Lecture 28 Center of a mass system, Average value, and Special class for exercises in Chapter 8

§ 1 The center of a mass system

Theorem 1.1 Suppose $l: y = f(x)(a \le x \le b)$ is smooth.

Then its coordinates of the center of a mass system are

$$\overline{x} = \frac{\int_{a}^{b} x \sqrt{1 + {y'}^{2}} dx}{\int_{a}^{b} \sqrt{1 + {y'}^{2}} dx}, \ \overline{y} = \frac{\int_{a}^{b} y \sqrt{1 + {y'}^{2}} dx}{\int_{a}^{b} \sqrt{1 + {y'}^{2}} dx}.$$

Example 1.1 Find the coordinates of the center of a mass system of the curve $l: x^2 + y^2 = r^2 \quad (y \ge 0)$.

Solution By the symetriness of l, we see that $\bar{x} = 0$, and

$$\overline{y} = \frac{\int_{a}^{b} y \sqrt{1 + {y'}^{2}} dx}{\int_{a}^{b} \sqrt{1 + {y'}^{2}} dx} = \frac{2r}{\pi}.$$

§ 2 Average value

Theorem 2.1 Suppose f is continuous on [a,b]. Then its average value is

$$\overline{y} = \frac{1}{b-a} \int_a^b f(x) dx$$

Example 2.1 Find the average value of $y = xe^x$ on [0,1].

Solution Theorem 2.1 tells us that $\overline{y} = \int_0^1 x e^x dx = 1$.

§ 2 Exercises in Chapter 8

Example 3.1 (Page 335: 3) Let Ω be the solid obtained by rotating along the y-axis, the domain bounded by

the curves: x = a, x = b, x - axis and $y = f(x) \ge 0$

which is continuous. Show that the volume of Ω is $V = 2\pi \int_{a}^{b} xy(x)dx$

Proof Obviously, for any $x \in (a, b)$, the volume element dV of the part of the solid bounded between x and

 $x + \Delta x$ is as follows:

$$dV = \pi \left[\left(x + \Delta x \right)^2 - x^2 \right] y(x) \approx 2\pi x y(x) \Delta x$$

Hence $V = 2\pi \int_a^b xy(x)dx$

Example 3.2 Let Ω be the solid obtained by rotating along the y-axis, the domain bounded by the curves:

x=0, $x=\pi$, x-axis and $y=\sin x$. Find the volume of Ω .

Solution By Example 3.1, we know that

$$V = 2\pi \int_0^{\pi} x \sin x dx = 2\pi^2.$$

Homework Page 342: 1 (3).

