The times for searching
long characteristics for SPECK64, SPECK96 and SPECK128 are 0.9 hour, 11.3
hours and 5.2 hours respectively, which are much less compared with the time
for directly searching characteristics of SPECK48.

Comparison. Table 5 compares the differentials we find with the differen-
tials of SPECK in the literature. For SPECK32, we find a 10-round differential
with probability 2−31.02, the best distinguisher of SPECK32 to date. We also
find a 9-round characteristic of SPECK32 that coincides with that of [2] but
has a tighter estimation of differential probability. For SPECK48, we obtain
an 11-round characteristic with a better weight. For SPECK64, SPECK96 and
SPECK128, the characteristics which we find cover 1, 4 and 4 more round(s)
than previous works.

5.2 Characteristics and Differentials of LEA

Characteristics of LEA. We construct long characteristics for LEA from two
short ones. We set an internal difference to be (00000100, 00000000, 00000000, 000
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Table 4. Comparison of our differentials of SPECK with previous ones.

Block Rounds Prob. Input Output Reference
Size r Difference Difference

32
9 2−30 (8054, A900) (0040, 0542) [2]
9 2−28.41 (8054, A900) (0040, 0542) This paper
10 2−31.01 (0040, 2040) (A840, 0800) This paper

48
11 2−46.48 (202040, 082921) (808424, 84A905) [2]
11 2−43.31 (504200, 004240) (202001, 202000) This paper

64
14 2−59.02 (00000009, 01000000) (00040024, 04200D01) [2]
15 2−59.56 (04092400, 20040104) (808080A0, A08481A4) This paper

96

13 2−84 (2A20200800A2, (1008004C804,
[8]

322320680801) C0180228C60)

15 2−84 (000900000000, (A0A000008880,
This paper

000001000000) 81A02004C88C)

17 2−93.94 (240004000009, (A0A000008880,
This paper

010420040000) 81A02004C88C)

128

15 2−117.28 (0640240804002440, (828028080A080888,
[8]

6004400C20040004) E88C81A4A0924B2C)

18 2−117.75 (0202000000000080, (0800002080820808,
This paper

8012020000000480) 48080124A0924A08)

19 2−123.70 (4000400000000012, (0800002080820808,
This paper

1042004000000080) 48080124A0924A08)

00000) and search forward and backward independently. A 12-round character-
istic of weight 112 can be constructed by combining two short ones of 6 forward
rounds and 6 backward rounds respectively. From this characteristic we derive
a 12-round differential

(10401080, 0A001080, 02041208, 00049228)

→(88008008, 88A2A00A, 22020060, 00000010)

with weight less than 101.71. Also, a 13-round characteristic can be constructed
by connecting two short ones of 6 forward rounds and 7 backward rounds and
its weight is 134. From this characteristic a 13-round differential

(00049018, 40049000, 10220041, 00028001)

→(88008008, 88A2A00A, 22020060, 00000010)

of weight less than 123.02 is derived.
The details of these two characteristics are shown in Table 8.

5.3 Differential attacks on SPECK and LEA

Differential attacks on SPECK. In [7] Itai proposed an enumeration tech-
nique for key recovery in differential attacks against SPECK. Given a differential
characteristic for SPECK2n/mn that covers r rounds of the cipher with proba-
bility p > 2 · 2−2n, the enumeration technique can be used to recover the key of
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Table 5. Comparison of our differentials of LEA with previous ones.

#Rounds Prob. Reference

11 2−98 [11]
12 2−128 [11]
12 2−101.71 This paper
13 2−123.02 This paper

a variant with r +m rounds with 2 · p−1 chosen plaintexts, in an averaged time
complexity of 2 · p−1 · 2(m−2)n encryptions. The required memory is constant for
all versions of SPECK, which is 222 bytes, i.e. only a few megabytes. Appendix
C provides more information about Itai’s enumeration technique.

Adding one round for free. We use the r-round differential (α → β) over
rounds 2 ∼ (r + 1), and choose pairs of plaintexts such that their difference
after the first round is α. In this way, one more round can be extended for free.
This idea was also adopted by Abed et al. in [8]. Consequently, given a r-round
differential, the attack can cover (r +m+ 1) rounds.

For SPECK32/64, we use the same 9-round differential as in [8, 2]. Accord-
ing to our experiments, the differential holds with probability at least 2−28.41,
which is much larger than 2−30, the probability of the best characteristic of the
differential. This indicates that the complexities of the attack can be reduced
with a tighter estimation of the probability of the differential. Combined with
Itai’s enumeration technique for key recovery, the differential can be used to
attack a 14-round SPECK32/64 at a cost of 2 · 228.41 = 229.41 plaintexts and
2 · 228.41 · 232 = 261.41 encryptions.

Differential attacks for the rest variants are similar to that of SPECK32/64,
so we omit the details on calculation of the complexities. The attacks are mount-
ed based on the differentials in Table 5 and the results are summarized in Table
1. Compared with the previous works, the attacks on SPECK48, SPECK64,
SPCKE96, SPECK128 extend 1, 1, 4 and 5 more round(s) respectively.

Differential attacks on LEA. Since the differential equations of addition
in the key recovery of LEA are similar to that of SPECK, Itai’s enumeration
technique can be adapted to LEA. Given an r-round differential characteristic
of LEA with probability p > 2 · 2−N where N is the block size, for LEA-128 and
LEA-192, the attack recovers the key of a variant of (r + 1) rounds with 2 · p−1

plaintexts, in expected time complexity of 2·p−1 encryptions, while (r+2) rounds
of LEA-256 can be attacked with 2 · p−1 plaintexts and 2 · p−1 · 2N encryptions
in average. The attacks are summarized in Table.

6 Discussion

Differential effect. Experiment results demonstrate the strong differential ef-
fect of ARX block ciphers. When the characteristics sharing the same input and
output difference are counted in, the differential probability increases by a fac-
tor of 4 ∼ 8 for SPECK and by a factor more than 210 for LEA. Due to this
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differential effect, the probability of a characteristic shouldn’t be simply taken
as the differential probability for these ARX block ciphers.

Limitation of our searching method. The searching method discussed
in this paper takes the assumption of independent additions with respect of
XOR-difference. However, additions are dependent in most ARX block ciphers,
such as TEA, Chaskey and RAIDEN, to which our searching method can not be
applied directly. One of our future work is to deal with the dependency among
additions.

7 Conclusion

In this paper, we apply Mouha et al.’s framework of finding differential charac-
teristics to ARX block ciphers where the additions are independent with respect
to XOR differences, and develop this framework by adding a new method for
constructing long characteristics from short ones. This new method reduces the
searching time a lot and makes it possible to search differential characteristics for
ARX block ciphers with large word size. Also, we take the differential effect into
consideration and the results show the probability of a characteristic shouldn’t
be simply taken as the differential probability for these ARX block ciphers. The
efficiency of our method is demonstrated by improved attacks of SPECK and
LEA. One of our future work is to deal with the dependency among additions
that are common in most ARX ciphers.

Acknowledgement: The authors would like to thank Jian Guo for his valuable
suggestions.
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A Key Schedules of LEA-192 and LEA-256

Key schedule of LEA-192 Let K = (k0, k1, k2, k3, k4, k5) be a 192-bit key.
We set t0i = ki for 0 ≤ i < 6. For round i, 0 ≤ i < 28, rki is produced through
following relations:

ti+1
0 ← (ti0 � (δi ≪ i)) ≪ 1,

ti+1
1 ← (ti1 � (δi ≪ i+ 1)) ≪ 3,

ti+1
2 ← (ti2 � (δi ≪ i+ 2)) ≪ 6,

ti+1
3 ← (ti3 � (δi ≪ i+ 3)) ≪ 11,

ti+1
4 ← (ti4 � (δi ≪ i+ 4)) ≪ 13,

ti+1
5 ← (ti5 � (δi ≪ i+ 5)) ≪ 17,

rki ← (ti+1
0 , ti+1

1 , ti+1
2 , ti+1

3 , ti+1
4 , ti+1

5 ).

where δi is the constant for round i.
Key schedule of LEA-256 Let K = (k0, k1, k2, k3, k4, k5, k6, k7) be a 192-

bit key. We set t0i = ki for 0 ≤ i < 8. For round i, 0 ≤ i < 32, rki is produced
through following relations:

t6i mod 8 ← (t6i mod 8 � (δi ≪ i)) ≪ 1,

t6i+1 mod 8 ← (t6i+1 mod 8 � (δi ≪ i+ 1)) ≪ 3,

t6i+2 mod 8 ← (t6i+2 mod 8 � (δi ≪ i+ 2)) ≪ 6,

t6i+3 mod 8 ← (t6i+3 mod 8 � (δi ≪ i+ 3)) ≪ 11,

t6i+4 mod 8 ← (t6i+4 mod 8 � (δi ≪ i+ 4)) ≪ 13,

t6i+5 mod 8 ← (t6i+5 mod 8 � (δi ≪ i+ 5)) ≪ 17,

rki ← (t6i mod 8, t6i+11 mod 8, t6i+2 mod 8, t6i+3 mod 8, t6i+4 mod 8, t6i+5 mod 8).

where δi is the constant for round i.

B Differential Characteristics

C Itai’s Enumeration Technique for Key Recovery Attack
against SPECK

In this section, we review Itai’s key recovery attack against SPECK and refer
the reader to [7] for a complete description.

C.1 The full differential attack

Counting techniques are common in key recovery of differential cryptanalysis,
while in the differential cryptanalysis of SPECK, Itai increased the number of
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Table 6. Differential characteristics for SPECK32, SPECK48 and SPECK64.

r
SPECK32 SPECK48 SPECK64

∆x ∆y log2 p ∆x ∆y log2 p ∆x ∆y log2 p

0 2040 0040 504200 004240 04092400 20040104
1 8000 8100 -1 001202 020002 -5 20000820 20200001 -6
2 8000 8402 -1 000010 100000 -3 00000009 01000000 -4
3 8D02 9D08 -4 000000 800000 -1 08000000 00000000 -2
4 6002 1420 -9 800000 800004 0 00080000 00080000 -1
5 1060 40E0 -5 808004 808020 -2 00080800 00480800 -2
6 0380 0001 -6 8400A0 8001A4 -4 00480008 02084008 -4
7 0004 0000 -3 608DA4 608080 -9 06080808 164A0848 -7
8 0800 0800 -1 042003 002400 -11 F2400040 40104200 -13
9 0810 2810 -2 012020 000020 -5 00820200 00001202 -8
10 0800 A840 -3 200100 200000 -3 00009000 00000010 -4
11 202001 202000 -3 00000080 00000000 -2
12 80000000 80000000 0
13 80800000 80800004 -1
14 80008004 84008020 -3
15 808080A0 A08481A4 -5

Σr log2 pr -35 -46 -62
log2 pdiff > -31.01 -43.31 -59.56

Table 7. Differential characteristics for SPECK96 and SPECK128.

r
SPECK96 SPECK128

∆x ∆y log2 p ∆x ∆y log2 p

0 240004000009 010420040000 4000400000000012 1042004000000080

1 082020000000 000120200000 -6 0202000000000080 8012020000000480 -6
2 000900000000 000001000000 -4 0010000000000480 0080100000002084 -5
3 000008000000 000000000000 -2 8080000000006080 84808000000164A0 -6
4 000000080000 000000080000 -1 0400000000032400 2004000000080104 -11
5 000000080800 000000480800 -2 2000000000080020 2020000000480801 -7
6 000000480008 000002084008 -4 0000000000480001 0100000002084008 -6
7 0800FE080808 0800EE4A0848 -12 000000000E080808 080000001E4A0848 -8
8 000772400040 400000104200 -21 00000000F2400040 4000000000104200 -15
9 000000820200 000000001202 -11 0000000000820200 0000000000001202 -8
10 000000009000 000000000010 -4 0000000000009000 0000000000000010 -4
11 000000000080 000000000000 -2 0000000000000080 0000000000000000 -2
12 800000000000 800000000000 0 8000000000000000 8000000000000000 0
13 808000000000 808000000004 -1 8080000000000000 8080000000000004 -1
14 800080000004 840080000020 -3 8000800000000004 8400800000000020 -3
15 808080800020 A08480800124 -5 8080808000000020 A084808000000124 -5
16 800400008124 842004008801 -9 4004000080000124 4420040080000801 -10
17 A0A000008880 81A02004C88C -9 2020000080800802 0120200480804808 -11
18 0100000480004800 0801002084020840 -11
19 0800002080820808 48080124A0924A08 -10

Σr log2 pr -96 -129
log2 pdiff > -93.94 -123.70



Automatic Differential Analysis of ARX Block Ciphers 17

Table 8. Differential characteristics for LEA.

r
12-round 13-round

∆x0 ∥ ∆x1 ∥ ∆x2 ∥ ∆x3 log2 p ∆x0 ∥ ∆x1 ∥ ∆x2 ∥ ∆x3 log2 p

0 104010800A0010800204120800049228 00049018400490000002800110220041

1 80000014404020140040100410401080 -20 104010800A0010800204100800049018 -20
2 80400080860000808200001080000014 -16 800000144040200C0040100410401080 -20
3 8000000C8040000C8040000480400080 -14 80400080860000808200001080000014 -18
4 8000000080000000800000108000000C -10 8000000C8040000C8040000480400080 -14
5 00000000800000008000000080000000 -4 8000000080000000800000108000000C -10
6 00000100000000000000000000000000 0 00000000800000008000000080000000 -4
7 00020000000000000000000000000100 -1 00000100000000000000000000000000 -0
8 04000000000000000000002000020000 -2 00020000000000000000000000000100 -1
9 00000008000000070000400404000000 -6 04000000000000000000002000020000 -2
10 00000200080002008080080000000008 -11 00000008000000070000400404000000 -6
11 00000010044400501010010100000200 -9 00000200080002008080080000000008 -11
12 8800800888A2A00A2202006000000010 -19 00000010044400501010010100000200 -9
13 8800800888A2A00A2202006000000010 19

Σr log2 pr -112 -134
log2 pdiff > -101.71 -123.02

rounds attacked by the application of enumeration techniques in the key recovery
[7]. Instead of extracting partial key material from outer rounds of the cipher
using statistical analysis, the enumeration technique tries all suggestions for the
full key proposed by a sub-cipher attack.

To describe the details of Itai’s attack on SPECK with enumeration tech-
nique, we first consider the case that m = 2, i.e. the master key contains 2
words. The attack of the case that m = 2 can be easily extended to other cases,
in which m = 3 or m = 4.

Given an r-round differential of the cipher (∆x0,∆y0) → (∆xr,∆yr) with
high probability p, the (r + 2)-round attack is proceeded as follow.

1. Request the encryption of p−1 plaintext pairs P and P ′ = P ⊕ (∆x0,∆y0)
and denote the corresponding ciphertexts by C and C ′, respectively.

2. For each plaintext pair P and P ′:

(a) Execute the 2-round attack (Section 7 of [7]) using (∆xr,∆yr), C and
C ′ and get suggestions for kr+1 and kr.

(b) For each returned value of kr+1 and kr, reverse the key schedule to obtain
the master key. Test the master key using additional encryptions. Return
the master key if it passes the test.

The above attack requires 2 ·p−1 chosen plaintexts. Since in the key recovery,
the 2-round attack has an average time complexity less than 2 encryptions, the
total time complexity of the attack is 2 · p−1. As Itai pointed in [7], the memory
complexity is 222 bytes, i.e. only a few megabytes. In next subsection, we describe
the 2-round attack.
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For m > 2 (m = 3 or m = 4), by guessing the last m − 2 round key(s), the
attack can cover r + m rounds with data complexity of 2 · p−1 plaintexts and
time complexity of 2 · p−1 · 2(m−2)n encryptions.

C.2 The 2-round attack

As described in Section C.1, for a 2-round attack we have a known input dif-
ference (∆xr,∆yy) and two ciphertexts (xr+2, yr+2) and (xr+2 ⊕∆xr+2, yr+2 ⊕
∆yr+2). The 2-round attack is to enumerate all the possible round keys kr and
kr+1 under which after the 2-round decryption the difference of the two cipher-
texts is equal to (∆xr,∆yy).

Since∆yr+1 = (∆xr+2⊕∆yr+2) ≫ β and∆xr+1 = ∆yr+1⊕(∆yr ≪ β) can
be calculated immediately according known variables, all the differences in the
2-round scheme are determined. Similarly, the value yr+1 can be calculated from
the known ciphertexts, whereas (xr, yr) and xr+1 remain unknown. Further,
deriving kr and kr+1 is equivalent to deriving xr and xr+1, because kr+1 =
(yr+1 � (xr+1 ≫ α)) ⊕ xr+1 and as yr = (xr+1 ⊕ yr+1) ≫ β, then kr =
(yr � (xr ≫ α)) ⊕ xr+1 can be computed as well. Thus, the key point is to
deriving the values xr and xr+1.

For convenience, we omit the right circular shift ≫ α, and then we have two
differential equations of addition

(xr ⊕∆xr)� (yr ⊕∆yr) = (xr � yr)⊕∆xr+1,

(xr+1 ⊕∆xr+1)� (yr+1 ⊕∆yr+1) = (xr+1 � yr+1)⊕∆xr+2.

where all differences are known, and in the second equation yr+1 and yr+1 ⊕
∆yr+1 are also known.

This type of differential equations of addition has an average of 1 solution.
However, for almost any value of (∆xr,∆yr), a large part of ciphertext pairs
lead to no solutions. Therefore, to save the time, a filtering process is needed
before solving these two equations.

Again, the property of addition explained by Equation (1) and Equation (2)
are used as filters, which means checking whether the equation holds given all
differences of the 2-round scheme. Using the filter, the complexity of the 2-round
attacked can be optimized to less than 2 encryptions, which was verified by a
lots of experiments on SPECK in [7].

D Source Code

Copy the source code below, paste it in a file named filename.stp, and solve it
with stp.

% inputs
x0 , x1 , x2 , x3 , x4 , x5 , x6 , x7 , x8 , x9 , x10 , x11 , x12 , x13 , x14 , x15 , x16 , x17 , x18 ,

x19 : BITVECTOR( 16 ) ;

% inte rmed iate v a r i ab l e s
v0 , v1 , v2 , v3 , v4 , v5 , v6 , v7 , v8 : BITVECTOR( 16 ) ;
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% penalty va r i a b l e s
p0 , p1 , p2 , p3 , p4 , p5 , p6 , p7 , p8 : BITVECTOR( 16 ) ;

% weight o f the c h a r a c t e r i s t i c
weight : BITVECTOR( 11 ) ;

ASSERT( ( v0 = ( ( ( x1 ) << 9) [ 1 5 : 0 ] | ( ( x1 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v0 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x0 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v0 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x3 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v0 ) , ( x0 ) ) , (
x3 ) ) , ( ( ( x0 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x2 = BVXOR(x3 , ( ( ( x0 ) << 2) [ 1 5 : 0 ] | ( ( x0 ) >>14)) ) ) ) ;
ASSERT( ( ( p0 ) = (˜(BVXOR(˜( v0 ) , ( x0 ) ) & BVXOR(˜( v0 ) , ( x3 ) ) ) ) ) ) ;

ASSERT( ( v1 = ( ( ( x3 ) << 9) [ 1 5 : 0 ] | ( ( x3 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v1 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x2 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v1 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x5 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v1 ) , ( x2 ) ) , (
x5 ) ) , ( ( ( x2 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x4 = BVXOR(x5 , ( ( ( x2 ) << 2) [ 1 5 : 0 ] | ( ( x2 ) >>14)) ) ) ) ;
ASSERT( ( ( p1 ) = (˜(BVXOR(˜( v1 ) , ( x2 ) ) & BVXOR(˜( v1 ) , ( x5 ) ) ) ) ) ) ;

ASSERT( ( v2 = ( ( ( x5 ) << 9) [ 1 5 : 0 ] | ( ( x5 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v2 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x4 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v2 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x7 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v2 ) , ( x4 ) ) , (
x7 ) ) , ( ( ( x4 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x6 = BVXOR(x7 , ( ( ( x4 ) << 2) [ 1 5 : 0 ] | ( ( x4 ) >>14)) ) ) ) ;
ASSERT( ( ( p2 ) = (˜(BVXOR(˜( v2 ) , ( x4 ) ) & BVXOR(˜( v2 ) , ( x7 ) ) ) ) ) ) ;

ASSERT( ( v3 = ( ( ( x7 ) << 9) [ 1 5 : 0 ] | ( ( x7 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v3 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x6 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v3 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x9 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v3 ) , ( x6 ) ) , (
x9 ) ) , ( ( ( x6 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x8 = BVXOR(x9 , ( ( ( x6 ) << 2) [ 1 5 : 0 ] | ( ( x6 ) >>14)) ) ) ) ;
ASSERT( ( ( p3 ) = (˜(BVXOR(˜( v3 ) , ( x6 ) ) & BVXOR(˜( v3 ) , ( x9 ) ) ) ) ) ) ;

ASSERT( ( v4 = ( ( ( x9 ) << 9) [ 1 5 : 0 ] | ( ( x9 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v4 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x8 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v4 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x11 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v4 ) , ( x8 ) ) ,
( x11 ) ) , ( ( ( x8 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x10 = BVXOR(x11 , ( ( ( x8 ) << 2) [ 1 5 : 0 ] | ( ( x8 ) >>14)) ) ) ) ;
ASSERT( ( ( p4 ) = (˜(BVXOR(˜( v4 ) , ( x8 ) ) & BVXOR(˜( v4 ) , ( x11 ) ) ) ) ) ) ;

ASSERT( ( v5 = ( ( ( x11 ) << 9) [ 1 5 : 0 ] | ( ( x11 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v5 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x10 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v5 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x13 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v5 ) , ( x10 ) ) ,
( x13 ) ) , ( ( ( x10 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x12 = BVXOR(x13 , ( ( ( x10 ) << 2) [ 1 5 : 0 ] | ( ( x10 ) >>14)) ) ) ) ;
ASSERT( ( ( p5 ) = (˜(BVXOR(˜( v5 ) , ( x10 ) ) & BVXOR(˜( v5 ) , ( x13 ) ) ) ) ) ) ;

ASSERT( ( v6 = ( ( ( x13 ) << 9) [ 1 5 : 0 ] | ( ( x13 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v6 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x12 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v6 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x15 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v6 ) , ( x12 ) ) ,
( x15 ) ) , ( ( ( x12 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x14 = BVXOR(x15 , ( ( ( x12 ) << 2) [ 1 5 : 0 ] | ( ( x12 ) >>14)) ) ) ) ;
ASSERT( ( ( p6 ) = (˜(BVXOR(˜( v6 ) , ( x12 ) ) & BVXOR(˜( v6 ) , ( x15 ) ) ) ) ) ) ;

ASSERT( ( v7 = ( ( ( x15 ) << 9) [ 1 5 : 0 ] | ( ( x15 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v7 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x14 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v7 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x17 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v7 ) , ( x14 ) ) ,
( x17 ) ) , ( ( ( x14 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x16 = BVXOR(x17 , ( ( ( x14 ) << 2) [ 1 5 : 0 ] | ( ( x14 ) >>14)) ) ) ) ;
ASSERT( ( ( p7 ) = (˜(BVXOR(˜( v7 ) , ( x14 ) ) & BVXOR(˜( v7 ) , ( x17 ) ) ) ) ) ) ;

ASSERT( ( v8 = ( ( ( x17 ) << 9) [ 1 5 : 0 ] | ( ( x17 ) >>7)) ) ) ;
ASSERT( ( (BVXOR(˜( ( ( ( v8 )<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x16 )<<1) [ 1 5 : 0 ] ) ) ) & BVXOR(˜( ( ( ( v8 )

<<1) [ 1 5 : 0 ] ) ) , ( ( ( ( x19 )<<1) [ 1 5 : 0 ] ) ) ) ) & ( BVXOR( BVXOR( BVXOR( ( v8 ) , ( x16 ) ) ,
( x19 ) ) , ( ( ( x16 )<<1) [ 1 5 : 0 ] ) ) ) = 0hex0000 ) ) ;

ASSERT( ( x18 = BVXOR(x19 , ( ( ( x16 ) << 2) [ 1 5 : 0 ] | ( ( x16 ) >>14)) ) ) ) ;
ASSERT( ( ( p8 ) = (˜(BVXOR(˜( v8 ) , ( x16 ) ) & BVXOR(˜( v8 ) , ( x19 ) ) ) ) ) ) ;

% No a l l −zero c h a r a c t e r i s t i c :
ASSERT( NOT( ( x0 | x1 ) = 0hex0000 ) ) ;

ASSERT( ( weight = ( BVPLUS(11 , 0b0000000@ (BVPLUS( 4 , 0bin000@ ( p0 [ 0 : 0 ] ) , 0bin000@ (p0
[ 1 : 1 ] ) , 0bin000@ ( p0 [ 2 : 2 ] ) , 0bin000@ (p0 [ 3 : 3 ] ) , 0bin000@ ( p0 [ 4 : 4 ] ) ,0 bin000@ ( p0
[ 5 : 5 ] ) , 0bin000@ ( p0 [ 6 : 6 ] ) , 0bin000@ (p0 [ 7 : 7 ] ) , 0bin000@ ( p0 [ 8 : 8 ] ) ,0 bin000@ ( p0
[ 9 : 9 ] ) , 0bin000@ ( p0 [ 1 0 : 1 0 ] ) ,0 bin000@ (p0 [ 1 1 : 1 1 ] ) , 0bin000@ (p0 [ 1 2 : 1 2 ] ) ,0 bin000@ (
p0 [ 1 3 : 1 3 ] ) , 0bin000@ (p0 [ 1 4 : 1 4 ] ) ) ) , 0b0000000@ (BVPLUS( 4 , 0bin000@ ( p1 [ 0 : 0 ] ) , 0
bin000@ (p1 [ 1 : 1 ] ) , 0bin000@ ( p1 [ 2 : 2 ] ) , 0bin000@ (p1 [ 3 : 3 ] ) , 0bin000@ ( p1 [ 4 : 4 ] ) ,0
bin000@ ( p1 [ 5 : 5 ] ) , 0bin000@ ( p1 [ 6 : 6 ] ) , 0bin000@ (p1 [ 7 : 7 ] ) , 0bin000@ ( p1 [ 8 : 8 ] ) ,0
bin000@ ( p1 [ 9 : 9 ] ) , 0bin000@ ( p1 [ 1 0 : 1 0 ] ) ,0 bin000@ (p1 [ 1 1 : 1 1 ] ) , 0bin000@ (p1 [ 1 2 : 1 2 ] )
,0 bin000@ (p1 [ 1 3 : 1 3 ] ) , 0bin000@ (p1 [ 1 4 : 1 4 ] ) ) ) , 0b0000000@ (BVPLUS( 4 , 0bin000@ ( p2
[ 0 : 0 ] ) , 0bin000@ (p2 [ 1 : 1 ] ) , 0bin000@ ( p2 [ 2 : 2 ] ) , 0bin000@ (p2 [ 3 : 3 ] ) , 0bin000@ (
p2 [ 4 : 4 ] ) ,0 bin000@ ( p2 [ 5 : 5 ] ) , 0bin000@ ( p2 [ 6 : 6 ] ) , 0bin000@ (p2 [ 7 : 7 ] ) , 0bin000@ ( p2
[ 8 : 8 ] ) ,0 bin000@ ( p2 [ 9 : 9 ] ) , 0bin000@ ( p2 [ 1 0 : 1 0 ] ) ,0 bin000@ (p2 [ 1 1 : 1 1 ] ) , 0bin000@ (p2
[ 1 2 : 1 2 ] ) ,0 bin000@ (p2 [ 1 3 : 1 3 ] ) , 0bin000@ (p2 [ 1 4 : 1 4 ] ) ) ) , 0b0000000@ (BVPLUS( 4 , 0
bin000@ ( p3 [ 0 : 0 ] ) , 0bin000@ (p3 [ 1 : 1 ] ) , 0bin000@ ( p3 [ 2 : 2 ] ) , 0bin000@ (p3 [ 3 : 3 ] ) ,
0bin000@ ( p3 [ 4 : 4 ] ) ,0 bin000@ ( p3 [ 5 : 5 ] ) , 0bin000@ ( p3 [ 6 : 6 ] ) , 0bin000@ (p3 [ 7 : 7 ] ) , 0
bin000@ ( p3 [ 8 : 8 ] ) ,0 bin000@ ( p3 [ 9 : 9 ] ) , 0bin000@ ( p3 [ 1 0 : 1 0 ] ) ,0 bin000@ (p3 [ 1 1 : 1 1 ] ) ,
0bin000@ (p3 [ 1 2 : 1 2 ] ) ,0 bin000@ (p3 [ 1 3 : 1 3 ] ) , 0bin000@ (p3 [ 1 4 : 1 4 ] ) ) ) , 0b0000000@ (
BVPLUS( 4 , 0bin000@ ( p4 [ 0 : 0 ] ) , 0bin000@ (p4 [ 1 : 1 ] ) , 0bin000@ ( p4 [ 2 : 2 ] ) , 0
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bin000@ (p4 [ 3 : 3 ] ) , 0bin000@ ( p4 [ 4 : 4 ] ) ,0 bin000@ ( p4 [ 5 : 5 ] ) , 0bin000@ ( p4 [ 6 : 6 ] ) , 0
bin000@ (p4 [ 7 : 7 ] ) , 0bin000@ ( p4 [ 8 : 8 ] ) ,0 bin000@ ( p4 [ 9 : 9 ] ) , 0bin000@ ( p4 [ 1 0 : 1 0 ] ) ,0
bin000@ (p4 [ 1 1 : 1 1 ] ) , 0bin000@ (p4 [ 1 2 : 1 2 ] ) ,0 bin000@ (p4 [ 1 3 : 1 3 ] ) , 0bin000@ (p4
[ 1 4 : 1 4 ] ) ) ) , 0b0000000@ (BVPLUS( 4 , 0bin000@ ( p5 [ 0 : 0 ] ) , 0bin000@ (p5 [ 1 : 1 ] ) , 0
bin000@ ( p5 [ 2 : 2 ] ) , 0bin000@ (p5 [ 3 : 3 ] ) , 0bin000@ ( p5 [ 4 : 4 ] ) ,0 bin000@ ( p5 [ 5 : 5 ] ) , 0
bin000@ ( p5 [ 6 : 6 ] ) , 0bin000@ (p5 [ 7 : 7 ] ) , 0bin000@ ( p5 [ 8 : 8 ] ) ,0 bin000@ ( p5 [ 9 : 9 ] ) , 0
bin000@ ( p5 [ 1 0 : 1 0 ] ) ,0 bin000@ (p5 [ 1 1 : 1 1 ] ) , 0bin000@ (p5 [ 1 2 : 1 2 ] ) ,0 bin000@ (p5 [ 1 3 : 1 3 ]
) , 0bin000@ (p5 [ 1 4 : 1 4 ] ) ) ) , 0b0000000@ (BVPLUS( 4 , 0bin000@ ( p6 [ 0 : 0 ] ) , 0bin000@ (p6
[ 1 : 1 ] ) , 0bin000@ ( p6 [ 2 : 2 ] ) , 0bin000@ (p6 [ 3 : 3 ] ) , 0bin000@ ( p6 [ 4 : 4 ] ) ,0 bin000@ ( p6
[ 5 : 5 ] ) , 0bin000@ ( p6 [ 6 : 6 ] ) , 0bin000@ (p6 [ 7 : 7 ] ) , 0bin000@ ( p6 [ 8 : 8 ] ) ,0 bin000@ ( p6
[ 9 : 9 ] ) , 0bin000@ ( p6 [ 1 0 : 1 0 ] ) ,0 bin000@ (p6 [ 1 1 : 1 1 ] ) , 0bin000@ (p6 [ 1 2 : 1 2 ] ) ,0 bin000@ (
p6 [ 1 3 : 1 3 ] ) , 0bin000@ (p6 [ 1 4 : 1 4 ] ) ) ) , 0b0000000@ (BVPLUS( 4 , 0bin000@ ( p7 [ 0 : 0 ] ) , 0
bin000@ (p7 [ 1 : 1 ] ) , 0bin000@ ( p7 [ 2 : 2 ] ) , 0bin000@ (p7 [ 3 : 3 ] ) , 0bin000@ ( p7 [ 4 : 4 ] ) ,0
bin000@ ( p7 [ 5 : 5 ] ) , 0bin000@ ( p7 [ 6 : 6 ] ) , 0bin000@ (p7 [ 7 : 7 ] ) , 0bin000@ ( p7 [ 8 : 8 ] ) ,0
bin000@ ( p7 [ 9 : 9 ] ) , 0bin000@ ( p7 [ 1 0 : 1 0 ] ) ,0 bin000@ (p7 [ 1 1 : 1 1 ] ) , 0bin000@ (p7 [ 1 2 : 1 2 ] )
,0 bin000@ (p7 [ 1 3 : 1 3 ] ) , 0bin000@ (p7 [ 1 4 : 1 4 ] ) ) ) , 0b0000000@ (BVPLUS( 4 , 0bin000@ ( p8
[ 0 : 0 ] ) , 0bin000@ (p8 [ 1 : 1 ] ) , 0bin000@ ( p8 [ 2 : 2 ] ) , 0bin000@ (p8 [ 3 : 3 ] ) , 0bin000@ (
p8 [ 4 : 4 ] ) ,0 bin000@ ( p8 [ 5 : 5 ] ) , 0bin000@ ( p8 [ 6 : 6 ] ) , 0bin000@ (p8 [ 7 : 7 ] ) , 0bin000@ ( p8
[ 8 : 8 ] ) ,0 bin000@ ( p8 [ 9 : 9 ] ) , 0bin000@ ( p8 [ 1 0 : 1 0 ] ) ,0 bin000@ (p8 [ 1 1 : 1 1 ] ) , 0bin000@ (p8
[ 1 2 : 1 2 ] ) ,0 bin000@ (p8 [ 1 3 : 1 3 ] ) , 0bin000@ (p8 [ 1 4 : 1 4 ] ) ) ) ) ) ) ) ;

ASSERT( BVLE( weight , 0b00000011110 ) ) ;

QUERY(FALSE) ;

COUNTEREXAMPLE;


