Lecture 5 Four arithmetic operations, and monotonic and bounded sequences

§ 1 Four arithmetic operations

Theorem 1.1 If
$$\lim_{n\to\infty} x_n = a$$
 and $\lim_{n\to\infty} x_n = b$, then $\lim_{n\to\infty} (x_n \pm y_n) = a \pm b$.

The proof directly follows from the definition.

Theorem 1.2 If
$$\lim_{n\to\infty} x_n = a$$
 and $\lim_{n\to\infty} x_n = b$,
then $\lim_{n\to\infty} (x_n y_n) = ab$.

The proof of Theorem 1.2 follows from the following two statements:

(1) The definition of the limit; and

(2) If $\lim_{n\to\infty} x_n = a$, then $\{x_n\}$ is bounded.

Remark 1.1 In general, the inverses of Theorem 1.1

and 2.2 are not valid. We can take $x_n = n$, $y_n = -n$, and $x_n = n$, $y_n = \frac{1}{n}$ as counterexamples.

Theorem 1.3 If $\lim_{n\to\infty} x_n = a$ and $\lim_{n\to\infty} y_n = b \neq 0$,

then

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b}.$$

Proof For any $\varepsilon > 0$, there is some $N_1 > 0$ such that

for all $n > N_1$,

$$a - \varepsilon < x_n < a + \varepsilon$$
.

And there is some $N_2 > 0$ such that for all $n > N_2$,

$$b - \varepsilon < y_n < b + \varepsilon$$
.

It follows from $by_n \rightarrow b^2 > \frac{b^2}{2}$ that there is some $N_3 > 0$, Such that for all $n > N_3$,

$$|by_n| > \frac{b^2}{2}$$
.

Since

$$\left| \frac{x_n}{y_n} - \frac{a}{b} \right| = \frac{\left| bx_n - ay_n \right|}{\left| by \right|} \le \frac{\left| b \right| \left| x_n - a \right| + \left| a \right| \left| y_n - b \right|}{\left| by \right|},$$

By Let $N = \max\{N_1, N_2, N_3\}$, we see that for all n > N

$$\left|\frac{x_n}{y_n} - \frac{a}{b}\right| \leq \frac{2}{b^2} \left(|a| + |b|\right) \varepsilon.$$

This shows that

$$\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{a}{b}.$$

Examples 1.1 Find the following limits.

(1)
$$\lim_{n\to\infty}\frac{n^2+2n+5}{n^2+1}$$
;

(2)
$$\lim_{n\to\infty}\frac{1}{n}\left[(x+\frac{1}{n}a)+(x+\frac{2}{n}a)+\cdots+(x+\frac{n-1}{n}a)\right];$$

(3)
$$\lim_{n\to\infty}\sin^2\left(\pi\sqrt{n^2+n}\right)$$
.

Hint of (3)
$$(1) \sin^2 x = \frac{1 - \cos 2x}{2}$$
;
 $(2) \cos x = \cos(2n\pi - x)$.

Examples 1.2 Find the error in the following inference.

$$1 = \lim_{n \to \infty} (n - \frac{1}{n}) = \lim_{n \to \infty} n \cdot \lim_{n \to \infty} \frac{1}{n} = 0.$$

Theorem 1.4 $\lim_{n\to\infty} x_n = A$ if and only if there is some sequence $\{\varepsilon_n\}$ such that $x_n = A + \varepsilon_n$ with $\lim_{n\to\infty} \varepsilon_n = 0$.

By letting $\varepsilon_n = x_n - A$, the proof easily follows.

§ 2 Monotonic and bounded sequences

We give the following result as an axiom.

Theorem 2.1 If $\{x_n\}$ is monotonic and bounded, then $\lim_{n\to\infty} x_n$ exists.

Example 2.1 Suppose a > 0 is a constant.

Let
$$y_1 = \sqrt{a}$$
, $y_2 = \sqrt{a + \sqrt{a}}$, ..., $y_n = \sqrt{a + \sqrt{a + \dots + \sqrt{a}}}$, ...

First prove that $\lim_{n\to\infty} y_n$ exists and then find this limit.

Proof ① Obviously, $y_{n+1} > y_n$;

2
$$y_{n+1}^2 = a + y_n < a + y_{n+1}, y_{n+1} < \sqrt{a} + 1.$$

These show that $\{y_n\}$ is decreasing and bounded.

Theorem 2.1 implies that $\lim_{n\to\infty} y_n$ exists.

Assume that $l = \lim_{n \to \infty} y_n$. It follows from $l = \sqrt{a+1}$ that $l^2 - l - a = 0$.

We see that

$$l=\frac{1+\sqrt{1+4a}}{2}.$$

Example 2.2 Let $\{y_n = (1 + \frac{1}{n})^n\}$. Prove $\lim_{n \to \infty} y_n$ exists.

Proof (1) Since

$$y_n = 1 + n \cdot \frac{1}{n} + \frac{n(n-1)}{2!} \cdot \frac{1}{n!} + \dots + \frac{n(n-1) \cdot \dots \cdot 3 \cdot 2 \cdot 1}{n!} \cdot \frac{1}{n^n}$$

$$= 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n}) + \frac{1}{3!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) + \dots + \frac{1}{n!} (1 - \frac{1}{n}) (1 - \frac{2}{n}) \cdot \dots (1 - \frac{n-1}{n}).$$

and

$$y_{n+1} = 1 + 1 + \frac{1}{2!} (1 - \frac{1}{n+1}) + \frac{1}{3!} (1 - \frac{1}{n+1}) (1 - \frac{2}{n+1}) + \cdots$$

$$+ \frac{1}{n!} (1 - \frac{1}{n+1}) (1 - \frac{2}{n+1}) \cdots (1 - \frac{n-1}{n+1})$$

$$+ \frac{1}{(n+1)!} (1 - \frac{1}{n+1}) (1 - \frac{2}{n+1}) \cdots (1 - \frac{n}{n+1}),$$

We see that

$$y_n < y_{n+1}$$
.

It follows that $\{y_n\}$ is increasing.

2)
$$0 < y_n < 1 + 1 + \frac{1}{2!} + \dots + \frac{1}{n!}$$

$$= 1 + 1 + \frac{1}{1 \cdot 2} + \dots + \frac{1}{(n-1)n}$$

$$= 1 + 1 + 1 - \frac{1}{n} < 3.$$

Hence $\{y_n\}$ is increasing and bounded. Theorem 2.1 implies that $\lim_{n\to\infty} y_n$ exists, which is denoted by $e=2.71828182845926\cdots$, i.e.,

$$\lim_{n\to\infty}(1+\frac{1}{n})^n=e.$$

Example 2.3 Let $x_n = \frac{n^k}{a^n}$, where a > 1 and k > 0

are constant. Prove $\lim_{n\to\infty} x_n$ exists.

Hint: Since

$$\lim_{n\to\infty}(1+\frac{1}{n})^k=1$$

and a>1, we easily know that there is some N>0 such that for all n>N,

$$(1+\frac{1}{n})^k < a.$$

Example 2.4 Let $x \in R$ and $y_n = \sin \sin \cdots \sin x$.

Prove $\lim_{n\to\infty} y_n(x)$ exists.

Proof ① without loss of generality, we may assume that $\sin x > 0$. It follows that

$$y_n(x) < y_{n-1}(x).$$

This shows that $\{y_n(x)\}\$ is decreasing.

② Obviously, $0 < y_n(x) < \sin x$.

The above discussions show that $\{y_n(x)\}$ is decreasing and bounded. Theorem 2.1 implies that $\lim_{n\to\infty} y_n$ exists, which is denoted by l. Then $l=\sin l$. Hence l=0.

Homework Page 56: 12; 13; 14(1, 4); 16

