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Abstract

This report presents a proof of space protocol based on pebble games on stacked bipartite graphs.

1 introduction

A proof of space is a protocol between a prover and a wverifier, that convinces the verifier that the
prover has dedicated some amount of (memory or disk) space. Most recent proposals are based on
hard-to-pebble graphs, especially stacked superconcentrators. These graphs either add a logarithmic
factor overhead to the protocol, or are hard to construct and have bad constants. In this report, we
construct proof of space protocols from a simpler family of hard-to-pebble graphs, namely stacked
bipartite graphs.

Somewhat unfortunately, two competing definitions of “proof of space” have been proposed with
very different security guarantees and applications [I, 4]. Adding to the confusion are other closely
related notions such as proof of secure erasure (PoSE) [10], provable data possession (PDP) [2] and
proof of retrievability (PoR) [5]. A key difference lies in whether the proof is for transient space
or persistent space. We distinguish the two notions of space and define two protocols: proof of
transient space (PoTS) and proof of persistent space (PoPS).

Proof of space by Ateniese et al. [I] and proofs of secure erasure [10] 6] fall into PoTS, while
proofs of space by Dziembowski et al. [4] are PoPS. PDP and PoR, when used correctly, can be
both PoTS and PoPS, but require a long initial message from the verifier to the prover. PoTS’s
main application is remote device wipe, while efficiently verifiable PoPS is a potential alternative to
proof of work [3].

2 Definitions

Let P be the prover and V be the verifier, and N be the size of transient or persistent space P wants
to prove. We assume both P and V are computationally bounded.

2.1 Proof of Transient Space

A PoTS protocol has the following steps: (1) V sends input z to P; (2) P sends V a proof ¢, which
takes IV space to generate; (3) V verifies the validity of ¢.

The main efficiency metrics of a PoTS are message size, prover’s runtime and verifier complexity.
Message size refers to the size of x and ¢. Prover’s runtime is the time it takes an honest P to
generate the proof (the space needed should of course be N). Verifier complexity is the time and
space it takes V to verify the proof.



A PoTS protocol should be sound: if P uses less than N’ space, V accepts the proof with only
negligible probability. Ideally, we would like N’ = N, but known schemes with this strong soundness
guarantee have large message size or verifier complexity. In some scenarios, one may wish to trade
off soundness for better efficiency, and tolerate a space gap of N/N' > 1.

Example: A trivial PoTS would simply let = < {0,1}" and ¢ = z, i.e., V sends a long random
(incompressible) string to P, asks P to send it back and then checks equality. Such a scheme has no
space gap, but its message size is 2N and the verifier’s space and time complexity are both V.

2.2 Proof of Persistent Space

We call persistent space advice. Similar to proof of space formulated by Dziembowski et al. [4], a
PoPS protocol in this report has two phases: setup and audit. The audit phase can be executed an
arbitrary number of times after setup. A PoPS ideally proves that P keeps N advice across audits.

Setup:
1. V sends input z to P.
2. Using z, P computes advice y of size N and a commitment C. P keeps y, and sends C to V.
3. V checks the validity of C, possibly through interaction with P.

Audit:
1. V sends a challenge c to P.
2. Using the advice y it stores from the setup phase, P computes and sends V a response r.
3. V verifies r against the commitment C' it received earlier, and either accepts or rejects.

Efficiency metrics are defined similarly to PoTS. Message size now includes all messages between
P and V. Verifier complexity and prover’s runtime also take into account all steps of the protocol.

Soundness is a little tricky. One way to define soundness is to require that a prover P storing
advice y’ of size |y'| < N’ (again we are allowing a gap for the amount of advice) cannot generate a
valid response r that passes an audit with non-negligible probability. However, such a soundness
requirement immediately imposes a dilemma between message size and advice gap. To get an advice
gap of N/N', |z| must be at least N'. If |x| < N’, a cheating prover can simply store z and rerun
the setup phase every time it gets audited. (We remark that a PDP or PoR protocol on a long and
incompressible z of size |x| = N’ does meet the above soundness requirement.)

Indeed, if we desire a PoPS with a short z, the best soundness guarantee we can hope to offer is
to force a cheating prover (that stores less than N’ advice) to rerun the setup phase. Following
Dziembowski et al. [4], we say a PoPS is (N', S, T")-sound if no cheating prover using N’ advice, S’
space, and T” time can pass an audit with non-negligible probability. If the setup phase takes an
honest prover S space and T' time, we would like (N’,S’,T") to be close to (N, S,T). If repeatedly
spending S’ space and T” time on audits is expensive, a rational prover will choose to dedicate
persistent storage for y across audits, making the protocol a PoPS. Again, we would like to be
explicit that such a PoPS relies on a prover’s cost of storage relative to computation, and very
importantly the frequency of audits.



3 Background on Graph Pebbling

Graph pebbling is a single-player game on a directed acyclic graph (DAG) G = (V, FE) with maximum
in-degree d. A vertex with no incoming edges is called a source and a vertex with no outgoing edges
is called a sink. The player’s goal is to put pebbles on certain vertices of G using a sequence of
moves. In each move the player can place one pebble and remove an arbitrary number of pebbles
(i.e., removing pebbles is free in our model). The player’s moves can be represented as a sequence
of pebble placement configurations on the graph, P = (Py, P, Py -, Pr), starting from an initial
configuration Py which is not necessarily empty. The pebble game rule is as follows: to transition
from P; to P41, the player can pebble (i.e., place a pebble on) a vertex v € V' if v is a source or if
all predecessors of v have pebbles on them in P;, and then unpebble (i.e., remove pebbles from) any
subset of vertices. Let |P;| be the number of pebbles on the graph in configuration P;. We define
the space complexity S(P) to be max;(|P;|), the maximum number of pebbles on the graph in any
step, and the time complexity T'(P) to be the number of moves in P.

We assume we can force a prover to follow the pebble game rule using a random oracle H.
Following prior work, we number the vertices, and associate each vertex v; with a label h(v;) € {0,1}*
where k is a security parameter. If v; is not a source, define h(v;) = H(h(u1), h(ug), -, h(ug))
where u; to ug are the predecessors of v;; otherwise, define h(v;) = H(x, i) where x is a nonce (which
will be the input z in our PoTS and PoPS protocols).

Pebble games are good candidates for constructing proofs of space because pebble games on some
families of graphs have high space complexity or sharp space-time trade-offs. These include stacked
superconcentrators [9, [7], which were adopted in prior PoSE and proof of space schemes [0} [1}, 4].
We notice that a simpler family of graphs—stacked random bipartite graphs—also have sharp
space-time trade-offs [§] and can be used to construct proof of space protocols.

Definition 1. An (n, 3, «) bipartite expander is a directed bipartite graph with n sources and n
sinks such that any subset of fn sinks are connected to more than an sources.
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Lemma 1. A random directed bipartite graph with n sources, n sinks and in-degree 16 is an (n, %,
bipartite expander with overwhelming probability.

Proof. Paul and Tarjan [8] showed that the probability is at least 1 —272" (n%) (n%). Using Robbins’

inequality for Sterling’s approximation [I1], the probability is at least 1 — 27945" /n, O

Let E,, be an (n, %, %) bipartite expander above. Construct G,, ; by stacking E,. Gy, has nk
vertices, partitioned into k sets each of size n, V- = {Vi,Va,--- , Vi }. All edges in Gy, 1, go from V;_;
to V; for some ¢ from 2 to k. For every ¢ from 2 to k, V;_1 and V; plus all edges between them form
a copy of the same E,. Thus, G}, has n sources and n sinks, and in-degree at most 16. Figure [1}is
an example with n = 4, kK = 4 and in-degree 2.

Obviously, simply pebbling each expander in order results in a sequence P that pebbles all sinks
of Gy, 1, using S(P) = 2n pebbles in T'(P) = nk moves. Paul and Tarjan showed the following sharp
space-time trade-off that will allow us to construct PoPS and PoTS in the next section.

Lemma 2 (Paul and Tarjan [8]). Assume 8 divides n. If P pebbles any subset of n/4 sinks of Gy,
starting with |Py| < n/8 and using no more than S(P) < n/8 pebbles, then T(P) > 2F~1n/8.

We have slightly tightened the base case for the inductive proof in [8]: for &k = 1, obviously
n/4 —|Py| > n/8 moves are needed.



Figure 1: A stacked bipartite graph G4 4. Each bipartite graph is a (4, %, %) expander.

4 PoTS and PoPS from Stacked Bipartite Graphs

As a warm-up, we directly apply Lemma [2| to obtain a simple PoTS that has small message size
but large verifier complexity. V sends P a short input x as a nonce for labeling source vertices, i.e.,
h(v;) = H(x,i). The proof ¢ can be a hash on all sinks’ labels. V can then pebble G, j, itself and
check ¢. In this protocol, an honest P needs N = 2n space (measured by label size); a cheating
prover using less than N/ = n/8 space will run for exponential time. The space gap of soundness is
thus N/N’ = 16. Efficiency wise, the messages = and ¢ are both short, the prover’s runtime is nk
and the verifier’s complexity is the same as the prover’s.

Now, to achieve small verifier complexity, we adopt the Merkle commitment framework in Ateniese
et al. [I] and Dziembowski et al. [4]. We only present the PoPS protocol, because our PoTS is simply
the setup phase of our PoPS. We first give an overview. In the setup phase of PoPS, the prover
computes a Merkle commitment C for the labels of all vertices in G, ;, using the same random
oracle H, and sends it to the verifier. The verifier checks if C is “mostly correct”. In the audit
phase, the verifier asks the prover to open the labels of a few sinks under the commitment C. If
C is “mostly correct”, the prover cannot do much better than pebbling these sinks following the
pebble game rule. We will show that a large fraction of the sinks require ©(n) pebbles to pebble
efficiently, forcing the prover to dedicate ©(n) space (measured by label size).

When the context is clear, we will simply say “a vertex” instead of “the label of a vertex”. For
example, “commit/open a vertex” means “commit/open the label of a vertex”.

4.1 Setup Phase

A prover can compute a Merkle commitment C' that commits all vertices of G, ; using 2n + k
space. The strategy is to pebble Vi, compute Merkle commitment C; for Vi, pebble Va5, unpebble
V1, compute Merkle commitment Cy for Vs, pebble V3, unpebble V5, and continue like this. Cy to
C}, are then committed into a single Merkle root C. The opening of a vertex v is the path from the
root to the leaf corresponding to v in the Merkle tree.

After receiving the commitment C, V randomly selects [y vertices, and for each vertex v asks
P to open v and, if v is not a source, also open all predecessors of v. Given the labels of all the
predecessors (or if v is a source), V can then check if h(v) is correctly computed. If any opening
or h(v) is incorrect, V rejects the commitment C' and terminates the protocol. We note that P
never stores the entire Merkle tree because it is too large. Thus, P has to pebble the graph for a



second time to reconstruct the lo(d + 1) paths/openings V asked for. This is a factor of 2 overhead
in prover’s runtime.

Such a probabilistic check ensures that the commitment C' is “mostly correct”. If a label h(v;)
under C' is not correctly computed (as h(x,i) or from v;’s predecessors’ labels under (), it’s called

a “fault”. If C' contains m faults, V accepts C with (1 — %)lo probability. If we want to ensure
that m < n/d§ with overwhelming probability, we can set Iy = (In2)8k?; then for any m > n/§, C
passes the probabilistic checking with less than 27% probability (k will be our security parameter).

A cheating prover is motivated to create faults using pseudorandom labels, because these faulty
labels are essentially free pebbles that are always on the graph but take no space. Dziembowski
et al. [4] called them red pebbles and pointed out that a red pebble is no more useful than a free
normal pebble because a normal pebble can be removed and later placed somewhere else. In other
words, any sequence P that starts with |Py| = so initial pebbles and uses m red pebbles and s
normal pebbles can be achieved by some sequence P’ that starts with |Pj| = so + m initial pebbles
and uses 0 red pebbles and s + m normal pebbles. As we will see, this translates to a small loss in
the soundness guarantee.

Finally, we would like to remark that this setup phase alone is a PoTS protocol. The proof
¢ is the openings of all the [y vertices and their predecessors. To pass the probabilistic check
with non-negligible probability, P needs to pebble at least n — n/d sinks (> n/4 with a proper §),
which requires at least n/8 — n/d space or exponential time. The space gap is therefore at most
(2n+k)/(n/8 —n/d).

4.2 Audit Phase

At the end of the setup phase, an honest P stores (the labels of) all sinks Vj and the Merkle subtree
for V, as advice. The advice size is thus 2n. Any vertices in V; for i < k are no longer needed. P
and V now can also discard C' and use Cj, which commits Vj from this point onward.

In the audit phase, V asks P to open [; randomly selected sinks. The binding property of the
Merkle tree forces P to pebble these sinks, possibly with the help of m < n/§ faults. But due to the
red pebble argument, we can focus on the case with no faults first and account for faults later.

There is one last gap between Lemma [2| and what we need. Lemma [2| says any subset of n/4
sinks are hard to pebble, but we would hope to challenge P on [; < n/4 sinks. Therefore, we need
to show that a majority of sinks are also hard to pebble individually.

Lemma 3. For any initial configuration Py with |Py| < n/16, at most n/4 sinks of Gy, can be
pebbled individually using n/16 pebbles in 2F=2 moves starting from Pj.

Proof. Suppose for contradiction that there are more than n/4 such sinks. Consider a strategy
that pebbles these sinks one by one, never unpebbles Py, and restarts from Py after pebbling each
sink. This strategy pebbles a subset of n/4 sinks, starting with |Py| < n/16 < n/8, using at most
n/16 +n/16 = n/8 pebbles in at most 28=2n /4 = 2¥~1n /8 moves. This contradicts Lemma O

With more than three quarters of sinks being hard to pebble individually, we can set i} = k/2.
A hard-to-pebble sink will be included in the challenge with at least 1 — 2=% probability. Lastly,
accounting for faults, no computationally bounded P using n’ = n/16 —n/§ advice and space can

pass the audit, making the advice gap 2n/n’ < %26/5.



Table 1: Efficiency and space/advice gap of the PoPS protocol. The row for the setup phase
represents the PoTS protocol. Iy = (In2)dk?, I; = k/2, d = 16.

message size prover runtime | verifier runtime N N’
setup | lo(d + 1) logy(nk) dnk lo(d+1)logy(nk) || 2n+k | n/8—n/é
audit l1logyn l1logyn l1logyn 2n n/16 —n/é

4.3 Efficiency and Space/Advice Gap

Table |1 summarizes the efficiency and the space/advice gap of our PoPS and PoTS protocols.
Message size is measured in label size (output size of H). Runtime is measured by the number of
calls to H. Calls to H have either 2 or 16 inputs, but we assume both take a unit amount of time.

An honest prover uses N space and advice. A computationally bounded cheating prover using

less than N’ space and advice has three chances to circumvent the exponential bound on pebbling
moves: (1) passes the check with a commitment C' containing m > n/d faults, (2) gets lucky that
all [; sinks in a challenge are easy to pebble under Py, or (3) guesses the label of at least one
hard-to-pebble sink. Each of these happens with less than 27% probability. Thus, a cheating prover
using less than N’ space and advice succeeds with at most 3 - 27% probability or has to run for over
2F=2 time. k — 2 can be viewed as the exact security parameter.
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