Lecture 34 Special class for exercises in chapter 4

Example 1 (page 150-12) Suppose the intersection point of x-axis and the tangent line of the curve $y = x^n$ at (1,1) is $(\xi,0)$. Find the limit $\lim_{n\to\infty} y(\xi)$.

Solution It follows from $y' = nx^{n-1}$ that the equation of the tangent line of the curve $y = x^n$ at (1,1) is

$$y = nx - (n-1).$$

This yields that the intersection point with x-axis is $(\frac{n-1}{n},0)$. Hence

$$\lim_{n\to\infty}y(\xi)=\lim_{n\to\infty}\left(\frac{n-1}{n}\right)^n=e^{-1}.$$

Example 2 (page 150-13) Suppose the equation of the parabola is $y = x^2 + ax + b$. Find the condition for the point (x_0, y_0) to satisfy that through which there are two tangent lines, or only one tangent line or none of the parabola.

Solution It follows from y' = 2x + a that the equation of the tangent line of the parabola at the point (x_1, y_1) is

$$y = (2x_1 + a)(x - x_1) + y_1.$$

$$\begin{cases} y_0 = (2x_1 + a)(x_0 - x_1) + y_1 \\ y_1 = x_1^2 + ax_1 + b \end{cases}$$

which implies that

$$x_1^2 - 2x_0x_1 + y_0 - ax_0 - b = 0$$

Hence if $y_0 < x_0^2 + ax_0 + b$, then there are two tangent lines; if $y_0 = x_0^2 + ax_0 + b$, then there is only one, and if $y_0 > x_0^2 + ax_0 + b$, there is none.

Example 3 (page 150-14) What is the constant a to satisfy that the line y=x is tangent to the curve $y = \log_a x$? What are the coordinates of the tangent point?

Solution It follows from $y' = \frac{1}{x \log a}$ that the equation of the tangent line at (x_0, y_0) is

$$y = \frac{1}{x_0 \log a} (x - x_0) + y_0$$
.

The assumption shows that

$$\begin{cases} \frac{1}{x_0 \log a} = 1 \\ y_0 = x_0 \\ y_0 = \log_a x_0 \end{cases}.$$

Hence

$$a=e^{\frac{1}{e}}$$

and

$$x_0 = y_0 = e$$

Example 4 (page 172-13) Find the one-sided derivatives of the following functions at which they are not derivable.

(1)
$$y = |\log |x||$$
; (2) $y = |\tan x|$.
Hint (1)

Hint (1)
$$y = \begin{cases} \log(-x), & x \le -1 \\ -\log(-x), & -1 < x < 0 \\ -\log x, & 0 < x < 1 \end{cases}$$

$$\log x, & x \ge 1$$

$$y = \begin{cases} -\tan x, & n\pi - \frac{\pi}{2} < x < n\pi \\ \tan x, & n\pi \le x \le n\pi + \frac{\pi}{2} \end{cases}$$

Example 5 (Page 182-6) Suppose

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & x \neq 0 \\ 0, & x = 0 \end{cases}.$$

Show that $f^{(n)}(0) = 0$.

Proof Claim I $\lim_{t\to\infty} \frac{P_k(t)}{e^{t^2}} = 0$, where $P_k(t)$ denotes a polynomial with degree k. The proof is obvious.

Claim II $\left(e^{-\frac{1}{x^2}}\right)^{(n)} = P_k(\frac{1}{x})e^{-\frac{1}{x^2}}$ for some polynomial, $P_k(t)$ with degree k. This can be proved by induction. By letting $t = \frac{1}{x}$, the proof follows from Claim I and II.

Example 6 (Page 182-11) Suppose

$$\varphi(x) = \frac{f(x) - f(a)}{f'(a)} \left[1 + \frac{f(x) - f(a)}{f'^2(a)} \left(f'(a) - \frac{1}{2} f''(a) \right) \right].$$

Find $\varphi'(a)$ and $\varphi''(a)$.

Solution Since

$$\varphi'(x) = \frac{f'(x)}{f'(a)} \left[1 + \frac{f(x) - f(a)}{f'^{2}(a)} \left(f'(a) - \frac{1}{2} f''(a) \right) \right] + \frac{f(x) - f(a)}{f'^{3}(a)} \left(f'(a) - \frac{1}{2} f''(a) \right) f'(x),$$

we see that $\varphi'(a)=1$ and

$$\varphi''(a) = \lim_{x \to a} \frac{\varphi'(x) - \varphi'(a)}{x - a} = 2.$$

Example 7 (Page 183-17) Suppose $y = e^x$. Under the following conditions, find d^2y , respectively.

- (1) x is an independent variable;
- (2) x is a dependent variable.

Solution (1) $d^2y = e^x dx^2$.

(2) Let x = x(t). Then $dy = e^{x(t)}x'(t) dt$ and

$$d^{2}y = e^{x(t)}(x'(t))^{2} dt^{2} + e^{x(t)}x''(t)dt^{2} = e^{x(t)}((dx(t))^{2} + d^{2}x(t)).$$

Hence

$$d^2y = e^x \left((dx)^2 + d^2x \right).$$

