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ABSTRACT 

The development of biodiesels is being driven by the need for reducing emissions from diesel engines without modifying 
engines and for saving energy. The major obstacle to biodiesel commercialization is the high cost of raw materials. Biodiesel 
from waste cooking oil is an economical source and an effective strategy for reducing the raw material cost. Although 
biodiesels made from waste cooking oil have been previously investigated, PAH emissions from heavy-duty diesel engines 
(HDDEs) with catalyzer fueled with biodiesel from waste cooking oil and its blend with ultra-low sulfur diesel (ULSD) for 
the US-HDD transient cycle have seldom been addressed. Experimental results indicate that ULSD/WCOB (biodiesel made 
from waste cooking oil) blends had lower PM, HC, and CO emissions but higher CO2 and NOx emissions when compared 
with that of ULSD. Using ULSD/WCOB blends instead of ULSD decreased PAHs by 14.1%–53.3%, PM by 6.80%–15.1%, 
HC by 6.76%–23.5%, and CO by 0.962%–8.65% but increase CO2 by 0.318–1.43% and NOx by 0.384–1.15%. Using WCOB 
is an economical source and an effective strategy for reducing cost, and solves the problem of waste oil disposal. 
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INTRODUCTION 

Emissions from engines contain carcinogenic components 
such as carbonyl compounds (i.e. formaldehyde), polycyclic 
aromatic hydrocarbons (PAHs), and nitro-PAHs (Chen et
al., 2001; Grosjean et al., 2001; Mi et al., 2001; Lin et al., 
2005; Lin et al., 2006; Lin et al., 2006; Lin et al., 2006; 
Lin et al., 2006; Ho et al., 2007; Legreid et al., 2007; Ban-
Weiss et al., 2008; Lin et al., 2008; Lin et al., 2008; Lin et
al., 2008; Chien et al., 2009; Lin et al., 2009; Shi et al., 
2009; Wu et al., 2009; Shi et al., 2010; Wu et al., 2010; 
Tsai et al., 2011; Srivastava et al., 2011; Yao et al., 2011; 
Wang et al., 2012). Therefore, alternative fuel is needed in 
the future. Biodiesel is considered as one of best 
alternative fuels. The development of biodiesels is being 
driven by the need for reducing emissions from diesel 
engines without modifying engines and for saving energy. 
Biodiesels used as alternative fuels in diesel engines 
reduce the emissions of hydrocarbons (HC), carbon 
monoxide (CO), sulfur oxide (SO2), and PAHs (Antolin et
al., 2002; Beer et al., 2002; Cardone et al., 2002; Durbin et  
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al., 2002; Dorado et al., 2003; Kalam et al., 2003; 
Kalligeros et al., 2003; Goodrum and Geller, 2005; Hu et
al., 2005; Lin et al., 2006; Lin et al., 2006; Legreid et al., 
2007; Yuan et al., 2007; Lin et al., 2008; Lin et al., 2008; 
Chien et al., 2009; Pehan et al., 2009; Yuan et al., 2009; Tsai 
et al., 2010; Tsai et al., 2011; Tsai et al., 2011). Previous 
studies and measurements of NOx emissions from biodiesel 
showed an increase in NOx emissions (Scholl and Sorenson, 
1993; Graboski et al., 1996; Choi et al., 1997; Graboski and 
McCormick, 1998; Yoshimoto et al., 1999; McCormick et
al., 2001; Grimaldi et al., 2002; Tat and Van Gerpen, 2003; 
Tat, 2004; Saravanan et al., 2010; Sun et al., 2010). The 
problem of high NOx emissions from biodiesel-diesel 
engines can be mitigated by the use of low-temperature 
combustion, reformulated biodiesel, selective catalytic 
reduction, and exhaust gas recirculation (Hess et al., 2007; 
Tsolakis et al., 2007; Muncrief et al., 2008; Tsolakis et al., 
2008). There are mixed results for PM reduction, however, 
most of results (> 90%) show PM reduction when using 
biodiesel (Lapuerta et al., 2005; Lapuerta et al., 2008; Cheung 
et al., 2009; Karavalakis et al., 2010). 

Furthermore, biodiesel has a relatively high flash point, 
which makes it less volatile and safer to transport or handle 
than petroleum diesel (Lin et al., 2006; Lin et al., 2006) 
and it also enhances lubrication, which can reduce engine 
wear and extend engine life (Goodrum and Geller, 2005; 
Hu et al., 2005; Pehan et al., 2009). The major obstacle to 
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biodiesel commercialization is the high cost of biodiesel. 
The cost of biodiesel is approximately 1.5 times higher than 
that of petroleum diesel fuel due to the cost of vegetable 
oil (Prokop, 2002; Zhang et al., 2003; Lott, 2005; Hass et 
al., 2006). Biodiesel made from waste cooking oil is an 
economical source and an effective strategy for reducing 
raw material cost (Supple et al, 1999; Zhang et al., 2003; 
Kulkarni and Dalai, 2006; Lapuerta et al., 2008). Using 
waste cooking oil solves the problem of waste oil disposal. 
Therefore, biodiesel made from waste cooking oil was used 
in this study. 

Dorado et al. (2003) investigated the effect of biodiesel 
made from waste olive oil for a direct injection diesel engine 
at several steady-state operating conditions. Results revealed 
that the use of biodiesel resulted in lower emissions of CO 
(up to 58.9%), CO2 (up to 8.6%, except for a case with a 
7.4% increase), NO (up to 37.5%), and SO2 (up to 57.7%), 
with an increase in emissions of NO2 (up to 81%, except 
for a case with a slight reduction). Biodiesel also exhibited 
a slight increase in BSFC (lower than 8.5%) that may be 
tolerated due to the exhaust emission benefits. Kulkarni 
and Dalai (2006) reported that the biodiesel obtained from 
waste cooking oil gives better engine performance and less 
emissions, except for NOx, when tested on commercial diesel 
engines. Lapuerta et al. (2008) tested biodiesel from waste 
cooking oils in a direct injection diesel commercial engine 
under a set of engine operating conditions corresponding 
to typical road conditions. When compared to conventional 
low sulfur diesel fuel, a sharp decrease was observed in both 
smoke and particulate matter emissions as the biodiesel 
concentration was increased. Di et al. (2009) investigated a 
4-cylinder direct-injection diesel engine using ultra-low 
sulfur diesel, biodiesel from waste cooking oil, and their 
blends, to investigate emissions from the engine under five 
engine loads at an engine speed of 1800 rev/min. They 
found that HC and CO emissions decreased whereas NOx
and NO2 emissions increased with increasing biodiesel 
blends. For unregulated gaseous emissions, generally, the 
emissions of formaldehyde, 1,3-butadiene, toluene, and 
xylene decreased with increasing biodiesel blends; however, 
acetaldehyde and benzene emissions increased. Ozsezen et al.
(2009) investigated a DI diesel engine fueled with biodiesels 
from waste cooking oil at a constant engine speed (1500 
rpm) under the full load condition of the engine. They also 
found that biodiesels caused reductions in CO, and HC 
emissions and smoke opacity, but increased NOx emissions 
when compared to petroleum-based diesel fuel.  

Emissions from a HDDE (heavy-duty diesel engine) 
under the US-HDD transient cycle test are representative 
because the engine is tested over a full range of load and 
speed conditions, including expressway, congested-urban, 
and uncongested-urban. Furthermore, further research on 
the use of biodiesel from waste cooking oil will promote 
its application to diesel engines. Ultra-low sulfur diesel 
(ULSD) is becoming increasingly popular for HDDEs. 
Further research on regulated and unregulated emissions 
from HDDEs fueled with ULSD/WCOB (waste cooking 
oil biodiesel) blends is required. Although biodiesels made 
from waste cooking oil have been previously investigated, 

PAH emissions from HDDEs with catalyzer fueled with 
biodiesel from waste cooking oil and its blend with ULSD 
for the US-HDD transient cycle have seldom been addressed. 
This study investigated the brake specific fuel consumption 
and the feasibility of biodiesel blends was assessed. 
Emissions of regulated matters and PAHs from HDDEs with 
catalyzer fueled with waste-cooking-oil biodiesel were 
calculated and compared.  

EXPERIMENTAL SECTION 

Test Engine and Fuels 
The experimental setup is shown in Fig. 1. The tested 

HDDE with catalyzer used in this study was a Cummins 
B5.9-160. Testing was conducted according to Code of 
Federal Regulations (CFR) 40 Part 86 Subpart N (the US-
HDD transient cycle), with related mild engine loaded 
conditions, which represents typical urban and freeway driving 
conditions (Code of Federal Regulations). Cold start and 
hot start emissions were measured and a complex emission 
index was calculated by multiplying weighting factors (1/7 
× cold start + 6/7 × hot start). Operation conditions of test 
engine varied with time under US-HDD transient cycle test. 
Therefore, the air/fuel ratio was not constant. In this study, 
the air/fuel ratio ranged from 29 to 33. The specifications 
of the test HDDE with catalyzer is listed in Table 1. A 
Schenck GS-350 dynamometer was used. A dilution tunnel 
and a monitoring system were installed downstream of the 
exhaust to supply dilute air and to facilitate continuous 
measurement of suspended particles (PM and particulate-
phase PAHs). Gas-phase pollutants (THC, CO, CO2, NOx,
and gas-phase PAHs) were also collected and measured. In 
order to decrease the temperature of the original exhaust, 
clean ambient air was used to dilute the original exhaust. 
The appropriate dilution ratio is approximately 18 fold. In 
this study, ultra-low sulfur diesel (ULSD) was purchased 
from CPC Corporation in Taiwan and the biodiesel made 
from waste cooking oil (WCOB) was purchased from Great
Green Renewable Energy Technology Corporation in Taiwan. 
The following five test fuels were selected for this study: 
ultra-low sulfur diesel (ULSD), WCOB5 (5 vol% biodiesel 
made from waste cooking oil + 95 vol% ULSD), WCOB10 
(10 vol% biodiesel made from waste cooking oil + 90 vol% 
ULSD), WCOB20 (20 vol% biodiesel made from waste 
cooking oil + 80 vol% ULSD), and WCOB30 (30 vol% 
biodiesel made from waste cooking oil + 70 vol% ULSD). 

Sample Collection 
PAH samples of both particulate-phase and gas-phase were 

collected by using a PAH sampling system at a temperature 
below 52°C. Particulate-phase PAHs were collected on a 
glass-fiber filter. Filters were placed in an oven at 450°C for 
8 hrs before sampling to burn off any organic compounds 
that might be present. The cleaned filters were stored in a 
desiccator for at least 8 hrs to achieve moisture equilibrium 
before weighing. After sampling, the filters were brought 
back to the laboratory and put in a desiccator for 8 hrs to 
remove moisture, and were weighed again to determine the 
net mass of particles collected. Gas-phase PAHs were 
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Fig. 1. Experiment setup. 

Table 1. The specifications of the test HDDE with catalyzer. 
Parameters Test HDDE 

Engine Model Cummins 
Engine Type B5.9-160 
Aspiration Turbocharged 
Intercooler Water Cooler 

Injection Type Direct Injection 
Bore × Stroke 102 mm × 120 mm 
Displacement 5880 cc 

Injection Sequence 1-5-3-6-2-4 
Injection Timing 12.3° BTDCa

Compression Ratio 17.9:1 
Idle Speed 810 rpm 

Max. Power 118 kW (at 2400 rpm) 
Max. Torque 534 Nm (at 1600 rpm) 

a BTDC = Before Top Dead Center 

collected on a three-stage glass cartridge containing a 
polyurethane foam (PUF) plug XAD-16 resin. The glass 
cartridge was packed with 5.0 cm of XAD-16 resin 
sandwiched between 2.5 cm top and bottom PUF plugs. 
Silicone glue was used to seal and hold these two pieces of 
PUF to prevent resin from leaking out during the sampling 
and extraction processes. After 8 hrs of adherence, the newly 
PUF/resin cartridge was cleaned up by Soxhlet extraction for 
one day each with distilled water, methanol, dichloromethane, 
and n-hexane for a total of 4 days, then placed in a vacuum 
oven at 60°C for 2 hrs to dry and evaporate the residual 
solvent in them. After drying, each PUF/resin cartridge was 
individually wrapped in hexane-washed aluminum foil and 
stored in a refrigerator at 4°C and transported in clean screw-
capped jars with Teflon cap liners before sampling. Each 

glass fiber filter was transported to and from the field in a 
glass box, which was also wrapped with aluminum foil.  

Analysis 
Each collected sample (including particulate and gaseous 

PAH samples) was extracted in a Soxhlet extractor with a 
mixed solvent (n-hexane and dichloromethane; vol/vol, 1:1; 
500 mL each) for 24 hrs. The extract was then concentrated, 
cleaned up, and reconcentrated to exactly 1.0 mL. The 
PAH contents were determined by a Hewlett-Packard (HP) 
gas chromatograph (GC) (HP 5890A; Hewlett-Packard, 
Wilmington, DE, USA), a mass selective detector (MSD) 
(HP 5972), and a computer workstation (Aspire C500; 
Acer, Taipei, Taiwan). This GC/MSD was equipped with a 
capillary column (HP Ultra 2, 50 m × 0.32 mm × 0.17 m) 
and an automatic sampler (HP-7673A), and operated under 
the following conditions: the injection volume of the 
GC/MSD was 1 L; the splitless injection temperature was 
310°C; the ion source temperature was 310°C; the oven 
was heated from 50°C to 100°C at 20 °C/min, 100°C to 
290°C at 3 °C/min, then held at 290°C for 40 minutes. The 
mass of primary and secondary PAH ions was determined 
by using the scan mode for pure PAH standards. The PAHs 
were qualified by using the selected ion monitoring (SIM) 
mode. The PAH homologues grouped by the number of 
rings were as follows: naphthalene(Nap) for 2-ring; 
acenaphthylene (AcPy), acenaphthene (Acp), fluorene 
(Flu), phenanthrene (PA) and anthracene (Ant) for 3-ring; 
fluoranthene (FL), pyrene (Pyr), benzo[a]anthracene (BaA) 
and chrysene (CHR) for 4-ring; cyclopenta[c,d]pyrene 
(CYC), benzo[b]fluoranthene (BbF), benzo[k]fluoranthene 
(BkF), benzo[e]pyrene (BeP), benzo(a)pyrene (B[a]P), 
perylene (PER), dibenzo[a,h]anthracene (DBA) and 
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benzo[b]chrycene (BbC) for 5-ring; indeno[1,2,3,-cd]pyrene 
(IND), benzo[ghi]perylene (Bghip) for 6-ring; and, coronene 
(COR) for 7-ring. The total-PAHs data for the HDDE exhaust 
is given by the sum of the 21 individual PAHs. The GC/MSD 
was calibrated with a diluted standard solution of 16 PAH 
compounds (PAH mixture-610M; Supelco, Bellefonte, PA, 
USA) plus five additional individual PAHs obtained from 
Merck (Darmstadt, Germany). Analysis of serial dilutions 
of PAHs standards showed that the detection limit (DL) for 
GC/MSD was between 26 pg and 308 pg for the 21 PAH 
compounds. The limit of quantification (LOQ) is defined 
as the DL divided by the sampling volume or sampling time. 
The LOQ for individual PAHs was between 24 pg/m3 and
277 pg/m3, while values for sampling time were between 
75 pg/hr and 952 pg/hr. Ten consecutive injections of a 
PAH 610-M standard yielded an average relative standard 
deviation of the GC/MSD integration area of 6.71%, within 
a range of 4.18% to 9.63%. Following the same experimental 
procedures used for sample treatment, recovery efficiencies 
were determined by processing a solution containing known 
PAH concentrations. The experimental results showed the 
recovery efficiencies for the 21 PAH compounds ranged from 
0.835 to 1.08, with an average value of 0.942. Analyses of 
field blanks, including aluminum foil, glass-fiber filters 
and PUF/XAD-16 cartridges, revealed no significant 
contamination (GC/MSD integrated area < detection limit).  

For particulate matter (PM) analysis, each filter sample 
was weighed again using an electronic analytical balance 
with fully automatic calibration technology (AT200, Mettler, 
Switzerland with accuracy of 0.001 mg) to determine the 
net mass of collected PM. For total hydrocarbon analysis, 
each sample was analyzed using a flame ionization detector 
(FID) (model 404, Rosemount, UK with precision of 0.5%). 
For carbon monoxide/carbon dioxide analysis, each sample 
was analyzed using a non-dispersive infrared detector 
(NDIR) (model 880A, Rosemount, UK with precision of 
1%). For nitrogen oxides analysis, each sample was analyzed 
using a chemiluminescent detection (CLD) (model 404, 
Rosemount, UK with precision of 0.5%). Anon-touch type 
HBM torque meter was used to measure engine speed and 
engine load simultaneously. K-Type thermal couple was 
used to measure exhaust temperature. 

RESULTS AND DISCUSSION 

Fuel Specifications 

In this study, test fuels were analyzed according to the 
American Society for Testing and Materials (ASTM), 
which is one of the most frequently used methods in the 
US. Fuel specifications are shown in Table 2. The mean 
total poly-aromatic content of ULSD was 0.4 wt%, but that 
of WCOB was less than the detection limit (0.1 wt%). The 
mean sulfur content of ULSD and WCOB were 36.4 and 
6.2 ppmw (parts per million by weight). Analytical results 
reveal that using WCOB instead of ULSD can reduce 
emissions of SOx and PAHs. Previous studies indicate that 
the viscosity, flash points and pour points of biodiesel is 
higher than that of diesel (Lin et al., 2006; Lin et al., 2006; 
Legreid et al., 2007; Lin et al., 2008; Lin et al., 2008; Lin 
et al., 2009). High viscosity is good for the lubrication of 
engines, but it causes poor nebulization, resulting in poor 
combustion. The boiling point is important for air-fuel 
mixing. A high boiling point may lead to long penetration, 
resulting in increased fuel impingement and poor combustion 
(Dec et al., 1998). Although biodiesels have higher flash 
point, previous studies indicated that biodiesel was not 
suitable to be used in cold weather conditions because of 
its higher viscosity, cetane number, iodine value, and minor 
constituents such as saturated monoacylglycerols or free 
steryl glucosides (Dunn, 2009; Eevera et al., 2009; Tesfa 
et al., 2010) which may influence pipeline transportation 
and induce fuel system flushing and power loss. Therefore, 
biodiesels were not suitable to be used in cold weather 
conditions unless additive or heating system was used 
(Chiu et al., 2004; Tate et al., 2006).  

Brake Specific Fuel Consumption 
The brake specific fuel consumptions (BSFC) of ULSD, 

WCOB5, WCOB10, WCOB20, and WCOB30 were shown 
in Table 3. BSFC increased with increasing WCOB blends 
at cold start and hot start. The mean BSFC (1/7 cold start + 
6/7 hot start) of ULSD, WCOB5, WCOB10, WCOB20, 
and WCOB30 were 198, 199, 199, 200, and 201 g/BHP-hr, 
respectively. The mean increases of BSFC were 0.505%, 
0.505%, 1.01%, and 1.52% for WCOB5, WCOB10, 
WCOB20, and WCOB30, respectively, when compared 
with the BSFC for ULSD. These increases are due to the 
gross heat value (GHV) of WCOB (41.2 kJ/g) being lower 
than that of ULSD (45.2 kJ/g) (Table 2). The results 
indicate that BSFC was higher for biodiesel blends as a 
consequence of biodiesel having a lower heating value. 
However, this increase was compensated by higher density 

Table 2. Specifications of the test fuel. 
Fuel parameter ULSDa WCOBb Analytic method 

Sulfur content, ppmw 
(parts per million by weight) 36.4 6.2 ASTMc D2622 

Poly-aromatic content, wt% 0.4 NDd  ASTM D6591 
Gross heating value (kJ/g) 45.2 41.2 ASTM D3286 

Cetane number 57.9 54.1 ASTM D613 
Density , g/mL at 15°C 0.839 0.880 ASTM D4052 

Viscosity , mm2/s at 40°C 3.11 4.31 ASTM D445 
Flash point, °C 80 169 ASTM D93 

a Ultra-low sulfur diesel, b Waste cooking oil biodiesel, c American Society for Testing and Materials, d Not Detected. 
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Table 3. The brake specific fuel consumptions (g/BHP-hr). 
 Tested fuel 
 ULSD WCOB5 WCOB10 WCOB20 WCOB30 

Cold start 202 201 202 203 204 
Hot start 198 199 199 200 201 

1/7 Cold start + 6/7 Hot start 198 199 199 200 201 

of biodiesel in the volumetric injection system. Thus, 
differences in volumetric consumption between diesel and 
biodiesel would become smaller. According to the report 
by Ozsezen et al. (2009), the above results may be due to 
the fuel injection pump being controlled by the test HDDE 
and the engine load being controlled by the fuel injection 
volume. For the same volume, more biodiesel fuel, based on 
mass, was injected into the combustion chamber than ULSD 
due to the higher density of biodiesel blends. Moreover, fuel 
properties such as higher density and kinematic viscosity 
influence the atomization ratio, slowing down the fuel–air 
mixing rates (Ozsezen et al., 2009). 

Reductions of PM, HC, and CO Emissions  
The emission factor of PM, HC, and CO emissions in 

the exhaust is listed in Fig. 2. The biodiesel blends had 

lower PM, HC, and CO emissions when compared with 
those of ULSD. PM emissions from engines have three 
major components: soot formed during combustion, heavy 
hydrocarbon condensed or absorbed on the soot, and sulfates. 
On the whole, PM emission levels generally decreased with 
increasing WCOB blends from 0% to 20% palm-biodiesel 
blends, and increased with increasing WCOB blends from 
20% to 30% WCOB blends. The mean reductions of PM 
(ULSD = 0.103 g/BHP-hr) were 6.80%, 8.74%, 15.5%, and 
12.0% for WCOB5, WCOB10, WCOB20, and WCOB30, 
respectively, when compared with the PM value for ULSD. 
The above result may be attributed to lower soot formation 
and soluble organic fraction (Akasaka et al., 1997; Kimura et
al., 1999; Kimura et al., 2001; Fang et al., 2008). Although 
biodiesel is better than diesel fuel, the HDDE is not 
designed for biodiesel. Adding an excess of biodiesel to 
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Fig. 2. Emission factor of PM, HC, and CO from the HDDE with catalyzer under US-HDD transient cycle. 
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diesel leaded to incomplete combustion in the HDDE and 
inhibited the release of energy in the fuel (Lin et al., 2006). 
This phenomenon probably resulted from incomplete the 
increases of cetane number and viscosity after adding a 
significant amount of biodiesel (Tsai et al., 2010). These 
combustion of fuel in the combustion chamber when the 
nebulization efficiency of nozzle was insufficient due to 
results displayed useful information for the direction of 
future design for the high additional fraction of WCOB in 
the HDDE. The emissions of HC and CO for biodiesel blends 
were lower than those for ULSD. The mean reductions of 
HC (ULSD = 0.281 g/BHP-hr) were 6.76%, 13.9%, 22.8%, 
and 23.5% for WCOB5, WCOB10, WCOB20, and 
WCOB30, respectively, when compared with the HC value 
for ULSD. The mean reductions of CO (ULSD = 1.04 
g/BHP-hr) were 0.962%, 3.85%, 4.81%, and 8.65% for 
WCOB5, WCOB10, WCOB20, and WCOB30, respectively, 
when compared with the CO value for ULSD. The above 
results indicate that WCOB, an oxygenated fuel, can 
increase combustion efficiency and reduce PM, HC, and 
CO emissions from HDDEs. In this study, it was found 
that more PM generated but less HC and CO emitted under 
incomplete combustion. The above result might be 
attributed to unburned PM expected to be burned and to 
generate HC and CO emission. Similar results have been 
published (Dorado et al., 2003; Kulkarni and Dalai, 2006; 
Legreid et al., 2007; Di et al., 2009; Ozsezen et al., 2009). 
The difference in reductions may be attributed to the 
different operation conditions and the products formed 
during frying, such as free fatty acids and some polymerized 
triglycerides, which affect the transesterification reaction and 
lead to various biodiesel properties.  

Increases of CO2 and NOx Emissions 

The emission factor of CO2 and NOx emissions in the 
exhaust is listed in Fig. 3. The biodiesel blends had higher 
CO2 and NOx emissions when compared with those of 
ULSD. The mean increases of CO2 (ULSD = 628 g/BHP-
hr) were 0.318%, 0.318%, 0.955%, and 1.43% for WCOB5, 
WCOB10, WCOB20, and WCOB30, respectively, when 
compared with the CO2 value for ULSD. This is because 
WCOB, an oxygenated fuel, increase combustion efficiency 
causing higher CO2 emission. The mean increases of NOx
(ULSD = 5.21 g/BHP-hr) were 0.384%, 0.960%, 0.960%, and 
1.15% for WCOB5, WCOB10, WCOB20, and WCOB30, 
respectively, when compared with the NOx value for ULSD. 
The problem of high NOx emissions from biodiesel-diesel 
engines can be mitigated by the use of low-temperature 
combustion or selective catalytic reduction (He and Yu, 
2005; Kelly et al., 2006; Ciardelli et al., 2007; Dong et al., 
2008; Fang et al., 2008; Grossale et al., 2008).  

PAH Emissions 
PAH concentrations of biodiesel blends are listed in 

Fig. 4. Total PAH emission concentrations from the HDDE 
decreased with increasing biodiesel blends. The mean 
reductions of total PAH concentration from the HDDE were 
13.5%, 23.3%, 32.0%, and 37.7% for WCOB5, WCOB10, 
WCOB20, and WCOB30, respectively, when compared with 
the total PAH concentration for ULSD. These findings are 
a result of PAH content in WCOB being close to zero. 
Therefore, a high fraction of biodiesel blends resulted in 
lower PAH emissions. Similar results have been published 
(Hori et al., 1997; Bagley et al., 1998; Durbin et al., 2000; 
Sidhu et al., 2001; Cardone et al., 2002; Lin et al., 2006; 
Lin et al., 2006; Yuan et al., 2009). PAH emission factor 
( g/BHP-hr) for total PAHs (denoted by EFtotal-PAH) was 
calculated and listed in Fig. 5. As shown in sequence for  
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Fig. 3. Emission factor of CO2 and NOx from the HDDE with catalyzer under US-HDD transient cycle.
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Fig. 4. PAH concentration from the HDDE with catalyzer under US-HDD transient cycle. 
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Fig. 5. PAH emission factor from the HDDE with catalyzer under US-HDD transient cycle.

magnitudes of EFtotal-PAH, analysis identified ULSD > 
WCOB5 > WCOB10 > WCOB20 > WCOB30. When 
compared with the total PAH emission factor for ULSD 
(ULSD = 84.8 g/BHP-hr), the mean reductions of total 
PAH emission factor from the HDDE were 14.1%, 23.5%, 
44.9%, and 53.3% for WCOB5, WCOB10, WCOB20, and 
WCOB30, respectively.  

CONCLUSION 

Although biodiesels made from waste cooking oil have 
been previously investigated, PAH emissions from HDDEs 
with catalyzer fueled with biodiesel from waste cooking 
oil and its blend with ULSD for the US-HDD transient 
cycle have seldom been addressed. This study investigated 
the brake specific fuel consumption and the feasibility of 
biodiesel blends was assessed. Emissions of regulated 
matters and PAHs from HDDEs with catalyzer fueled with 
waste-cooking-oil biodiesel were calculated and compared. 
Experimental results indicate that ULSD/WCOB blends 
had lower PM, HC, and CO emissions but higher CO2 and 
NOx emissions when compared with that of ULSD. Using 
ULSD/WCOB blends instead of ULSD decreased PAHs 
by 14.1%–53.3%, PM by 6.80%–15.1%, HC by 6.76%–
23.5%, and CO by 0.962%–8.65% but increase CO2 by 
0.318–1.43% and NOx by 0.384–1.15%. The above results 
indicate that WCOB can increase combustion efficiency 
and reduce PM, HC, and CO emissions. A high fraction of 
biodiesel blends resulted in lower PAH emissions due to 
no PAH in WCOB. BSFC was higher for biodiesel blends 
as a consequence of biodiesel having a lower heating 
value. Furthermore, using WCOB is an economical source 
and an effective strategy for reducing cost, and solves the 
problem of waste oil disposal. 
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