Lecture 35 The applications and Improper multiple integrals

§ 1 Applications of triple integrals

1.1 The center of a solid in space

Suppose that Ω denotes a solid in space whose density is $\rho(M)$ for any $M \in \Omega$.

Suppose $\rho(M)$ is continuous in Ω . Then the coordinates of the center of Ω are as follows.

$$\begin{cases} x = \frac{\int_{\Omega} x \rho(M) d\Omega}{\int_{\Omega} \rho(M) d\Omega} = \frac{\int_{\Omega} x \rho dm}{\int_{\Omega} \rho dm} \\ y = \frac{\int_{\Omega} y \rho(M) d\Omega}{\int_{\Omega} \rho(M) d\Omega} = \frac{\int_{\Omega} y \rho dm}{\int_{\Omega} \rho dm} \\ z = \frac{\int_{\Omega} z \rho(M) d\Omega}{\int_{\Omega} \rho(M) d\Omega} = \frac{\int_{\Omega} z \rho dm}{\int_{\Omega} \rho dm} \end{cases}$$

If $\Omega \subset \mathbb{R}^3$, then

$$x = \frac{\iint_{\Omega} x \rho(x, y, z) dx dy dz}{\iiint_{\Omega} \rho(x, y, z) dx dy dz}$$

$$y = \frac{\iint_{\Omega} y \rho(x, y, z) dx dy dz}{\iiint_{\Omega} \rho(x, y, z) dx dy dz}$$

$$z = \frac{\iint_{\Omega} z \rho(x, y, z) dx dy dz}{\iiint_{\Omega} \rho(x, y, z) dx dy dz}$$

Example 1.1 Suppose

$$\Omega = \{(x, y, z) : x^2 + y^2 + z^2 \le 1, z \ge 0\}$$

which is well-distributed. Find the coordinates of the center of Ω .

Solution By the symmetry of Ω , we see that x = 0, y = 0 and

$$z = \frac{\iiint\limits_{\Omega} z \rho(x, y, z) dx dy dz}{\iiint\limits_{\Omega} \rho(x, y, z) dx dy dz} = \frac{3}{16}.$$

Hence the coordinates of the center of Ω is $(0, 0, \frac{3}{16})$.

1.2 Rotational inertia

Suppose that Ω denotes a solid in R^3 , whose density is $\rho(M)$ for any $M \in \Omega$. Suppose $\rho(M)$ is continuous in Ω . Then the following triple integrals are called the inertia of Ω with respect to yz-plane, zx-plane and xy-plane, respectively:

$$\iiint_{\Omega} x^{2} \rho(x, y, z) dx dy dz, \quad \iiint_{\Omega} y^{2} \rho(x, y, z) dx dy dz$$

and
$$\iiint_{\Omega} z^2 \rho(x, y, z) dx dy dz$$

And the following triple integrals are called the inertia of Ω with respect to z-axis, x-axis and y-axis, respectively:

$$I_{oz} = \iiint_{\Omega} (x^2 + y^2) \rho(x, y, z) dx dy dz,$$

$$I_{ox} = \iiint_{\Omega} (y^2 + z^2) \rho(x, y, z) dx dy dz$$

and

$$I_{oy} = \iiint_{\Omega} (z^2 + x^2) \rho(x, y, z) dx dy dz$$

1.3 Gravitation

Suppose that Ω denotes a solid in R^3 , whose density is $\rho(M)$ for any $M \in \Omega$, and that $M(x_0, y_0, z_0)$ is a point outside Ω . If $\rho(M)$ is continuous in Ω ,

then the components of the gravitation of Ω to

 $M(x_0, y_0, z_0)$ in x-axis, y-axis and z-axis are as follows:

$$F_{x} = k \iiint_{\Omega} \frac{\rho(M)(x-x_{0})}{r^{3}} dx dy dz,$$

$$F_{y} = k \iiint_{\Omega} \frac{\rho(M)(y - y_{0})}{r^{3}} dx dy dz$$

and

$$F_z = k \iiint_{\Omega} \frac{\rho(M)(z-z_0)}{r^3} dx dy dz,$$

where k denotes the gravitation constant and

$$r = \sqrt{(x-x_0)^2 + (y-y_0)^2 + (z-z_0)^2}$$

§ 2 Improper multiple integrals

2.1 Double integrals with unbounded domains

2.1.1 Definition

Suppose $D \subset \mathbb{R}^2$ is an unbounded domain and a function f(M) is well-defined in D. Let σ denote

the subdomain of D which is bounded by a smooth closed curve. If the double integral

$$\iint_{G} f(M) dx dy$$

exists and the limit

$$\lim_{\sigma\to D}\iint\limits_{\sigma}f(M)dxdy$$

exists and have the same value I for any smooth closed curve σ in D, then I is called the improper double integral of f(M) on an unbounded domain, which is denoted by

$$I = \iint\limits_{D} f(M) dx dy$$

Also we call that $\iint_D f(M) dx dy$ converges.

2.1.2 The relations between integrability and absolute integrability

Theorem 2.1 $\iint_{D} f(M) dx dy$ converges if $\iint_{D} |f(M)| dx dy$ converges.

2.1.3 Cauchy's test

Theorem 2.2 Suppose $D \subset \mathbb{R}^2$ is an unbounded domain and

$$\iint_{\sigma} f(M) dx dy$$

exists for any bounded subdomain $\sigma \subset D$. Let r denotes the distance from $M \in D$ to the origin o.

If for any sufficiently large r,

$$|f(M)| \leq \frac{c}{r^p}$$

where then c is a constant and p > 2, then

$$\iint_{\Omega} f(M) dx dy \text{ converges.}$$

Proof Let

$$F(x,y) = \begin{cases} f(x,y), (x,y) \in D \\ 0, & (x,y) \notin D \end{cases}$$

and
$$\begin{cases} x = r \cos t \\ y = r \sin t \end{cases}$$
.

Then

$$\iint_{D} |f(x, y)| dxdy = \iint_{R^{2}} |F(x, y)| dxdy$$
$$= \int_{0}^{2\pi} d\theta \int_{0}^{+\infty} r |F(r\cos\theta, r\sin\theta)| dr$$

Since for sufficiently large r (for instance $r \ge r_0$),

$$r \cdot |F(r\cos\theta, r\sin\theta)| \le \frac{c}{r^{p-1}},$$

it follows that

$$\iint_{D} |f(x,y)| dxdy \le \int_{0}^{2\pi} d\theta \int_{0}^{r_{0}} r |F(r\cos\theta, r\sin\theta)| dr$$

$$+ \int_{0}^{2\pi} d\theta \int_{0}^{+\infty} \frac{c}{r^{p-1}} dr$$

Hence $\iint_{D} |f(x, y)| dxdy$ converges. Theorem 2.1 shows

that $\iint_{D} f(x, y) dx dy$ converges.

2.2 Double integrals with unbounded integrants

2.1.1 Definition

Suppose $D \subset \mathbb{R}^2$ is a domain and a function f(M) has some irregular points or irregular curves in D. Let γ be a smooth curve in D and f(M) is well-defined in the domain Σ bounded by γ and the boundary ∂D of D. If the double integral

$$\iint\limits_{\Sigma} f(M) dx dy$$

always exists and has the same value I for any smooth

curve γ in D, then I is called the improper double integral of f(M) with unbounded integrant, which is denoted by

$$I = \iint_D f(M) dx dy.$$

Also we call that $\iint_{D} f(M) dx dy$ converges.

2.1.2 Cauchy's test

Theorem 2.2 Suppose $D \subset R^2$ is a domain and f(M) has an irregular point B in $D \subset R^2$. If for any

point M in D which sufficiently close to B, the following is satisfied:

$$|f(M)| \leq \frac{c}{r^p}$$

where r denotes the distance from M to B, c is a constant and p < 2, then $\iint_{D} f(M) dx dy$ converges.

§ 3 Examples

Example 3.1 Discuss the integrability of the following improper integral:

$$\iint_{[0,1;\ 0,1]} \frac{y dx dy}{\sqrt{x}}.$$

Solution Since

$$\iint_{[\varepsilon,1; [0,1]} \frac{y dx dy}{\sqrt{x}} = \int_0^1 y dy \int_{\varepsilon}^1 \frac{dx}{\sqrt{x}}$$
$$= \sqrt{x} \Big|_{\varepsilon}^1 \to 1,$$

as $\varepsilon \to 0+$. This shows that $\iint_{[0,1;\ 0,1]} \frac{y dx dy}{\sqrt{x}}$ is convergent.

Example 3.2 Find

$$I = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x^2+y^2)} dx dy$$

and show

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Solution By Cauchy's test, this improper integral converges.

Let
$$D_R = \{(x, y): x^2 + y^2 \le R^2\}$$
. Then

$$\iint_{D_R} e^{-(x^2+y^2)} dx dy = \int_0^{2\pi} d\theta \int_0^R r e^{-r^2} dr = \pi (1-e^{-R}).$$

Hence

$$\lim_{R\to\infty}\iint\limits_{D_R}e^{-(x^2+y^2)}dxdy=\pi,$$

which shows

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x^2+y^2)} dx dy = \pi.$$

By the relation

$$\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} e^{-(x^2+y^2)} dx dy = \lim_{t \to +\infty} \left(\int_{-t}^{t} e^{-y^2} dy \int_{-t}^{t} e^{-x^2} dx \right) = \lim_{t \to +\infty} \left(\int_{-t}^{t} e^{-x^2} dx \right)^2,$$

we know that

$$\int_0^{+\infty} e^{-x^2} dx = \frac{\sqrt{\pi}}{2}.$$

Homework: Page 320: 1; 2(1, 3); 3

