Lecture 7 Limits of functions

§ 1 Definition of the limit of a function at x_0

Definition 1.1 Let f(x) be well defined on a neighbourhood $O(x_0, \delta)$ of x_0 with x_0 deleted (which is denoted by $O(\hat{x}_0, \delta)$ in the following) and A a constant.

If for any $\varepsilon > 0$, there is some $\delta > 0$ such that for all x: $0 < |x - x_0| < \delta$, $|f(x) - A| < \varepsilon$,

then we call A the limit of f(x) at x_0 , denoted by

$$\lim_{x\to x_0} f(x) = A.$$

Examples 1.1 (1) Prove $\lim_{x\to 0} (x \sin \frac{1}{x}) = 0$;

(2)
$$\lim_{x\to 1} \frac{(x-2)(x-1)}{x-3} = 0$$
;

(3)
$$\lim_{x\to 2} \frac{x^2+1}{2x+1} = 1$$
.

Theorem 1.1 If $\lim_{x\to x_0} f(x) = A$ then $\lim_{x\to x_0} |f(x)| = |A|$.

The proof easily follows from the definition and the following estimate:

$$||f(x)|-|A||\leq |f(x)-A|.$$

The function sgn(x) shows that the converse of Theorem 1.1 does not hold.

Theorem 1.2 $\lim_{x \to x_0} f(x) = 0$ if and only if $\lim_{x \to x_0} |f(x)| = 0$. The proof is obvious.

§ 2 Operations

Theorem 2.1 If $\lim_{x \to x_0} f(x) = A$, and $\lim_{x \to x_0} g(x) = B$, then $\lim_{x \to x_0} (f(x) \pm g(x)) = A \pm B$ and $\lim_{x \to x_0} (g(x) f(x)) = AB$.

Theorem 2.2 If $\lim_{x \to x_0} f(x) = A$, and $\lim_{x \to x_0} g(x) = B \neq 0$, then

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{A}{B}.$$

Proof It follows from $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} g(x) = B$, that for any $\varepsilon > 0$, there is some $\delta_1 > 0$ such that for all $x \in O(\hat{x}_0, \delta_1)$,

$$|f(x)-A|<\varepsilon$$
;

and there is some $\delta_2 > 0$ such that for all

$$x \in O(\hat{x}_0, \delta_2),$$

$$|g(x)-B|<\varepsilon$$

Since $\lim_{x \to x_0} Bg(x) = |B^2|$, we see that there is $\delta_3 > 0$ such that for all $x \in O(\hat{x}_0, \delta_3)$,

$$\frac{1}{2}B^2 < Bg(x) < \frac{3}{3}B^2.$$

Let $\delta = \min\{\delta_1, \delta_2, \delta_3\}$. Then $\delta > 0$ and for all $x \in O(\hat{x}_0, \delta)$,

$$\left|\frac{f(x)}{g(x)} - \frac{A}{B}\right| < \left|\frac{Bf(x) - Ag(x)}{Bg(x)}\right| < \frac{2(|A| + |B|)}{B^2} \varepsilon.$$

This shows that

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=\frac{A}{B}.$$

Example 2.1 Show that $\lim_{x\to 0} x \sin \frac{1}{x} = 0$.

Theorem 2.3 $\lim_{x \to x_0} f(x) = A$ if and only if there is some sequence $\{\varepsilon(x)\}$ such that $f(x) = A + \varepsilon(x)$ with $\lim_{x \to x_0} \varepsilon(x) = 0$.

By letting $\varepsilon(x) = f(x) - A$, the proof easily follows.

§ 3 Properties (I)

Theorem 3.1 If $\lim_{x \to x_0} f(x) = A > 0$, then there is some $\delta > 0$ such that for all $x \in O(\hat{x}_0, \delta)$, f(x) > 0.

Proof Let $\varepsilon = \frac{A}{2}$. Then there is some $\delta > 0$ satisfying

there exists some neighbourhood $O(x_0, \delta)$ of x_0 such that for all $x \in O(\hat{x}_0, \delta)$,

$$|f(x)-A|<\frac{A}{2}$$
.

This implies that

$$0 < \frac{A}{2} < f(x) < \frac{3}{2}A$$
.

Corollary 3.1 If $\lim_{x\to x_0} f(x) = A$, $\lim_{x\to x_0} g(x) = B$ and A > B,

then there exists some $\delta > 0$ such that for all $x \in O(x_0, \delta)$,

$$f(x) > g(x).$$

By letting F(x) = f(x) - g(x), we easily know that the proof follows from Theorem 3.1.

Corollary 3.2 If $f(x) \ge 0$ and $\lim_{x \to x_0} f(x)$ exists, then $\lim_{x \to x_0} f(x) \ge 0$.

Proof Suppose $\lim_{x\to x_0} f(x) < 0$. Then by Theorem 3.1, it is impossible.

Corollary 3.3 If $\lim_{x \to x_0} f(x) = A > B$, then there is some $\delta > 0$ such that for all $x \in O(\hat{x}_0, \delta)$, f(x) > B.

Corollary 3.4 (Uniqueness) If $\lim_{x \to x_0} f(x) = A$ and $\lim_{x \to x_0} f(x) = B$, then A = B.

Theorem 3.2 If there is some $\delta > 0$ such that for all

$$x \in O(\hat{x}_0, \delta)$$
,

$$f(x) \le g(x) \le h(x)$$

and, $\lim_{x\to x_0} f(x) = A = \lim_{x\to x_0} h(x)$, then $\lim_{x\to x_0} g(x) = A$.

Proof For any $\varepsilon > 0$, there is some $\delta_1 > 0$ such that for all $x \in O(\hat{x}_0, \delta_1)$,

$$A - \varepsilon < f(x) < A + \varepsilon$$
.

Also there is some $\delta_2 > 0$ such that for all $x \in O(\hat{x}_0, \delta_2)$,

$$A - \varepsilon < h(x) < A + \varepsilon$$
.

Let $\delta = \min\{\delta_1, \delta_2\}$. Then for all $x \in O(\hat{x}_0, \delta)$,

$$A - \varepsilon < g(x) < A + \varepsilon$$
.

This shows that

$$|g(x)-A|<\varepsilon$$

which implies that

$$\lim_{x\to x_0}g(x)=A.$$

Homework: Page76: 1 (1,3); 2(1)

