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ABSTRACT  

Artificial neural networks (ANNs) are powerful data-driven modeling tools which have the potential to approximate and interpret
complex input/output relationships based on given sets of a data matrix. In this paper, a predictive computerized approach is proposed to 
predict the performance of an immobilized-cell biofilter treating NH3 vapors in terms of its removal efficiency (RE) and elimination 
capacity (EC). The input parameters to the ANN model were inlet concentration, loading rate, flow rate and pressure drop, and the
output parameters were RE and EC. The data set was divided into two parts: a training matrix consisting of 51 data points, and a test 
matrix with 16 data points representing each parameter considered in this study. Earlier experiments of continuous biofilter operation 
showed removal efficiencies from 60 to 100% at inlet loading rates (ILRs) varying between 0.5 to 5.5 g NH3/m3/h. Internal network 
parameters of the ANN model during simulation were selected using the 2k factorial design, and the best network topology for the model 
was thus estimated. Predictions were evaluated based on their d coefficient values (R2). The results showed that a multilayer network (4-
4-2) with a back propagation algorithm was able to predict biofilter performance effectively with R2 values of 0.9825 and 0.9982. The 
proposed ANN model for biofilter operation could be used as a potential alternative for knowledge-based models through proper 
training and testing of variables. 
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INTRODUCTION

Ammonia is used extensively in the semiconductor industry as 
the starting material for the manufacture of nitric acid and as a 
refrigerating fluid replacement for chlorofluorocarbons. Malodors 
containing NH3 are released from pulp and paper industry, 
wastewater treatment plants, night soil treatment plants and 
aerobic composting of low C/N material. Hence, there arises a 
potential need to adapt suitable control techniques for the 
effective removal of these emissions from related process 
industries. Biofiltration is a cost effective technology for 
treatment of waste gases containing low concentrations of 
volatile organic compounds (VOCs) at large flow rates. The high 
removal efficiencies (REs) achieved along with uncomplicated 
flexible design, low operational and maintenance costs gives 
biofilters an edge over other physico-chemical treatment 
techniques for the removal of VOCs and other malodors, such as 
adsorption, absorption, incineration and condensation (Kennes 
and Veiga, 2001; Cheng, 2008). Biofilters have been proved to 
remove NH3 emissions effectively from gas streams using a bed 
of biologically active material, such as compost, peat, wood bark, 
etc. In recent years, immobilization of microbes in support matrix, 
such as alginate beads or suitable polymeric materials has gained 
popularity in the field of biofiltration. The main advantages of 
adopting immobilization techniques in biofiltration is to provide 
high cell concentrations, improve genetic stability, protection 
from shear damage and to enhance favorable microenvironments 
for microbes (nutrient gradients and pH). Chung et al. (1996)
evaluated the effects of operational factors, such as retention time, 
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temperature and inlet concentration on the performance of a 
biofilter packed with Thiobacillus thioparus immobilized with 
Ca-alginate pellets and found an optimal S-loading of 25 g/m3/h. 

Traditionally, the performance of biofilters has been 
modeled/predicted using process-based models that are based on 
mass balance principles, simple reaction kinetics and a plug flow 
of air stream (Ottengraf and Van Den Oever, 1983; Shareefdeen 
et al., 1993; Deshusses et al., 1995; Jin et al., 2006). The main 
advantages of these process models are that they are based on the 
underlying physical process and the results obtained generally 
provide a good understanding of the system. However, this 
depends on numerous model parameters and obligates 
information on specific growth rate of microbes, biofilm 
thickness and density, values of diffusivity, partition, yield and 
distribution coefficient, intrinsic adsorption, etc. The accurate 
estimation of some of these parameters requires elaborate 
technical facilities and expertise, the absence of which hinders 
the model’s precision and limits its application and reliability. 
These parameters were not used in this study; instead, some 
easily measurable parameters were chosen, which are described 
herein. 

An alternate modeling procedure consists of a data-driven 
approach wherein the principles of artificial intelligence are 
applied with the help of neural networks. It has been shown 
earlier that the performance of biofilters and biotrickling filters 
can be predicted from prior estimation of easily measurable 
operational parameters, such as flow rate, unit flow, inlet loading 
rate, pressure drop and inlet concentration (Elias et al., 2006;
Rene et al., 2006).  

THE ANN-BASED MODELING APPROACH 

A multi-layer perceptron (MLP) using the back propagation 
algorithm (Rumelhart et al., 1986) is the most widely used neural 
network for forecasting/prediction purposes (Maier and Dandy, 
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2000). Neural networks acquire their name from the simple 
processing units in the brain called neurons which are 
interconnected by a network that transmits signals among them. 
These can be thought of as a black box device that accepts inputs 
and produces a desired output. MLP generally consists of three 
layers; an input layer, a hidden layer and an output layer. Each 
layer consists of neurons which are connected to the neurons in 
the previous and flowing layers by connection weights (Wij). 
These weights are adjusted according to the mapping capability 
of the trained network. An additional bias term ( j) is provided to 
introduce a threshold for the activation of neurons. The input data 
(Xi) is presented to the network through the input layer, which is 
then passed to the hidden layer along with the weights. The 
weighted output (XiWij) is then summed and added to a threshold 
to produce the neuron input (Ij) in the output layer. This is given 
by: 

jiji WXI (1)

This neuron input passes through an activation function f(Ij) to 
produce the desired output Yj. The most commonly used 
activation function is the logistic sigmoid function which takes 
the form: 

jIe1
1)f(I j  (2) 

MATERIALS AND METHODS 

Experimental details pertaining to cultivation of micro-
organisms, media composition, preparation of immobilized 
packing media, experimental setup, biofilter operation and 
analytical techniques for data collection are given in our 
previously published work (Kim et al., 2007) and is summarized 
in Table 1. 

The inlet loading rate, removal efficiency and elimination 
capacity were calculated to evaluate biofilter performance, 
according to Eqs. (3-5), 

V
CQ

h)(g/mILRrate,loadingInlet go3  (3) 

V
C(CQ

h)(g/mECcapacity,nEliminatio gigo3 )
 (4) 

100
C

CC
)%(RE,efficiencyRemoval

go

gigo  (5) 

Where, Cgo and Cgi are the inlet and out pollutant concentrations 
from the biofilter, ppmv (or) g/m3, V is the volume of the biofilter, 
m3 and Q is the gas flow rate, m3/h.

MODELING METHODOLOGY 

Model Input-Outputs 
A neural network-based predictive model was developed with 

flow rate, inlet loading rate, pressure drop and inlet concentration 
as the model inputs and elimination capacity and removal 
efficiency as the outputs. 

Data Division 
The experimental data was divided into training (NTr, 75%) 

and test data (NTe, 25%). The test data was set aside during 
network training and was only used for evaluating the predictive 
potentiality of the trained network. 

Error Evaluation 
The closeness of prediction between the experimental- and 

model-predicted outputs was evaluated by computing the 
determination coefficient values computed by the following 
formulae (Elias et al., 2006): 
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Where, imodelY is the predictions made using the model, iobservedY is
the experimentally observed true values, Y and SY are the 
averages and standard deviations, while N is the number of 
sample cases analyzed. 

Data Pre-Processing and Randomization
Experimental data collected from the biofilter during the 67 

days of continuous operation were randomized to obtain a spatial 
distribution of the data, which accounts for both steady state and 
transient steady state operation. The data was also normalized 
and scaled to the range of 0 to 1 using Eq. (7), so as to suit the 
transfer function in the hidden (sigmoid) and output layer (linear) 
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Where, X is the normalized value, Xmin and Xmax are the 
minimum and maximum values of X, respectively. 

Table 1. Summarized preparatory details of the immobilized cell biofilter. 

Method Experimental details Conditions 
Cultivation of mixed culture Mixed culture isolated from wastewater treatment plant was grown in 

batch reactors.  
Media composition: Kim et al. (2007) 

Grown in a rotary shaker 
(150 rpm) at 30 ± 2°C. 

Packing material for biofilter Autotrophic nitrifiers were harvested by centrifugation, washed 
aseptically with distilled water. Concentration of autotrophic nitrifiers 
~3300 mg VSS/L. Purified cells were mixed with sterilized sodium 
alginate solution and then mixed with 7.5 L of polyvinyl alcohol (PVA) 
solution. The resulting solution was injected in a mold tray, freeze gelled 
and by thawing, PVA cryogels (cubes) having a cell concentration of 
~825 mg/L were obtained.

Cells were centrifuged at 
7500 g, 15 min. 

Biofilter set up Biofilter was operated in a down flow mode.  
Components: Flow meters, mixing chamber, sampling ports, nutrient 
recycling system. 

ID: 14 cm, packed bed 
volume: 6.5 L.  
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Network Parameters 
The internal parameters of the back propagation network, 

namely epoch size, error function, learning rate ( ), momentum 
term ( ), training count (Tc) and transfer function were 
appropriately selected to obtain the best network architecture that 
gives high predictions for the performance variables. 

In this study, the number of neurons in the input layer (NI = 4) 
and output layer (N0 = 2) were chosen based on the number of 
input and output variables in the network. A detailed study on the 
effect of internal network parameters on the performance of back 
propagation networks and the procedure involved in selecting the 
best network topology has been described elsewhere (Maier and 
Dandy, 1998). However in most instances, literature suggests the 
use of a trial and error approach in which the performance goal is 
set by the user. In this study, the best values of the network 
parameters were chosen by carrying out simulations performed 
using the 2k full factorial design (Montgomery, 1991). The 2k

design is of particular significance in exploring the effect of 
many factors on the response variable for a particular system. It 
provides the smallest number of runs with which ‘k’ factors can 
be studied in a complete factorial design (In this study, k = 4, 
hence 16 simulations were done; data not shown). Determination 
coefficient (R2) values were taken as the response variable and 
the setting that yielded the maximum R2 value in the test data was 
taken as the best network parameter.  

Software Used  
ANN-based predictive modeling was carried out using the 

shareware version of the neural network and multivariable 
statistical modeling software, NNMODEL (Version 1.4, Neural 
Fusion, NY) and full factorial design was carried out by the 
statistical software MINITAB. 

RESULTS AND DISCUSSIONS 

Experimental
The performance of the immobilized cell biofilter was 

monitored by varying the flow rate and inlet concentration. A 
step increase from low to high loading rates to the biofilter 
required a few days to adapt to the new concentration and reach a 
new steady state value. The results from this study are shown in 
Fig. 1 as a function of the operating time, loading rate, empty bed 
residence time (EBRT) and removal efficiency (RE). These 
removal profiles indicated that the immobilized cells possessed 
good activity with steady and consistent removal even during the 

beginning of the experiments. The loading rate of NH3 was 
gradually increased to 2.5 g/m3/h on the 14th day of continuous 
operation. The response was a sudden decline in the RE from 
100% to 96% followed by a new steady state at the end of the 
16th day where the RE was 98%. Hence, the loading rate was 
decreased to 1.7 g/m3/h and subsequently increased in 
incremental time steps to a maximum of 4.5 g/m3/h. The biofilter 
RE profiles displayed minor ameliorating fluctuations due to a 
stepwise increase in loading rate between 1 and 4.5 g NH3/m3/h.
It was also evident that the RE was nearly 100% (> 95%) up to a 
loading rate of 4.5 g/m3/h. However, after 60 days, when the inlet 
loading rate (ILR) to the biofilter was increased significantly by 
varying both the concentration and flow rate to values as high as 
7.5 g NH3/m3/h, a noticeable decrease in the RE values from 
100% to nearly 60% was observed. The critical NH3 loading rate 
to the biofilter was considered as 4.5 g NH3/m3/h. Pressure drop 
values were sufficiently low during the operational time (0.1-1.7 
cms of H2O) and did not cause any significant operational 
problem.

ANN-Based Modeling 
To model the performance of the biofilter, neural-based 

simulations were carried out using the standard back error 
propagation network. The ranges of input and output parameters 
for the ANN model are given in Table 2. The experimental data 
collected from the biofilter was suitably divided into the training 
and test data sets, pre-processed and randomized before carrying 
out simulations. The model was evaluated with the test data and 
the effect of network parameters on the R2 value was used as a 
measure to choose the best network architecture. 

Effect of Network Internal Parameters
The different values of internal network parameters used to 

train the network are given in Table 3. During simulations with 
different combinations of settings as given by the experimental 
design, the following interpretations were made: (i) increasing 
the number of neurons in the hidden layer decreases the R2 value 
significantly; (ii) an increase in the training count from low to 
high levels displays high R2 value for the model; (iii) the effect of 
learning rate did not play a major role in increasing the R2 value, 
but it played a complementary role in speeding up the error 
Convergence, and; (iv) the momentum term increased the R2

value when increased from lower to higher levels. The best 
network architecture was then selected by observing high R2

value in the test data set (Table 4, for RE predictions, R2 value-

Fig. 1. Time course profile of inlet loading rate and removal efficiency in the immobilized cell biofilter treating NH3 vapors.
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Table 2. Range of input and output parameters used for training and testing ANN model developed to represent biofiltration of NH3
vapors.

Training data, NTr-51 Testing data, NTe-16
Parameter

Min Max Mean Min Max Mean 
Input
Inlet concentration (ppmv)
Flow rate (m3/h)
Inlet loading rate (g/m3/h)
Pressure drop (cm of H2O)
Output
RE (%) 
EC (g/m3/h)

10
6

0.3
0.1

60
0.3

150
16
7.5
1.5

100
5.3

63.3
9.25
3.08
1.1

97.2
2.93

20
6

0.6
0.2

66.8
0.5

150
16
7.5
1.5

100
5

74.1
9.13
3.54
1.16

93.2
3.18

Table 3. Range of values of network parameters chosen for 
estimating the best network architecture using full factorial 
design of experiments. 

Parameters Values 
Neurons, NH
Training count, Tc 
Learning rate, 
Momentum term, 
Best R2

Error tolerance 

4-12
1000-16000

0.1-0.9
0.1-0.9

1
0.0001

Table 4. Best architecture obtained with different values of 
network internal parameters  

NI NH NO TC

4 4 2 16000 0.9 0.9 

0.9825, for EC, R2 value-0.9982). 

Predictive Capability of the Model  
The RE and EC values predicted by the ANN model is 

illustrated in Figs. 2 and 3 for the training data. It is quite 
apparent that, while predicting the RE and EC, the network was 
able to exactly map the data points. However, two or three data 
points were not adequately mapped by the network during 
training. This might have been caused by the step increase in 

loading rates where the microbes were reacclimatizing 
themselves to attain new steady states. After training, the network 
was provided with a separate set of data for testing the developed 
model. The results, presented as EC and RE, are illustrated in 
Figs. (4) and (5), respectively. A comparison between the EC and 
RE values predicted by the model with the experimental values 
reveals the predictive capability of the model. The model was 
able to adequately identify the low and high peaks in the EC and, 
RE values. The R2 values obtained during training and testing 
were greater than 0.98 which indicated that the predictions are 
accurate with best network architecture of 4-4-2.  

CONCLUSIONS 

A laboratory-scale immobilized cell biofilter for removing 
NH3 vapors showed RE higher than 90% at loading rates less 
than 4.5 g NH3/m3/h. This study explored the application of ANN 
as a performance prediction tool for a biofiltration process. The 
ANN model showed the ability to predict extreme operating 
conditions and address performance with R2 values greater than 
0.98 for training and test data sets. The best network architecture 
(4-4-2) during effective training of the model was determined by 
2k factorial design. The results from this study suggest that neural 
networks can capture and extract complex relations among easily 
measurable parameters in a biofiltration process and predict 
performance. In addition, the model may be universal and can be 
used for the predictions of similar systems for elimination of 
VOCs. 

Fig. 2. Comparison of experimental and predicted values of removal efficiency during model training (NTr-51).
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Fig. 3. Comparison of experimental and predicted values of elimination capacity during model training (NTr-51).

Fig. 4. Comparison of experimental and predicted values of removal efficiency during model testing (NTe-16).

Fig. 5. Comparison of experimental and predicted values of elimination capacity during model testing (NTe-16).
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