Lecture 11 Continuity of functions (II) and the concept of the orders of infinitesimals and infinities

- § 1 Properties of continuous functions on closed intervals
- 1.1 The Weierstrass boundedness theorem

Theorem 1.1 Suppose f(x) is continuous in [a, b].

Then f(x) is bounded in [a,b].

1.2 The Weierstrass maximal-value theorem

Theorem 1.2 Suppose f(x) is continuous in [a, b].

Then f(x) attains its maximum value and its minimum value in [a, b].

1.3 The root existence theorem

Theorem 1.3 Suppose f(x) is continuous in [a, b] and f(a)f(b) < 0. Then there is some $\zeta \in [a,b]$ such that $f(\zeta) = 0$.

1.4 The Bolzano-Cauchy intermediate-value theorem

Theorem 1.4 Suppose f(x) is continuous in [a, b].

Let
$$M = \max_{x \in [a,b]} \{f(x)\}$$
 and $m = \min_{x \in [a,b]} \{f(x)\}$.

Then for any $q \in [m, M]$, there is some $\xi \in [a, b]$ such that

$$f(\xi) = q$$
.

Hint Consider g(x) = f(x) - q. The proof easily follows from Theorem 1.3.

1.5 The cantor-Heine theorem on uniformly continuity

Definition 1.5 f(x) is called uniformly continuous in

X if for any $\varepsilon > 0$, there is some $\delta > 0$ which depends only on ε such that for any pair $x_1, x_2 \in X$,

if $|x_1 - x_2| < \delta$, then $|f(x_1) - f(x_2)| < \varepsilon$.

Example 1.5 Prove that $\sin \frac{1}{x}$ is uniformly continuous on (c,1) (c>0), but not on (0, 1).

Hint (1)
$$\left| \sin \frac{1}{x_1} - \sin \frac{1}{x_2} \right| \le \frac{|x_1 - x_2|}{2|x_1 x_2|};$$

(2) Let
$$x_{n1} = \frac{1}{2n\pi}$$
, and $x_{2n} = \frac{1}{2n\pi + \frac{\pi}{2}}$.

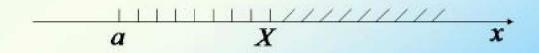
Theorem 1.5 Suppose f(x) is continuous on [a, b]. Then f(x) is uniformly continuous on [a, b].

§ 2 Added exercises

Example 2.1 If f(x) is continuous in $[a,+\infty)$ and $\lim_{x\to +\infty} f(x)$ exists, then f(x) is bounded on $[a,+\infty)$.

Hint By the existence of $\lim_{x \to +\infty} f(x)$, we divide $[a, +\infty)$ into the union of two parts, $[a, +\infty) = [a, X] \cup (X, +\infty)$.

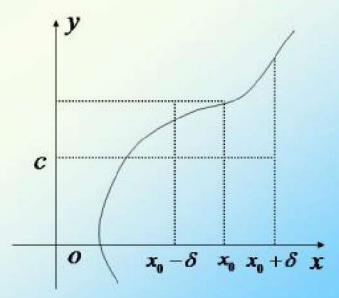
Then f(x) is bounded in $[a, +\infty)$, we divide into [a, X] and $(X, +\infty)$, respectively.



Example 2.2 If f(x) is continuous at x_0 and $f(x_0) > 0$, then there is some neighborhood $O(x_0, \delta)$ of x_0 such that for all

 $x \in O(x_0, \delta)$, $f(x) \ge c$, where c is a positive constant.

Hint In the definition of $\lim_{x \to x_0} f(x) = f(x_0)$, we take $\varepsilon = \frac{f(x)}{2}$.



Example 2.3 If $f \in C[a,b]$ and $a < x_1 < \dots < x_n < b$, then there is some $\xi \in [x_1,x_n]$ such that

$$f(\xi) = \frac{f(x_1) + f(x_2) + \dots + f(x_n)}{n}$$
.

Hint By using the weierstrass-Cauchy maximal-value theorem and the intermediate value theorem in $[x_1, x_n]$.

§ 3 Infinitesimals

Suppose
$$\lim_{x\to x_0} f(x) = 0 = \lim_{x\to x_0} g(x)$$
.

3.1 The comparison of infinitesimals

Definition 3.1 (1) f(x) is higher order than g(x) if

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=0;$$

(2) f(x) and g(x) are of the same order if

$$\lim_{x\to x_0}\frac{f(x)}{g(x)}=A\neq 0;$$

(3) f(x) is equivalent to g(x) if $\lim_{x \to x_0} \frac{f(x)}{g(x)} = 1$, which is denoted by

$$f(x) \sim g(x)$$
.

Example 3.1 Show that $\sin x \sim x$, $\tan x \sim x$ and $\ln(x+1) \sim x$.

Example 3.2 Find the following limits.

(1)
$$\lim_{x\to\infty}(\sqrt{x+\sqrt{x}+\sqrt{x}}-\sqrt{x});$$

(2)
$$\lim_{x\to 0} (1+\sin x)^{\frac{1}{2x}}$$
;

3
$$\lim_{x\to\infty}\frac{\log(x^2-x+1)}{\log(x^{10}+x+1)}$$
;

$$4 \lim_{x\to\infty} (\sin\frac{1}{x} + \cos\frac{1}{x})^x.$$

Hint of ③
$$\frac{\log(x^2-x+1)}{\log(x^{10}+x+1)} = \frac{2\log|x| + \log\frac{1-x}{x^2}}{10\log|x| + \frac{x+1}{x^{10}}}.$$

Homework Page 95: 17(1);

Page 97: 1(1, 3, 5, 7);

Page 98: 2(1, 3, 5).

