THE DISPLAY OF CHINESE AND ENGLISH CHARACTERS BASED ON OPENGL ES IN
SYMBIAN OPERATION SYSTEM

Liu Jinping *®* Liu Zhengjun® Huang Ying®

8The Chinese Academy of Surveying and Mapping, Beijing 100039-liujinping123321@163.com;
®Faculty of Mechanical & Electronic Information, China University of Geosciences, Wuhan
430074-liujinping123321@163.com;

KEY WORDS: Symbian OS,0OpenGL ES,Unicode,Chinese display,FreeType,3D

ABSTRACT:

This article is about the method of the display of Chinese and English Characaters in the programming environment of Carbide.c++.
Development of this method is based on Symbian Series 60 platform and OpenGL ES. Both Chinese characters and English
characters can be displayed in 3D scene. The methodology and arithmetic are presented in the article. This method has been
successfully applied to the 3D navigation system of cellphone on Series 60 platform such as Nokia N95. Most city names and typical
ground objects can be displayed in our developing system. Moreover, all the names can be displayed either in Chinese or English
characters. OpenGL ES application programming interface doesn’t provide the ready methods of drawing or editing text. FreeType 2
application programming interface provides us the methods of drawing the character’s glyph outline according to the character’s
glyph index in some coding methods. In this paper, the characters can be displayed by converting the coding method of Symbian
characters to Unicode coding method and also the methods of obtaining bitmaps of characters provided by FreeType 2 application
programming interface is realizable. ANSI (American National Standards Institute) coding method is the default coding method of
the compiler in Symbian operating system. The ANSI coding method of Chinese characters in the Symbian operating compiler is
actual GBK coding method. All the characters will be converted to Unicode characters before being converted to glyph index in the
FreeType 2 application programming interface. The characters with coding methods are ANSI or GBK which are stored in characters
buffer, then the whole character string in character buffer is converted to Unicode string on Series 60 platform. No FreeType 2
application programming interface in Symbian Series 60 SDK. C programming language is transplanted to the Symbian operating
system which is developed in C++ programming language. At the meanwhile, FreeType 2 application programming interface is
transplanted to Series 60 platform. Then we use the methods provided by the static library of FreeType 2 to acquire these
characters’ glyph index and glyph images in the 3D navigation application. Finally, we apply these glyph images as textures of the
model to truly realize the 3D display of these Chinese and English characters. The method of drawing or editing text in OpenGL ES
has strong transplanted while it is a convenient method for drawing text in OpenGL ES. We can adopt this method to draw many
kinds of text in various applications based on OpenGL ES or OpenGL. The character font and color can be changed in the actual
programming environment.

1. INTRODUCTION cellphone, the total of the Chinese characters is too large to

define the majority of the Chinese characters which are in

Lifelike 3D scene correctly simulates the reality environment in common use in our daily life as the geometric graphic units.

3D navigation system. The city names and typical ground Using FreeType 2 API to draw the outline of Chinese and

objects' names in 3D navigation scene bring our eyes English characters which need be shown in screen and

intuitionistic visual effect and quick resolving power. They play converting their outlines to bitmaps which are saved as the

an important role in 3D navigation scene. It is necessary to textures of character models give much convenience to display

label these cities and typical ground objects in 3D scene. Chinese and English characters” models in the screen of
cellphone.

The stroke character and raster character are the two character’s
forms in OpenGL. The raster function interface has been wiped
off in OpenGL ES. The outline of stroke character is drawn and
added as elementary geometric graphic unit to graphics system
in the form of stroke character. If all the characters in ASCII
format are defined as geometric graphic units, these geometric

graphic units will cost the device plenty of memory and much 2.1 The Summarization of OpenGL ES and FreeType2
treatment time. Considering the limited memory of the

2. METHODOLOGY

OpenGL ES API and FreeType 2 API provide the key methods
to realize the characters' display in 3D scene.

2.1.1 OpenGL ES: It is specially designed for cellphone and

* Corresponding author. Liujinping123321@163.com

183

other embedded device. OpenGL ES APl provides the
rock-bottom functions of display and the standard methods to
describe the rock-bottom hardware of rendering image in main
CPU or graphics processing unit. As a given 3D application
programming interface of cellphone, OpenGL ES allow
programmers adding the 3D graphic accelerator to the
cellphone in a standard mode. When the scheduled 3D graphics
is displayed in screen, making use of graphical interfaces can
realize the various transformations and many settings in 3D
display.

2.1.2 FreeType 2 API: FreeType 2 engine can efficiently
produce transplantable symbol image with high quality and
only cost a small quantity of memory. It provides a set of
uniform application programming interface which is easy to
use and independent on the type of font file. FreeType 2 API
supports scaleable typeface such as TrueType and can return
the outline of font to the client programs.

2.2 Methodology of Displaying Character

Freetype 2 API can convert the characters to glyph images.
Applying these glyph images as the textures of models truly
realize the 3D display of these Chinese and English characters
in 3D scene. The flow chart of displaying characters is shown
as Figure 1.

Symbian character
string

Gain character’ s
ANSI index

| Gain character string |

| Gain character string |

v
Convert GBK to Convert ASCII to
Unicode Unicode

v v
Unicode Character
string

Gain character’ s index

v
Pick up character glyph
image

Set model vertices and
texture

model

Draw characters’

Figure 1.Flow chart of character string display

2.2.1 Coding Conversion: Different countries make different
standards for coding. ANSI character set is the extending of
ASCII. It contains ASCII character set and the character sets
which derive from ASCII character set and are compatible with
ASCII character set. ANSI codes English characters with single
byte and double bytes for Chinese characters. The default

184

Chinese coding method of text is GBK in the situation of
compiling program in Windows. ANSI coding is actual
GB2312 coding in simplified Chinese character system. The
standard of coding with different bytes in English characters
and other lingual characters makes various characters correctly
processed in local computer system but wrong in non-local
computer system. The default coding method in Symbian OS is
Unicode. Unicode contains all the coding schemes of the
worldwide languages and almost designs uniform and exclusive
binary code for every character in any language. The
development tool which we use in Windows is Carbide.c++.
Converting Chinese character coding from ANSI to Unicode
before displaying Chinese character is obligatory in Symbian
Os.

Character string is end with "\0' (0x00) in C program. The
disposal in computers considers 0x00 is the end of character
string. One byte is 0x00 and the other is not in many codes
which are coded with two bytes in Unicode coding method.
When these Unicode codes are disposed in C program compiler,
they will cause error or confusion in disposal. One solution is
using the types of wchar_t to express a Unicode character
variable. The variable type wchar_t make computers read two
bytes every time and end with 0x0000.

We input the city names or typical ground objects' names to the
character descriptor in English in application:

_LIT8 (KPlaceName, "Shanghai");
"Shanghai" is saved as ASCII coding in Windows. When all
the characters' ASCII coding value is between 0x32 and Ox7F,
we can directly convert character string from multi-byte string
to a wide character string by the follow codes:
TBuf8<40> ibuf(KPlaceName);
const char *charString = (const char*)ibuf.PtrZ();
wchar_t* chstr=(wchar_t*)malloc((ibuf.Length()+1)
*sizeof(wchar_t));
TlInt ret=mbstowcs(chstr, charString,ibuf.Length());
chstr[ibuf.Length()]="\0";
Application will gain glyph index of each character in character
string chstr from font file according to the character's Unicode
code. When we input city names in Chinese:
_LIT8(KPlaceName," [-#");
" L¥#" is saved with GBK code. Simplified Chinese character
coding method is GB2312 or GBK in program whose source
file is saved as non-UTF-8 codes. We need convert the coding
method from ANSI to Unicode before handling the character
string in Symbian OS. "_I:" and "¥#" are respective saved in
double bytes as [0xBA,0xA3] and [0xC9,0xCA] in ANSI
coding method and saved as Ox4EOA and 0x6D77 in Unicode
coding method. The code snippet of converting Chinese
character string coding method from GBK to Unicode is shown
as follows:
TBuf8<40> ibuf(KPlaceName);
char* chstr=(char*)ibuf.Ptrz();

CCnvCharacterSetConverter*
converter=CCnvCharacterSetConverter::NewL();
if (converter->PrepareToConvertToOrFromL
(KCharacterSetldentifierGbk,

CEikonEnv::Static()->FsSession())

== CCnvCharacterSetConverter::EAvailable) {}
else if (converter->PrepareToConvertToOrFromL
(KCharacterSetldentifierGb2312,
CEikonEnv::Static()->FsSession())!=CCnvCharacterSetConver
ter::EAvailable)

{
CleanupStack::PopAndDestroy();
User::Leave(KErrNotSupported);

}
TText8 *tstr = (TText8*)chstr;
TlInt state=CCnvCharacterSetConverter::KStateDefault;
TPtrC8 source(tstr);
HBufC* ilnfoText =HBuUfC::NewL (source.Length());
TPtr16 ptr = ilnfoText->Des();
if (CCnvCharacterSetConverter::EErrorllIFormedinput==
converter->ConvertToUnicode(ptr, source, state))
{

CleanupStack::PopAndDestroy();
User::Leave(KErrArgument);
}
wechar_t* wstr=(wchar_t*)ptr.Ptrz();
" " is saved with Unicode coding method in wstr. The
transformation above is also effective to mixed characters
inputting with English and Chinese characters.

2.2.2 Load FreeType 2 Library: No FreeType 2 application
programming interface in Symbian Series 60 SDK. We
transplant the open source code of FreeType 2 to Series 60
platform and build Freetype static library. Some functions
without relation to produce glyph image in FreeType 2 API are
wiped off before building static FreeType 2 library in order to
reducing the size of static FreeType 2 library and the time of
running the static library. The simplified FreeType 2 library is
loaded to Series 60 platform. It provides us all-sided methods
to acquire character’s glyph index and glyph image in the 3D
navigation application.

2.2.3 Generate Character's Bitmap: An new instance of
FreeType 2 API is created and a font file is loaded at first. Font
is one group of characters' image which can be shown and
printed. One type of font defines one mode of a character set
for a series of given characters. The font file includes some
tables by the name of character image for converting character
code to glyph index. One font file contains a set of glyph.
Every glyph can be saved as bitmap or some other structures.
Font file saves glyph in arbitrary order. We access a character's
glyph by its glyph index.

FreeType 2 API uses size object to construct the given
character's size in given font face. When a new font face is built,
the default size is 10 pixels both in horizontal direction and
vertical direction in scalable typeface. The size must be set
before loading a glyph. Unicode character image is the default
character image when we build a new font face. If the font
doesn't contain the Unicode character image, FreeType 2 will
attempt to simulate a new one.

We load glyph image according to the relevant glyph index.

185

The glyph with different font is saved in different format.
Every glyph image is a bitmap in typeface of fixed size. It
describes a glyph with vector form namely outline in scaleable
typeface, such as TrueType and Typel. A TrueType font file
simkai.ttf is loaded to the application. The way to gain all the
characters' glyph images of a label is realized by creating a loop
in application. Each trip through the loop loads a glyph image.
We transform the glyph image to an anti-aliased bitmap which
is used as a texture for character's model. Then we set the
model's width and height according to the left and top span of
character outline and the width and height of the bitmap. The
process of gaining character outline and bitmap is important.
The link of generating glyph bitmaps is shown in Figure 2.

FT_Get_Glyph()

Extract a glyph
image from a slot.

FT_Render_Glyph()
Convert a given
glyph image to a
bitmap .

FT_Load_Char()
Load a single glyph
into the glyph slot of

a face object.

FT_Glyph_To_BitMap()

The loop of

. Convert a given glyph
converting object to a bitmap glyph
characters to object .

bitmap

Figure 2.Approach of producing bitmap

2.2.4 SETTING GEOMETRICAL VERTEX AND
TEXTURE DATA: It is necessary to get a handle of a glyph
after producing a bitmap of the glyph image for us accessing
the size of the bitmap and the horizontal distance from pen
position to left borderline and the vertical distance from pen
position to top borderline. We use these bitmaps as the textures
of character models in OpenGL ES. The texture's size in
OpenGL ES must be integral TH power of two. Converting
bitmap's size to be true of the need of texture's size in OpenGL
ES is necessary. It is realized by the follow methods:

int width = next_p2(bitmap.width);

int height = next_p2(bitmap.rows);

The function of next_p2 returns a value which is the
approximation of integral TH power of two. There is a point on
baseline named pen position. The pen position is used to give
an orientation of glyph. The projection coordinate in screen of
the given region's spherical coordinate is set as the label's initial
pen position. The X-coordinate of every character glyph
image's current pen position is the totting-up of all the anterior
characters' advance widths basing on the initial pen position in
the order of the character's appearing order in the character
string. In the practical navigation application, the city position
is express as latitude, longitude and altitude in spherical
reference frame. The using of Cartesian reference frame in the
process of projection in OpenGL ES makes it is necessary to
transform the spherical coordinate to Cartesian coordinate.
Some certain ground object's spherical coordinate is set as
(lat,lon,alt) and its Cartesian coordinate is Q(X,Y,Z). X, Y and
Z are calculated as follows:

[k2o
Tamalti s:.gqt - al::-ﬂ: s c:r.s'cE =

120
"i‘"-llmmgct T;;ﬂ} xdnct T;; [

Teme €
Zealt x sl

On the assumption that the camera's projection reference center
is RCenter(rX,rY,rZ),the initial pen position is the projection
coordinate what Q is relative to RCenter in screen.

Character geometrical model's width and height are the width
and height of the character's glyph bitmap. Vertex X-coordinate
at the bottom left corner of the model is what the X-coordinate
of current pen position has been made a rightward translation
whose movement distance is the horizontal distance from pen
position on baseline to the leftmost pixel of glyph image along
plus x-axis. Increasing Y-coordinate corresponding to
downward scanning beam is realized by subtracting the
distance from pen position to top. So the vertex Y-coordinate at
the bottom left corner is the subtraction of screen height and the
Y-coordinate of current pen position which has been made a
downward translation whose movement distance is the vertical
distance from pen position to the top of glyph image along plus
y-axis. We accord the width and height to gain the rest vertices
of the model.

3. RESULTS

Glyph measure adopts horizontal layout in the process of
converting English characters to glyph bitmaps. Many
characters' glyph bitmaps which are used as textures have the
different width and height. The distances from pen position to
the top borderline in most English characters glyph images are
different from each other. Using the unchanged data from
bitmap to set the Y-coordinate of character geometrical model's
vertices finally displays irregular arranged character model
which is shown in s60 simulator as Figure 3.

O 482 b Bckvon FBJ 02 1.1 - wiviow s
tie e vwn

L v i b
| i P

Figure 3. Irregular arranged English character models

186

It is necessary to adjustment the Y-coordinate of the character
model for text alignment before displaying the text label. The
final English labels display is shown in Figure 4.

[0 o Eaw P G w11 - i sl
Ha Took rwip

L e et i 0
e e

Figure 4. Regular English character models
Glyph measure adopts vertical layout in the process of convert
Chinese characters to glyph bitmaps. There is tiny difference
between the distances from pen position to the top borderline of
their bitmaps. Directly using the data from bitmap to set
character geometrical model Y-coordinate has no influence in
justification. The Chinese label is shown in Figure 5.

O 48 I Fokron FRJ (20 1.8 - wihow T S |
te Tes vw

Figure 5. Chinese character models

When we zoom in or rotate the 3D scene, the character models'
particulars and appearances keep the original shapes.

4. CONCLUSIONS

The Chinese characters and English characters are truly
displayed in screen of cellphone by this method. We give the
detailed approach in displaying text basing on Symbian OS and
OpenGL ES. The detail of programming is related to the
efficiency of program. It provides a convenient method to draw
character model in 3D scene base on OpenGL or OpenGL ES
in the paper.

Symbian OS has a great progress in developing. It provides a
perfect support for OpenGL ES. More 3D games and 3D
navigation systems can be used in cellphone in Symbian OS.
More and more all-sided functions increase the more value and
appeal for smart phone. More new ideas and new innovation

will be applied to Symbian OS and more chances and time will
mature the strongpoint of cellphone.

REFERENCES

Edward Angel,2007. Interactive Computer Graphics-A
Top-Down Approach Using OpenGL. Graphics program,
pp.48-56

Dave Shreiner,Mason Woo,Jackie Neider,Tom Davis,2005.
OpenGL Programming Guide.

Richard Harrison,2005. Symbian OS C++ for Mobile Phones
volume2.

Ruiter H., Benhabib B.,(2008) Visual-model-based, real-time
3D pose tracking for autonomous navigation: methodology and
experiments. In Auton Robot (2008) 25: 267-286.

Marti'n S., Sua’rez J., Orea R., Rubio R., Gallego R.(2009)
GLSV: Graphics library stereo vision for OpenGL. In Virtual
Reality (2009) 13: 51-57.

187

	Papers of GSEM2009.pdf
	Wu Xueming.pdf

