Chapter 2

Lecture 3 The limits of sequences and their properties

§ 1 The concept of limits of sequences

1.1 Sequences

$$\{x_n\}: x_1, x_2, \dots, x_n, \dots$$

1.2 Definition of limits of sequences

Suppose $\{x_n\}$ is a sequence and a is a constant.

If for any $\varepsilon > 0$, there is some N > 0 such that for all

n > N, $|x_n - a| < \varepsilon$, then we call that the limit of $\{x_n\}$ exists, which is a. Further, we denote it by $\lim_{n \to \infty} x_n = a$.

Example 1.2 (1) Prove $\lim_{n\to\infty}\frac{1}{n}=0$;

(2) Prove
$$\lim_{n\to\infty}q^n=0$$
 if $|q|<1$;

(3) Prove
$$\lim_{n\to\infty} \frac{n^2 - n + \frac{1}{4}}{4n^2 + 2n + 1} = \frac{1}{4}$$
.

Theorem 1.2.1 If $\lim_{n\to\infty} x_n = A$ exists, then $\lim_{n\to\infty} |x_n| = |A|$.

The proof easily follows from the following inequality:

$$||x_n|-|A|| \leq |x_n-A|.$$

By letting $x_n = (-1)^n$, we easily know that the converse of Theorem 1.2.1 does not hold.

Theorem 1.2.2 $\lim_{n\to\infty} x_n = 0$ if and only if $\lim_{n\to\infty} |x_n| = 0$.

The proof is obvious.

§ 2 Properties of limits of sequences

Theorem 2.1 If $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$ and a>b, then there is some N>0 such that for all n>N, $x_n>y_n$.

Hint:

Proof Let
$$\varepsilon_0 = \frac{b-a}{2}$$
.

Then it follows from $\lim_{n\to\infty} x_n = a$ that there is some $N_1 > 0$ such that for all $n > N_1$,

$$|x_n-a|<\frac{b-a}{2}$$
.

This show that for all $n > N_1$,

$$x_n < \frac{a+b}{2}.$$

It follows from $\lim_{n\to\infty} x_n = b$ that there is some $N_2 > 0$ such that for all $n > N_2$,

$$|y_n-a|<\frac{b-a}{2}$$
.

This show that for all $n > N_2$,

$$y_n > \frac{a+b}{2}$$
.

Let $N > \max\{N_1, N_2\}$, then for all n > N,

$$x_n < \frac{a+b}{2} < y_n$$
.

The proof is finished.

Similar arguments can show the following.

Theorem 2.2 If $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$ and a < b, then there is some N > 0 such that for all n > N, $x_n < y_n$.

Corollary 2.1 If $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$ and there is some

N>0 such that for all n>N, $x_n \le y_n$, then $a \le b$.

In particular, if for all n > N, $x_n \le b$, and $\lim_{n \to \infty} x_n = a$ then $a \le b$.

Corollary 2.2 If $\lim_{n\to\infty} x_n = a$, $\lim_{n\to\infty} x_n = b$ and there is

some N>0 such that for all n>N, $x_n \ge y_n$, then $a \ge b$.

In particular, if for all n > N, $x_n \le b$, and $\lim_{n \to \infty} x_n = a$ then $a \le b$.

The proofs of Corollaries 2.1 and 2.2 easily follow from Theorems 2.1 and 2.2 by contradiction.

Remark 2.1 Although the condition $x_n > y_n$ is satisfied, in general, we can not always have a > b.

For example,
$$x_n = 1 + \frac{2}{n}$$
, $y_n = 1 + \frac{1}{n}$.

Corollary 2.3 If $\lim_{n\to\infty} x_n = a$ and a < b, then there is some N > 0 such that for all n > N, $x_n < b$.

Corollary 2.4 If $\lim_{n\to\infty} x_n = a$ and a > b, then there is some N > 0 such that for all n > N, $x_n > b$.

Corollary 2.5 If $\lim_{n\to\infty} x_n = a$ and a < c, then there is some N > 0 such that for all n > N, $x_n < c$.

Corollary 2.6 If $\lim_{n\to\infty} x_n = a$ and a > b, then there is N > 0 such that for all n > N, $x_n > c$.

Remark 2.2 In Corollaries 2.3 \sim 2.6, if a = b or a = c, then the conclusions do not always hold.

For example, $x_n = 1 + \frac{(-1)^n}{n}$. Obviously, b = c = 1.

Theorem 2.3 If $\lim_{n\to\infty} x_n$ exists, then $\lim_{n\to\infty} x_n$ is unique.

Proof We prove this result by contradiction.

Suppose there are $A \neq B$ (without loss of generality,

we may assume that A > B) such that

$$\lim_{n\to\infty} x_n = A \quad \text{and} \quad \lim_{n\to\infty} x_n = B$$

Let $\varepsilon_0 = \frac{A-B}{2}$. Then there is some $N_1 > 0$ such that for all $n > N_1$,

$$|x_n-A|<\frac{A-B}{2}.$$

This implies that for all $n > N_1$,

$$x_n > \frac{A+B}{2}$$
.

Also there is some $N_2 > 0$ such that for all $n > N_2$,

$$|x_n-B|<\frac{A-B}{2}.$$

This shows that for all $n > N_2$,

$$x_n < \frac{A+B}{2}$$
.

Let $N > \max\{N_1, N_2\}$. Then for all n > N,

$$\frac{A+B}{2} < x_n < \frac{A+B}{2} .$$

This contradiction completes the proof.

Remark 2.3 In fact, the proof of Theoroem 2.3 easily follows from Theorem 2.1.

Example 2.1 Prove
$$\lim_{n\to\infty} \frac{n^2-n+2}{3n^2+2n-4} = \frac{1}{3}$$
.

Proof Since

$$\left|\frac{n^2-n+2}{3n^2+2n-4}-\frac{1}{3}\right|=\left|\frac{5n-10}{3n^2+6(n^2+n-2)}\right|,$$

We see if $n \ge 2$, then

$$\left|\frac{n^2-n+2}{3n^2+2n-4}-\frac{1}{3}\right| \leq \frac{n-2}{3n^2+6(n^2+n-2)} < \frac{5}{3n}.$$

This shows that for all $\varepsilon > 0$, if

$$\frac{5}{3n} < \varepsilon$$
,

then

$$n > \frac{5}{3\varepsilon}$$
.

Let
$$N = \max \left\{ \left[\frac{5}{3\varepsilon} \right] + 1, 2 \right\}$$
. Then for all $n > N$,

$$\left|\frac{n^2-n+2}{3n^2+2n-4}-\frac{1}{3}\right|<\varepsilon.$$

Hence

$$\lim_{n\to\infty}\frac{n^2-n+2}{3n^2+2n-4}=\frac{1}{3}.$$

Homework Page54: 2 (1, 5, 7); 4 (1); 5

