Lecture 12 Added examples

$ 1 Added examples (I)

Example 1 Suppose f(x, )= y-\/|;| ;
(1) Find /,(0,0) and f,(0,0);

(2) Show that f(x, ) 1s not differentiable at (0,0).

Solution (1) Obviously, f.(0,0)=0 and f,(0,0)=0.
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(2) Since
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does not exist, we see that f(x, ¥) 1s not differentiable at

(0,0).
Example 2 Suppose
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Show that

(1) f(x.» 1scontinuous at (0, 0);

(2) both £(0,0) and f,(0,0) cxist;

(3)both f(x,y) and f,(x,y) are notcontinuous at (0,0);

(4) f(x,y) isnot differentiable at (0, 0) .
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Solution (1) It follows from <|y| that
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which shows the continuty of f(x, y) at (0,0).

(2) Obviously, f.(0,0)=0 and 1,(0,0)=0.

(3) Since
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5,(x,y) =1
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we know that the two limits lim flyz > and
o (x*+5")
2 _.1
lim ((J; | _1;))1 x* do not exist.
e it

This shows the discontinuity of f(x,y) and f,(x,¥) at

0,0).
(4) Since the limt
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does not exist, we sce that f(x, y) is not differentiable at

0.0).
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Example 3 Apply the transformation

x=rcosf
y=rsinf

to change the following equation:
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Solution Differentiating the equation system { y—ssiad

with respect to x we get
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which implies that

In a similar way, we have that
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Hence the equation * a el P 0 is changed into the form:
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Example 4 Suppose x*=uw, y' =vw, z° =uv and
Jx,y,z)=F(u,v,w).
Show that
b - +)fy +zf, =uF +vF, + wF
Solution Differentiating the equations x° =uw, y* =ww

and z' —uwv withrespectto X
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we get
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Similar computations show that

It follows from
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[ xf. =uF,—vF,+wF,
yf, =—ulF, +vF, +wF,
| zf, =uF, +vF,—wF,

Y

Hence

Xt W, +f, =uF, +vF, +whk,

Example 5 Suppose F(x,y,x—z, y*'—w)=0 and all its
second order partial denvatives are continuous. Suppose
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Solution Differentiating the equation

F(x,y,x—z,y°—w)=0 withrespectto ¥ we get

F, +F4(2y—%)=ﬂj

which yields
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Differentiating the equation B =2y =
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with respect to

Yy we gel
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we have that

gw_, FF,-2FFF, +FF,

oy’ (F,)

Example 6 Suppose f(x,y) satisfies f(»",»)=1 and
S y)=x"+2y Find f(x, ).

Solution It follows from

[(xp)=x"+2y

that f(x, ») %fiz-w* g(v),
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where g2(») denotes a function depending only on ) .
SO, »)=1 implies that

g0 =1-25 )"

Hence
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