Lecture 4 Properties and four arithmetic operations of limits of sequences

§ 1 Properties

Theorem 1.1 Let $\{x_n\}$ and $\{y_n\}$ be two sequences.

If

$$\lim_{n\to\infty} x_n = A = \lim_{n\to\infty} y_n$$

and for all $n, x_n \le z_n \le y_n$,

then

$$\lim_{n\to\infty} z_n = A.$$

Proof For any $\varepsilon > 0$, the assumption $\lim_{n \to \infty} x_n = A$ implies that there is some $N_1 > 0$ such that for all $n > N_1$, $A - \varepsilon < x_n < A + \varepsilon$.

And the assumption $\lim_{n \to \infty} y_n = A$ implies that there is some $N_2 > 0$ such that for all $n > N_2$, $A - \varepsilon < y_n < A + \varepsilon$.

Let $N = \max\{N_1, N_2\}$. Then for all n > N,

$$A - \varepsilon < x_n \le z_n \le y_n < A + \varepsilon$$

This shows that $\lim_{n\to\infty} z_n = A$.

Corollay 1.1 If there is some N such that for any n > N.

$$a \le z_n \le y_n$$
 and $\lim_{n \to \infty} y_n = a$.

Then

$$\lim_{n\to\infty} z_n = a.$$

Corollay 1.2 If there is some N such that for any n > N.

$$x_n \le z_n \le a$$
 and $\lim_{n \to \infty} x_n = a$.

Then

$$\lim_{n\to\infty} z_n = a$$

Examples 1.1

- (1) Find $\lim_{n\to\infty}\frac{n+1}{n^2}$;
- (2) Suppose $a_i > 0$ $(i = 1, 2, \dots, k)$. Prove that

$$\lim_{n\to\infty} \sqrt[n]{a_1^n + a_2^n + \dots + a_k^n} = \max\{a_1^n, a_2^n, \dots, a_k^n\}.$$

(3) Suppose $0 < \alpha < 1$. Prove that $\lim_{n \to \infty} [(n+1)^{\alpha} - n^{\alpha}] = 0$.

Hint: The proof of (3) follows from the following estimates:

$$0 < (n+1)^{\alpha} - n^{\alpha} = n^{\alpha} [(1+\frac{1}{n})^{\alpha} - 1]$$

$$< n^{\alpha} [(1+\frac{1}{n}) - 1]$$

$$= \frac{1}{n^{1-\alpha}}.$$

Definition 1.1 A sequence $\{x_n\}$ is called bounded if there is a constant M > 0 such that for all n,

$$|x_n| \leq M$$
.

Or we call $\{x_n\}$ bounded if there are two constants A and B such that $A \le x_n \le B$, where A is called a lower bound and B a upper bound.

Theorem 1.2 If $\lim_{n\to\infty} x_n$ exists, then $\{x_n\}$ is bounded.

Proof Assume that $\lim_{n\to\infty} x_n = a$ and let $\varepsilon_0 = 1$.

Then the hypothesis $\lim_{n\to\infty} x_n = a$ implies that there is some

N > 0 such that for all n > N, $1-a < x_n < a+1$.

Let $M = \max\{|x_1|, |x_2|, \dots, |x_N|, |1+a|, |1-a|\}$. Then for all n,

$$|x_n| \leq M$$
.

This shows that $\{x_n\}$ is bounded.

Examples 1.2 (1) Find
$$\lim_{n\to\infty} (1+\frac{1}{n^2})(1+\frac{2}{n^2})\cdots(1+\frac{n}{n^2})$$
;

Hint: (1) For x > 0, $\frac{x}{1+x} < \log(1+x) < x$;

(2)
$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2};$$

$$(3) \quad \frac{1}{n^2+i} \geq \frac{1}{n^2+n}.$$

Examples 1.3 Prove $\lim_{n\to\infty}(2n+1)=0$ does not hold.

Hint: $\lim_{n\to\infty} x_n \neq a$ if and only if there is some $\varepsilon > 0$ such

that for any N > 0, there must exist some n > N such that $|x_n - a| \ge \varepsilon$.

Proof Let $\varepsilon = 1$ and $|2n+1| \ge 1$. Then $n \ge 0$. This implies that for each n,

$$|2n+1| \ge \varepsilon$$
.

Hence $\lim_{n\to\infty} (2n+1) = 0$ does not hold.

Homework: Page 55: 6; 7; 8 (2); 9(1, 3, 5). Page 56: 11.

