Lecture 7 Partial derivatives and differentials (II)

§ 3 Higher order partial derivatives and differentials

3.1 Definition of higher order partial differentials

$$f_{x^2}(x, y) = \lim_{\Delta x \to 0} \frac{f_x(x + \Delta x, y) - f_x(x, y)}{x};$$

$$f_{xy}(x, y) = \lim_{\Delta y \to 0} \frac{f_x(x, y + \Delta y) - f_x(x, y)}{y};$$

$$f_{yx}(x, y) = \lim_{\Delta x \to 0} \frac{f_y(x + \Delta x, y) - f_y(x, y)}{x};$$

$$f_{y^2}(x, y) = \lim_{\Delta y \to 0} \frac{f_y(x, y\Delta y) - f_y(x, y)}{y}.$$

In the same way, we can define the following:

$$f_{x^3}$$
, f_{x^2y} , f_{xy^2} , f_{y^3} etc.

Example 3.1.1 Suppose $u = xye^x \cos y$. Find all its second order partial derivatives.

Solution Obviously,

$$u_x = ye^x \cos y + xye^x \cos y$$
, $u_y = xe^x \cos y - xye^x \sin y$.

Then

$$u_{x^2} = (x+2)ye^x \cos y;$$

$$u_{xy} = e^x \cos y - ye^x \sin y + xe^x \cos y - xye^x \sin y$$

$$= (x+1)(\cos y - y\sin y)e^x$$

(The second partial derivative with respect to variables X and Y) and

$$u_{y^2} = -(2\sin y + y\cos y)xe^x.$$

Example 3.1.2 Suppose

$$f(x, y) = \begin{cases} \frac{xy(x^2 - y^2)}{x^2 + y^2}, x^2 + y^2 \neq 0 \\ 0, x^2 + y^2 = 0 \end{cases}.$$

Find $f_{xy}(0,0)$ and $f_{yx}(0,0)$. Solution It follows from

$$f_x(0,0) = \lim_{x\to 0} \frac{f(x,0)-f(0,0)}{x} = 0$$

and

$$f_{y}(0,0) = \lim_{x \to 0} \frac{f(0,y) - f(0,0)}{y} = 0$$
that
$$f_{x}(x,y) = \begin{cases} \frac{x^{4} + 4x^{2}y^{2} - y^{4}}{(x^{2} + y^{2})^{2}}y, & x^{2} + y^{2} \neq 0\\ 0, & x^{2} + y^{2} = 0 \end{cases}$$

and

$$f_{y}(x, y) = \begin{cases} \frac{x^{4} - 4x^{2}y^{2} - y^{4}}{(x^{2} + y^{2})^{2}} x, & x^{2} + y^{2} \neq 0 \\ 0, & x^{2} + y^{2} = 0 \end{cases}.$$

Consequently,

$$f_{xy}(0,0) = \lim_{y\to 0} \frac{f_x(0,y) - f_x(0,0)}{y} = -1$$

and

$$f_{yx}(0,0) = \lim_{x\to 0} \frac{f_y(x,0) - f_y(0,0)}{x} = 1.$$

Remark 3.1.1 This implies that, in general,

$$f_{xy}(x, y) \neq f_{yx}(x, y)$$
.

Theorem 3.1.2 If both f_{xy} and f_{yx} are continuous, then $f_{xy} = f_{yx}$.

Proof Let $F = \varphi(x, y + \Delta y) - \varphi(x, y)$ and

$$\varphi(x, y) = f(x + \Delta x, y) - f(x, y).$$

Then

$$F = \varphi_{y}(x, y + \theta_{1}\Delta y)\Delta y$$
$$= [f_{y}(x + \Delta x, y + \theta_{1}\Delta y) - f_{y}(x, y + \theta_{1}\Delta y)]\Delta y$$

$$= f_{yx}(x + \theta_2 \Delta x, y + \theta_1 \Delta y) \Delta x \Delta y,$$

where $0 < \theta_1, \theta_2 < 1$. Similarly

$$F = f_{xy}(x + \theta_3 \Delta x, y + \theta_4 \Delta y) \Delta x \Delta y$$

where $0 < \theta_3$, $\theta_4 < 1$. Now, the conclusion $f_{xy} = f_{yx}$ follows from the assumption that both f_{xy} and f_{yx} are continuous.

Corollary 3.1.3 Suppose u = f(x, y) has all partial derivatives up to order n including that they are continuous. Then

$$f_{x^{1}y^{k-1}} = \frac{\partial^{k} f}{\partial x^{\lambda} \partial y^{k-\lambda}} \quad (0 < k < n, \quad 0 \le \lambda \le k).$$

3.2 A formula for higher order differentials

Theorem 3.2.1 Suppose u = f(x, y). Then

$$d^n u = \sum_{n=0}^n C_n^k \frac{\partial^n f}{\partial x^{n-k} \partial y^k} dx^{n-k} dy^k.$$

Solution Obviously, $du = f_x(x, y)dx + f_y(x, y)dy$. This shows that the result holds when n=1.

We assume that when n=r, the result holds. That means,

$$d^{r}u = \sum_{k=0}^{r} C_{r}^{k} \frac{\partial^{r} f}{\partial x^{r-k} \partial y^{k}} dx^{r-k} dy^{k}.$$

When n=r+1, we know that

$$d^{r+1}u = d(d^r u) = d\left(\sum_{k=0}^r C_r^k \frac{\partial^r f}{\partial x^{r-k} \partial y^k} dx^{r-k} dy^k\right)$$

$$= \sum_{k=0}^r C_r^k d\left(\frac{\partial^r f}{\partial x^{r-k} \partial y^k}\right) dx^{r-k} dy^k$$

$$= \sum_{k=0}^r C_r^k \left(\frac{\partial^{r+1} f}{\partial x^{r-k+1} \partial y^k} dx + \frac{\partial^{r+1} f}{\partial x^{r-k} \partial y^{k+1}} dy\right) dx^{r-k} dy^k$$

$$= \sum_{k=0}^{r+1} C_{r+1}^k \frac{\partial^{r+1} f}{\partial x^{r-k+1} \partial y^k} dx^{r+1-k} dy^k.$$

Example 3.2.1 Suppose $u = \frac{1}{2} \log(x^2 + y^2 + 1)$. Find d^2u .

Solution It follows from

$$u_x = \frac{x}{x^2 + y^2 + 1}$$
 and $u_y = \frac{y}{x^2 + y^2 + 1}$

that

$$u_{xx} = \frac{-x^2 + y^2 + 1}{(x^2 + y^2 + 1)^2}, \quad u_{xy} = -\frac{2xy}{(x^2 + y^2 + 1)^2}$$

and

$$u_{yy} = \frac{x^2 - y^2 + 1}{(x^2 + y^2 + 1)^2}.$$

Hence

$$d^{2}u = \frac{-x^{2} + y^{2} + 1}{(x^{2} + y^{2} + 1)^{2}}dx^{2} - \frac{4xy}{(x^{2} + y^{2} + 1)^{2}}dxdy + \frac{x^{2} - y^{2} + 1}{(x^{2} + y^{2} + 1)^{2}}d^{2}y.$$

Homework Page 167: 9 (1, 3, 5);

Page 168: 10 (1, 3).

