Lecture 6 Infinitesimals and infinity

§ 1 Infinitesimals

Definition 1.1 If $\lim_{n\to\infty} x_n = 0$, then $\{x_n\}$ is called an infinitesimal.

For example, when $n \to \infty$, both sequences $\{\frac{1}{n}\}$ and $\{0\}$ are infinitesimals.

Theorem 1.1 If $\{x_n\}$ is bounded and $\{y_n\}$ is an infinitesimal, then $\{x_ny_n\}$ is still an infinitesimal.

Proof since $\{x_n\}$ is bounded, we see that there is some M > 0 such that for all n > 0,

$$|x_n| \leq M$$
.

It follows from $\{y_n\}$ being an infinitesimal that for any $\varepsilon > 0$, there is some N > 0 such that for all n > N, $|y_n| \le \varepsilon$.

Hence for all n > N,

$$|x_n y_n| \leq M \varepsilon$$
.

This shows that

$$\lim_{n\to\infty}x_ny_n=0.$$

Example 1.1 Find the limits.

(1)
$$\lim_{n\to\infty} \frac{\sin n^2}{\sqrt{n}}$$
; (2) $\lim_{n\to\infty} (2+\frac{1}{n})^2 \sin \frac{\sqrt[3]{n}}{\sqrt{n}}$.

§ 2 Infinity

Definition 2.1 If $\lim_{n\to\infty} x_n = \infty$, then $\{x_n\}$ is called an infinity.

This is equivalent to the following:

For any G>0, there is some N>0 such that for all n>N,

$$|x_n| > G$$
.

There are two cases:

Case I $\lim_{n\to\infty} x_n = +\infty$ if and only if for any G>0, there is some N>0 such that for all $n>N, x_n>G$.

Case II $\lim_{n\to\infty} x_n = -\infty$ if and only if for any G>0, there is some N>0 such that for all $n>N, x_n<-G$.

Example 2.1 Prove $\{2^n\}$ is an infinity.

Proof For any G>0, let $2^n>G$. Take $N=\lceil \log_2^G \rceil+1$. Then for all n>N, $|2^n|>G$.

The proof is finished.

§ 3 Their relationships

Theorem 3.1 If $\{x_n\}$ is an infinity, then $\{\frac{1}{x_n}\}$ is an infinitesimal, and the converse also holds if for each $n, x_n \neq 0$.

Proof For any $\varepsilon > 0$, let $G = \frac{1}{\varepsilon}$. Then the hypothesis $\{x_n\}$ being an infinity implies that there is some N > 0 such that for all n > N,

$$\left|x_n\right| > \frac{1}{\varepsilon}$$

Hence $\left| \frac{1}{x_n} \right| < \varepsilon$. It follows that $\lim_{n \to \infty} \frac{1}{x_n} = 0$. The proof for the converse is the same.

Theorem 3.2 If both $\{x_n\}$ and $\{y_n\}$ are positive (resp. negative) infinities, then $\{x_n + y_n\}$ is still an infinity. The proof is obvious.

Theorem 3.3 If $\{x_n\}$ is an infinity and $\{y_n\}$ is bounded, Then $\{x_n + y_n\}$ is still an infinity. The proof is obvious.

Theorem 3.4 If $\{x_n\}$ is an infinity and $\{y_n\}$ satisfies that there is some N > 0 and q > 0 such that for all n > N, $|y_n| \ge q$, then $\{x_n y_n\}$ is an infinity.

Proof Since $\{x_n\}$ is an infinity, we see that there is G>0 and N>0 such that for all n>N,

$$|x_n| > G$$
 and $|x_n y_n| > Gq$.

These show that $\{x_n y_n\}$ is an infinity.

The following is a direct consequence of Theorem 3.4.

Corollary 3.1 If $\{x_n\}$ is an infinity and $\lim_{n\to\infty} y_n = a \neq 0$, then $\{x_n y_n\}$ is an infinity.

Remark 3.1 The condition $a \ne 0$ is necessary. For example, we take $x_n = n$ and $y_n = \frac{1}{n}$.

Example 3.1 Let $x_n = \frac{a_0 n^k + a_1 n^{k-1} + \dots + a_k}{b_0 n^l + b_1 n^{l-1} + \dots + b_l}$, where

 $a_0 \neq 0$, $b_0 \neq 0$. Discuss the existence of $\lim_{n \to \infty} x_n$.

Example 3.2 Show that $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Proof Let $\sqrt[n]{n} = 1 + x_n$. Then

$$\frac{1}{2}n(n-1)x_n^2 < n.$$

This implies that for all $n \ge 2$,

$$0 < x_n < \sqrt{\frac{2}{n-1}}.$$

This yields that

$$\lim_{n\to\infty}x_n=0.$$

Hence

$$\lim_{n\to\infty} \sqrt[n]{n} = 1.$$

Remark 3.2 As an exercise, please show that for any

$$a>0$$
, $\lim_{n\to\infty}\sqrt[n]{a}=1$.

Example 3.3 Find
$$\lim_{n\to\infty} \frac{3n+\sin n}{n^2+\cos n+1} [\arctan n+\sin^2 n]$$
.

Example 3.4 If
$$a_n > 0$$
 and $\lim_{n \to \infty} a_n = a$, then $\lim_{n \to \infty} (a_1 a_2 \cdots a_n)^{\frac{1}{n}} = a$

Proof We divide our discussions into two cases.

Case 1 a=0.

It follows that
$$\lim_{n\to\infty} \frac{a_1 + a_2 + \cdots + a_n}{n} = 0$$
.

By using the fact

$$0<\sqrt[n]{a_1a_2\cdots a_n}<\frac{a_1+a_2+\cdots+a_n}{n},$$

We see that $\lim_{n\to\infty} (a_1 a_2 \cdots a_n)^{\frac{1}{n}} = 0$.

Case 2 a > 0

It follows that $\lim_{n\to\infty}\frac{1}{a_n}=\frac{1}{a}$.

This implies that

$$\lim_{n\to\infty} \frac{a_1 + a_2 + \dots + a_n}{n} = a, \lim_{n\to\infty} \frac{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}}{n} = \frac{1}{a}$$

and

$$\lim_{n\to\infty}\frac{n}{\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}}=a.$$

It follows from the following double inequalities

$$\frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}} < \sqrt[n]{a_1 a_2 \cdots a_n} < \frac{a_1 + a_2 + \dots + a_n}{n}$$

that

$$\lim_{n\to\infty}(a_1a_2\cdots a_n)^{\frac{1}{n}}=a.$$

Homework Page 15: 18(1); 20

