# Lecture 32 The computation of triple integrals (I)

## § 1 Triple integrals (I)

#### 1.1 Definition

Suppose that the function f(x,y,z) which is defined on V is bounded in  $\mathbb{R}^3$ , and I is a constant. If for any  $\varepsilon > 0$ , there exists some  $\delta > 0$  such that for any partition  $P = \{\Delta_i\}_{i=0}^n$  and for any  $M_i(\xi_i, \eta_i, \zeta_i) \in \Delta_i$ ,

whenever  $d < \delta$ , we have



$$\left|\sum_{i=1}^n f(\xi_i,\eta_i,\zeta_i)\Delta V_i - I\right| < \varepsilon,$$

then f(x,y,z) is called integrable on V, denoted by  $f \in R(V)$ , and the limit is called the triple integral of f(x,y,z) on V, which is denoted by

$$I = \iiint_{V} f(x, y, z) dx dy dz$$

**Proposition** 1.1 If  $f \in C(V)$ , where V is bounded, then  $f \in R(V)$ .



**Proposition 1.2** If the set of discontinuity of f(x,y,z)

is contained in a set whose measure is 0, then  $f \in R(V)$ 

### 1.2 The computations of triple integrals

**Theorem** 1.2.1 If  $f \in R[a,b;c,d;e,f]$  and for all  $x \in [a,b]$ ,

$$I(x) = \iint_D f(x, y, z) \, dy dz$$

exist, where D = [c,d;e,f], then  $\int_a^b dx \iint_D f(x,y,z) dydz$ 



#### exists and

$$\iiint\limits_V f dx dy dz = \int_a^b dx \iint\limits_D f(x, y, z) dy dz$$

Proof Let P be a partition of V by using the planes which are parallel to the coordinate planes. Then

$$V = \bigcup V_{ijk}$$
, where  $V_{ijk} = [x_{i-1}, x_i] \times [y_{i-1}, y_i] \times [z_{i-1}, z_i]$ .

Let

$$M_{ijk} = \sup_{M \in V_{ijk}} \{f(M)\}$$
 and  $m_{ijk} = \inf_{M \in V_{ijk}} \{f(M)\}$ .



Then for any  $\xi_i \in [x_{i-1}, x_i]$ ,

$$m_{ijk} \Delta y_j \Delta z_k \leq \iint_{[y_{j-1}, y_j] \times [z_k, z_k]} f(\xi_i, y, z) dy dz \leq M_{ijk} \Delta y_j \Delta z_k.$$

This gives

$$\sum m_{ijk} \Delta y_j \Delta z_k \leq \iint_D f(\xi_i, y, z) dy dz \leq \sum M_{ijk} \Delta y_j \Delta z_k$$

and

$$\sum_{i,j,k} m_{ijk} \Delta x_i \Delta y_j \Delta z_k \leq \sum_i I(\xi_i) \Delta x_i \leq \sum_{i,j,k} M_{ijk} \Delta y_j \Delta z_k.$$

When  $d \to 0$ , we see that  $\lim_{d \to 0} \sum_{i} I(\xi_i) \Delta x_i$  exists and this



limit is independent of the choice of  $\xi_i$  and the partition P. This shows that

$$I(x) = \iint_D f(x, y, z) dy dz$$

is integrable. Hence

$$\int_{a}^{b} I(x) dx = \iiint_{V} f(x, y, z) dx dy dz$$

The proof is complete.

As a consequence of Theorem 1.2.1, the following is obvious.



### **Corollary 1.2.2**

$$\iiint_{V} f(x, y, z) dxdydz = \int_{a}^{b} dx \iint_{D} f(x, y, z) dydz$$
$$= \int_{a}^{b} dx \int_{c}^{d} dy \int_{e}^{h} f(x, y, z) dz$$

Theorem 1.2.3 In Theorem 1.2.1, if the domain is replaced by

$$a \le x \le b$$
,  $f_1(x) \le y \le f_2(x)$  and  $z_1(x,y) \le z \le z_2(x,y)$ ,  
then

$$\iiint\limits_V f(x,y,z) dx dy dz = \int_a^b dx \int_{f_1(x)}^{f_2(x)} dy \int_{z_1(x,y)}^{z_2(x,y)} f(x,y,z) dz$$



**Example 1.2.1** Find  $I = \iiint_{V} \frac{dxdydz}{x^2 + y^2}$ , where V is

bounded by x=1, x=2, z=0, y=x and z=y.

Solution

$$I = \int_{1}^{2} dx \int_{0}^{x} dy \int_{0}^{y} \frac{dz}{x^{2} + y^{2}} = \frac{1}{2} \int_{1}^{2} dx \int_{0}^{x} \frac{2y}{x^{2} + y^{2}} dy$$

$$= \frac{1}{2} \int_{1}^{2} \log(x^{2} + y^{2}) \Big|_{0}^{x} dx$$

$$= \frac{1}{2} \int_{1}^{2} \log(2x^{2}) dx + \int_{1}^{2} \log x^{2} dx = \frac{1}{2} \log 2 + \int_{1}^{2} \log x dx$$

$$= \frac{1}{2} \log 2.$$

# 1.3 The change of variables in the triple integrals

#### Theorem 1.3.1 Let

$$\begin{cases} u = u(x, y, z) \\ v = v(x, y, z) \\ w = w(x, y, z) \end{cases}$$

be one-to-one from  $V \to V^*$ .

Suppose that f(x, y, z) and all partial derivatives of u, v, w are continuous on V, and that  $\frac{1}{J} = \frac{D(u, v, w)}{D(x, y, z)} \neq 0$ 

and is continuous.



Then

$$\iiint_{v} f(x,y,z) dx dy dz$$

$$= \iiint_{v} f(x(u,v,w), y(u,v,w), z(u,v,w)) |J| du dv dw$$

## 1.4 Some special changes

1.4.1 Let 
$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \text{ Then } |J| = r \\ z = z \end{cases}$$

Example 1.4.1 Find 
$$I = \iiint_{V} (x^2 + y^2) dx dy dz$$
, where  $V$ 

is bounded by



$$z = 2(x^2 + y^2)$$
 and  $z = 4$ .

Solution Let

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}$$

Then  $\frac{D(x,y,z)}{D(u,v,w)} = r$ . It follows that

$$I = \int_0^{\pi} d\theta \int_0^{\sqrt{2}} dr \int_{r^2}^4 r^3 dz = \frac{8}{3}\pi.$$

Homework Page 309: 1(1); 2(1, 3, 5)

