
THE DISPLAY OF CHINESE AND ENGLISH CHARACTERS BASED ON OPENGL ES IN 
SYMBIAN OPERATION SYSTEM 

 
 

Liu Jinping a,b,*  Liu Zhengjun a  Huang Ying b 

 
a The Chinese Academy of Surveying and Mapping, Beijing 100039-liujinping123321@163.com; 

b Faculty of Mechanical & Electronic Information, China University of Geosciences, Wuhan 
430074-liujinping123321@163.com; 

 
KEY WORDS: Symbian OS,OpenGL ES,Unicode,Chinese display,FreeType,3D 
 
 
ABSTRACT: 
 
This article is about the method of the display of Chinese and English Characaters in the programming environment of Carbide.c++. 
Development of this method is based on Symbian Series 60 platform and OpenGL ES. Both Chinese characters and English 
characters can be displayed in 3D scene. The methodology and arithmetic are presented in the article. This method has been 
successfully applied to the 3D navigation system of cellphone on Series 60 platform such as Nokia N95. Most city names and typical 
ground objects can be displayed in our developing system. Moreover, all the names can be displayed either in Chinese or English 
characters. OpenGL ES application programming interface doesn’t provide the ready methods of drawing or editing text. FreeType 2 
application programming interface provides us the methods of drawing the character’s glyph outline according to the character’s 
glyph index in some coding methods. In this paper, the characters can be displayed by converting the coding method of Symbian 
characters to Unicode coding method and also the methods of obtaining bitmaps of characters provided by FreeType 2 application 
programming interface is realizable. ANSI (American National Standards Institute) coding method is the default coding method of 
the compiler in Symbian operating system. The ANSI coding method of Chinese characters in the Symbian operating compiler is 
actual GBK coding method. All the characters will be converted to Unicode characters before being converted to glyph index in the 
FreeType 2 application programming interface. The characters with coding methods are ANSI or GBK which are stored in characters 
buffer, then the whole character string in character buffer is converted to Unicode string on Series 60 platform. No FreeType 2 
application programming interface in Symbian Series 60 SDK. C programming language is transplanted to the Symbian operating 
system which is developed in C++ programming language. At the meanwhile, FreeType 2 application programming interface is 
transplanted to Series 60 platform.  Then we use the methods provided by the static library of FreeType 2 to acquire these 
characters’ glyph index and glyph images in the 3D navigation application. Finally, we apply these glyph images as textures of the 
model to truly realize the 3D display of these Chinese and English characters. The method of drawing or editing text in OpenGL ES 
has strong transplanted while it is a convenient method for drawing text in OpenGL ES. We can adopt this method to draw many 
kinds of text in various applications based on OpenGL ES or OpenGL. The character font and color can be changed in the actual 
programming environment.  
 
 

1. INTRODUCTION 

Lifelike 3D scene correctly simulates the reality environment in 
3D navigation system. The city names and typical ground 
objects' names in 3D navigation scene bring our eyes 
intuitionistic visual effect and quick resolving power. They play 
an important role in 3D navigation scene. It is necessary to 
label these cities and typical ground objects in 3D scene.  
 
The stroke character and raster character are the two character’s 
forms in OpenGL. The raster function interface has been wiped 
off in OpenGL ES. The outline of stroke character is drawn and 
added as elementary geometric graphic unit to graphics system 
in the form of stroke character. If all the characters in ASCII 
format are defined as geometric graphic units, these geometric 
graphic units will cost the device plenty of memory and much  
treatment time. Considering the limited memory of the  
_________________________________ 

*  Corresponding author.  Liujinping123321@163.com 

cellphone, the total of the  Chinese characters is too large to 
define the majority of the Chinese characters which are in 
common use in our daily life as the geometric graphic units. 
Using FreeType 2 API to draw the outline of Chinese and 
English characters which need be shown in screen and 
converting their outlines to bitmaps which are saved as the 
textures of character models give much convenience to display 
Chinese and English characters’ models in the screen of 
cellphone.  
 
 

2. METHODOLOGY  

OpenGL ES API and FreeType 2 API provide the key methods 
to realize the characters' display in 3D scene. 

2.1 The Summarization of OpenGL ES and FreeType2 

2.1.1 OpenGL ES:  It is specially designed for cellphone and  
 

183



other embedded device. OpenGL ES API provides the 
rock-bottom functions of display and the standard methods to 
describe the rock-bottom hardware of rendering image in main 
CPU or graphics processing unit. As a given 3D application 
programming interface of cellphone, OpenGL ES allow 
programmers adding the 3D graphic accelerator to the 
cellphone in a standard mode. When the scheduled 3D graphics 
is displayed in screen, making use of graphical interfaces can 
realize the various transformations and many settings in 3D 
display. 
 
2.1.2 FreeType 2 API:  FreeType 2 engine can efficiently 
produce transplantable symbol image with high quality and 
only cost a small quantity of memory. It provides a set of 
uniform application programming interface which is easy to 
use and independent on the type of font file. FreeType 2 API 
supports scaleable typeface such as TrueType and can return 
the outline of font to the client programs. 
 
2.2 Methodology of Displaying Character 

Freetype 2 API can convert the characters to glyph images. 
Applying these glyph images as the textures of models truly 
realize the 3D display of these Chinese and English characters 
in 3D scene. The flow chart of displaying characters is shown 
as Figure 1. 
 
 

 
Figure 1.Flow chart of character string display 

 
2.2.1 Coding Conversion:  Different countries make different 
standards for coding. ANSI character set is the extending of 
ASCII. It contains ASCII character set and the character sets 
which derive from ASCII character set and are compatible with 
ASCII character set. ANSI codes English characters with single 
byte and double bytes for Chinese characters. The default 

Chinese coding method of text is GBK in the situation of 
compiling program in Windows. ANSI coding is actual 
GB2312 coding in simplified Chinese character system. The 
standard of coding with different bytes in English characters 
and other lingual characters makes various characters correctly 
processed in local computer system but wrong in non-local 
computer system. The default coding method in Symbian OS is 
Unicode. Unicode contains all the coding schemes of the 
worldwide languages and almost designs uniform and exclusive 
binary code for every character in any language. The 
development tool which we use in Windows is Carbide.c++. 
Converting Chinese character coding from ANSI to Unicode 
before displaying Chinese character is obligatory in Symbian 
OS.  
 
Character string is end with '\0' (0x00) in C program. The 
disposal in computers considers 0x00 is the end of character 
string. One byte is 0x00 and the other is not in many codes 
which are coded with two bytes in Unicode coding method. 
When these Unicode codes are disposed in C program compiler, 
they will cause error or confusion in disposal. One solution is 
using the types of wchar_t to express a Unicode character 
variable. The variable type wchar_t make computers read two 
bytes every time and end with 0x0000. 
 
We input the city names or typical ground objects' names to the 
character descriptor in English in application: 
 _LIT8 (KPlaceName, "Shanghai"); 
"Shanghai" is saved as ASCII coding in Windows. When all 
the characters' ASCII coding value is between 0x32 and 0x7F, 
we can directly convert character string from multi-byte string 
to a wide character string by the follow codes: 
TBuf8<40> ibuf(KPlaceName); 
const char *charString = (const char*)ibuf.PtrZ();   
wchar_t* chstr=(wchar_t*)malloc((ibuf.Length()+1) 
*sizeof(wchar_t)); 
TInt ret=mbstowcs(chstr, charString,ibuf.Length() ); 
chstr[ibuf.Length()]='\0'; 
Application will gain glyph index of each character in character 
string chstr from font file according to the character's Unicode 
code. When we input city names in Chinese: 
_LIT8(KPlaceName,"上海"); 
"上海" is saved with GBK code. Simplified Chinese character 
coding method is GB2312 or GBK in program whose source 
file is saved as non-UTF-8 codes. We need convert the coding 
method from ANSI to Unicode before handling the character 
string in Symbian OS. "上" and "海" are respective saved in 
double bytes as [0xBA,0xA3] and [oxC9,0xCA] in ANSI 
coding method and saved as 0x4E0A and 0x6D77 in Unicode 
coding method. The code snippet of converting Chinese 
character string coding method from GBK to Unicode is shown 
as follows:  
TBuf8<40> ibuf(KPlaceName); 
char* chstr=(char*)ibuf.PtrZ(); 
 CCnvCharacterSetConverter* 
converter=CCnvCharacterSetConverter::NewL(); 
if (converter->PrepareToConvertToOrFromL 
(KCharacterSetIdentifierGbk, 

184



CEikonEnv::Static()->FsSession()) 
 == CCnvCharacterSetConverter::EAvailable) {} 
else if (converter->PrepareToConvertToOrFromL 
(KCharacterSetIdentifierGb2312, 
CEikonEnv::Static()->FsSession())!=CCnvCharacterSetConver
ter::EAvailable) 
 {  
CleanupStack::PopAndDestroy(); 
User::Leave(KErrNotSupported); 
 } 
TText8 *tstr = (TText8*)chstr; 
TInt state=CCnvCharacterSetConverter::KStateDefault; 
TPtrC8 source(tstr); 
HBufC* iInfoText =HBufC::NewL(source.Length()); 
TPtr16 ptr = iInfoText->Des(); 
if (CCnvCharacterSetConverter::EErrorIllFormedInput== 
converter->ConvertToUnicode(ptr, source, state) )  
{      
 CleanupStack::PopAndDestroy(); 
User::Leave(KErrArgument);  
} 
wchar_t* wstr=(wchar_t*)ptr.PtrZ(); 
"上海" is saved with Unicode coding method in wstr. The 
transformation above is also effective to mixed characters 
inputting with English and Chinese characters. 
 
2.2.2 Load FreeType 2 Library:  No FreeType 2 application 
programming interface in Symbian Series 60 SDK. We 
transplant the open source code of FreeType 2 to Series 60 
platform and build Freetype static library. Some functions 
without relation to produce glyph image in FreeType 2 API are 
wiped off before building static FreeType 2 library in order to 
reducing the size of static FreeType 2 library and the time of 
running the static library. The simplified FreeType 2 library is 
loaded to Series 60 platform. It provides us all-sided methods 
to acquire character’s glyph index and glyph image in the 3D 
navigation application. 
2.2.3 Generate Character's Bitmap:  An new instance of 
FreeType 2 API is created and a font file is loaded at first. Font 
is one group of characters' image which can be shown and 
printed. One type of font defines one mode of a character set 
for a series of given characters. The font file includes some 
tables by the name of character image for converting character 
code to glyph index. One font file contains a set of glyph. 
Every glyph can be saved as bitmap or some other structures. 
Font file saves glyph in arbitrary order. We access a character's 
glyph by its glyph index. 
 
FreeType 2 API uses size object to construct the given 
character's size in given font face. When a new font face is built, 
the default size is 10 pixels both in horizontal direction and 
vertical direction in scalable typeface. The size must be set 
before loading a glyph. Unicode character image is the default 
character image when we build a new font face. If the font 
doesn't contain the Unicode character image, FreeType 2 will 
attempt to simulate a new one. 
  
We load glyph image according to the relevant glyph index. 

The glyph with different font is saved in different format. 
Every glyph image is a bitmap in typeface of fixed size. It 
describes a glyph with vector form namely outline in scaleable 
typeface, such as TrueType and Type1. A TrueType font file 
simkai.ttf is loaded to the application. The way to gain all the 
characters' glyph images of a label is realized by creating a loop 
in application. Each trip through the loop loads a glyph image. 
We transform the glyph image to an anti-aliased bitmap which 
is used as a texture for character's model. Then we set the 
model's width and height according to the left and top span of 
character outline and the width and height of the bitmap. The 
process of gaining character outline and bitmap is important. 
The link of generating glyph bitmaps is shown in Figure 2. 
 

Figure 2.Approach of producing bitmap 
2.2.4 SETTING GEOMETRICAL VERTEX AND 
TEXTURE DATA:  It is necessary to get a handle of a glyph 
after producing a bitmap of the glyph image for us accessing 
the size of the bitmap and the horizontal distance from pen 
position to left borderline and the vertical distance from pen 
position to top borderline. We use these bitmaps as the textures 
of character models in OpenGL ES. The texture's size in 
OpenGL ES must be integral TH power of two. Converting 
bitmap's size to be true of the need of texture's size in OpenGL 
ES is necessary. It is realized by the follow methods: 
int width = next_p2(bitmap.width); 
int height = next_p2(bitmap.rows); 
The function of next_p2 returns a value which is the 
approximation of integral TH power of two. There is a point on 
baseline named pen position. The pen position is used to give 
an orientation of glyph. The projection coordinate in screen of 
the given region's spherical coordinate is set as the label's initial 
pen position. The X-coordinate of every character glyph 
image's current pen position is the totting-up of all the anterior 
characters' advance widths basing on the initial pen position in 
the order of the character's appearing order in the character 
string. In the practical navigation application, the city position 
is express as latitude, longitude and altitude in spherical 
reference frame. The using of Cartesian reference frame in the 
process of projection in OpenGL ES makes it is necessary to 
transform the spherical coordinate to Cartesian coordinate. 
Some certain ground object's spherical coordinate is set as 
(lat,lon,alt) and its Cartesian coordinate is Q(X,Y,Z). X, Y and 
Z are calculated as follows: 

185



   

 

 

On the assumption that the camera's projection reference center 
is RCenter(rX,rY,rZ),the initial pen position is the projection 
coordinate what Q is relative to RCenter in screen.  
 
Character geometrical model's width and height are the width 
and height of the character's glyph bitmap. Vertex X-coordinate 
at the bottom left corner of the model is what the X-coordinate 
of current pen position has been made a rightward translation 
whose movement distance is the horizontal distance from pen 
position on baseline to the leftmost pixel of glyph image along 
plus x-axis. Increasing Y-coordinate corresponding to 
downward scanning beam is realized by subtracting the 
distance from pen position to top. So the vertex Y-coordinate at 
the bottom left corner is the subtraction of screen height and the 
Y-coordinate of current pen position which has been made a 
downward translation whose movement distance is the vertical 
distance from pen position to the top of glyph image along plus 
y-axis. We accord the width and height to gain the rest vertices 
of the model. 
 
 

3. RESULTS  

Glyph measure adopts horizontal layout in the process of 
converting English characters to glyph bitmaps. Many 
characters' glyph bitmaps which are used as textures have the 
different width and height.  The distances from pen position to 
the top borderline in most English characters glyph images are 
different from each other. Using the unchanged data from 
bitmap to set the Y-coordinate of character geometrical model's 
vertices finally displays irregular arranged character model 
which is shown in s60 simulator as Figure 3.  
 
 

 
Figure 3. Irregular arranged English character models 

 
It is necessary to adjustment the Y-coordinate of the character 
model for text alignment before displaying the text label. The 
final English labels display is shown in Figure 4. 
 

 
    Figure 4. Regular English character models 
Glyph measure adopts vertical layout in the process of convert 
Chinese characters to glyph bitmaps. There is tiny difference 
between the distances from pen position to the top borderline of 
their bitmaps. Directly using the data from bitmap to set 
character geometrical model Y-coordinate has no influence in 
justification. The Chinese label is shown in Figure 5. 
 
 

 
        Figure 5. Chinese character models 

When we zoom in or rotate the 3D scene, the character models' 
particulars and appearances keep the original shapes. 
 
 

4. CONCLUSIONS  

The Chinese characters and English characters are truly 
displayed in screen of cellphone by this method. We give the 
detailed approach in displaying text basing on Symbian OS and 
OpenGL ES. The detail of programming is related to the 
efficiency of program. It provides a convenient method to draw 
character model in 3D scene base on OpenGL or OpenGL ES 
in the paper. 

Symbian OS has a great progress in developing. It provides a 
perfect support for OpenGL ES. More 3D games and 3D 
navigation systems can be used in cellphone in Symbian OS. 
More and more all-sided functions increase the more value and 
appeal for smart phone. More new ideas and new innovation 

186



will be applied to Symbian OS and more chances and time will 
mature the strongpoint of cellphone. 
 
 

REFERENCES  

Edward Angel,2007. Interactive Computer Graphics-A 
Top-Down Approach Using OpenGL. Graphics program, 
pp.48-56 
 
Dave Shreiner,Mason Woo,Jackie Neider,Tom Davis,2005. 
OpenGL Programming Guide.  
 
Richard Harrison,2005. Symbian OS C++ for Mobile Phones 
volume2. 
 
Ruiter H., Benhabib B.,(2008) Visual-model-based, real-time 
3D pose tracking for autonomous navigation: methodology and 
experiments. In Auton Robot (2008) 25: 267–286. 
 
Martı´n S., Sua´rez J., Orea R., Rubio R., Gallego R.(2009) 
GLSV: Graphics library stereo vision for OpenGL. In Virtual 
Reality (2009) 13: 51–57. 
 

187


	Papers of GSEM2009.pdf
	Wu Xueming.pdf


