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Abstract

Three chaotic indicators, namely the correlation dimension, the Lyapunov exponent, and the 
Kolmogorov entropy, are estimated for one-year long hourly average NO (nitrogen monoxide), CO 
(carbon monoxide), SO2 (sulfur dioxide), PM10 (particles with an aerodynamic diameter of 
approximately 10 m or less), and NO2 (nitrogen dioxide) concentration to examine the possible 
chaotic characteristics in the air pollutant concentration (APC) time series. The presence of chaos in 
the examined APC time series is evident with the low correlation dimensions (3.42-4.71), the positive 
values of the largest Lyapunov exponent (0.128-0.427), and the positive Kolmogorov entropies
(0.628-0.737). Since the existence of multifractal characteristics in the above time series has been 
confirmed in our previous investigations, the presence of chaotic behavior identified in the current 
study suggests the possibility of a chaotic multifractal approach for APC time series characterization. 
Some problems concerning the applicability of chaos analysis in air pollution are also discussed. 
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INTRODUCTION without obvious autocorrelation. 
Based on these time series, the trends in the 
APC data are often investigated by statistical 
analysis to facilitate good air quality 
management. However, both the accuracy and 
the reliability of these statistical analyses may 
be strongly affected by our fundamental 
knowledge of the complex temporal structure 
of the APC history at each (monitoring) 
station (Horowitz and Barakat, 1979; Ho et al.,
2004; Wang and Chen, 2008; Wang et al.,
2008; Yang et al., 2008). 

Air quality changes related to human action 
can be investigated by long-term and 
large-area monitoring. The collected air 
quality data are often recorded as APC (air 
pollutant concentration) time series and are 
characterized by many large fluctuations  
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In our previous investigations (Lee, 2002; 
Lee et al., 2003a; Lee et al., 2003b; Lee et al.,
2006a), some standard statistical methods 
have been adopted to examine the possible 
scale-invariant behavior and the clustering 
characteristics in the APC time series. It is 
found that all the examined APC time series 
exhibit the characteristic right-skewed 
unimodal frequency distribution that can be 
well represented by the log-normal model 
(Lee, 2002). Furthermore, the auto-correlation 
function does not decay to zero exponentially 
but in a slower manner, indicating the possible 
existence of a cluster structure (Lee, 2002; Lee 
et al., 2003b; Lee et al., 2006a). A 
mono-fractal analysis is then performed by the 
box counting method. Scale invariance is 
found in APC time series and the box 
dimension is shown to be a decreasing 
function of the threshold APC level, implying 
the possible presence of multifractal 
characteristics. To verify this hypothesis, the 
APC time series data is transferred into a 
useful compact form through the moment 
scaling analysis, namely, the (q)-q (where (q)
is the scaling exponent of the qth-order 
moments of a given probability distribution) 
and f( )-  (the spectrum of singularities, 
where f( ) is the Legendre transform of (q))
plots. The presence of multifractal 
characteristics is confirmed by the deviation 
from linearity in the (q)-q plots and the wide 
distribution in the f( )-  plots (Lee, 2002; Lee 
et al., 2003b; Lee et al., 2006a). It is 
concluded that the origin of both the 
pronounced right-skewness and multifractal 
phenomena in APC time series may be 

interpreted in terms of a random multiplicative 
process. Since multifractal characteristics 
indeed existed in all examined APC time 
series, a simple two-scale Cantor set with 
unequal scales and weights is presented for the 
APC time series (Lee et al., 2003b; Lee et al.,
2006a). It is revealed that this model fits 
remarkably well with the entire spectrum of 
scaling exponents for the examined APC time 
series.

On the other hand, although studies 
conducted over the past decades on the APC 
time series have indicated no evidence of a 
deterministic behavior, it has been gradually 
realized that the seemingly irregular-looking 
dynamic behavior of air pollutant could be the 
result of a simple deterministic system 
influenced by only a few non-linear 
interdependent variables with sensitive 
dependence on initial conditions, namely, 
chaos. The papers by Lee et al. (1994) and 
Raga and Le Moyne (1996) have shown the 
possible presence of chaotic dynamics in the 
hourly average ozone concentration data. 
Moreover, Chen et al. (1998) and Kocak et al.
(2000) have successfully performed a 
non-parametric short-term prediction by using 
the chaos theory. Recently, Sivakumar et al.
(2007) also indicates the existence of 
nonlinear and low-dimensional deterministic 
behavior in the daily air quality index time 
series. Nonlinearity in NO2 and CO time series 
is detected by Kumar et al. (2008) with the 
Volterra–Wiener–Korenberg (VWK) series 
approach (Barahona and Poon, 1996). The 
numerical titration technique (Poon and 
Barahona, 2001) further reveals that the 
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dynamics of NO2 and CO is indeed governed 
by deterministic chaos. However, none of the 
past studies identifies the coexistence of chaos 
and fractal nature in the same APC time series. 
If positive evidence of the coexistence of 
chaos and fractal behavior can be provided, 
the APC time series characterization can be 
viewed from a new perspective: the chaotic 
multifractal approach, as reported by 
Sivakumar (2001) for rainfall characterization. 
Therefore, it is an interesting task to examine 
possible presence of a chaotic nature in the 
APC time series that has been confirmed as 
having multifractal characteristics.  

ANALYSIS AND RESULTS 

In the present study, we analyze the 
hourly average APC data collected at the 
Chung-Shan air quality monitoring station, 
Taipei (Taiwan), from January 1998 to 
December 1998, to investigate the presence 
(or absence) of chaos and hence, the 
possibility of a chaotic multifractal approach 
for APC time series characterization. This 
station is located in a heavily populated area 
in metropolis, and is intended to provide 
information pertaining to human exposure. A 
map with the location of Chung-Shan air 
monitoring station is demonstrated in Fig. 1. 
The selected air pollutants include primary 
pollutants NO, CO, and SO2, and secondary 
pollutants PM10 and NO2. It is noteworthy 
that multifractal characteristics in the above 
time series have been detected with moment 
scaling analysis (Lee, 2002; Lee et al.,
2003a and 2003b). Some details of the 

measurement instruments used to detect the 
above pollutants are listed elsewhere (Lee et 
al., 2003b). Our previous investigation (Lee, 
2002) finds that most examined APC time 
series in Taiwan exhibit obvious annual 
periodicity due to the systematic variations 
in response to seasonal and other factors and 
the statistical characteristics can be extracted 
from the data collected over one year length. 
Accordingly, one-year long of hourly 
average values are used in this study to 
examine the chaos characteristics of APC 
time series. Although a year's time consists 
of 8760 hours, only about 8400 readings for 
each pollutant are collected due to the 
instrument calibration and maintenance. 
However, the missing observations seem to 
be evenly distributed throughout the year. 
Although the missing data may affect the 
quantitative results of chaos analysis, we 
still prefer to use the original data to make a 
qualitative identification of the chaos 
characteristics of these time series. The 
reason is that any data preprocessing may 
strongly affect the results of statistical 
analysis and make the interpretation of the 
result complex (Klement and Kratky, 1997). 
Moreover, the fractal analysis made in our 
previous investigations (Lee, 2002; Lee et
al., 2003a and 2003b; Lee et al., 2006a) also 
indicated that the effect of missing data on 
the qualitative conclusions of fractal 
analysis was insignificant. In fact, other 
factors such as time series length and noise 
may also affect the estimation of chaotic 
indicators (Sivakumar, 2000). Therefore, 
further investigations to examine the 
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influence of time series length and noise on 
the results of chaos analyses are still needed. 

Fig. 1. Location map of Chung-Shan air 
quality monitoring station. 

There are a large number of methods 
available in the literature to identify the 
existence of chaos in a time series, among 
them the correlation dimension (Grassberger 
and Procaccia, 1983a and 1983b), the 
Lyapunov exponent (Wolf et al., 1985), and 
the Kolmogorov entropy (Grassberger and 
Procaccia, 1983c) methods have been widely 
employed. Thus, in the present study these 
three methods are applied to the examination 
of the presence of chaos in the APC time 
series. The algorithms of these methods use 
the phase-space reconstruction of the time 
series. In general, a dynamic system can be 
described by a phase-space diagram whose 
trajectories describe the evolution of the 
dynamical system from some known initial 
states through time. In dissipative systems, in 
which the energy is not conserved, the 
trajectories eventually converge to some 

subspace regardless of the initial conditions. 
This subspace is called the attractor of the 
system and has a topological dimension less 
than or equal to the Euclidean dimension m of 
the phase-space it lies in. If the dynamic 
system is very sensitive to the initial 
conditions, the attractor would have a 
non-integer dimension. Such an attractor is 
called ‘strange attractor’, and the system that 
contains a strange attractor is called a chaotic 
dynamic system. A method for reconstructing 
a phase-space from a time series with time 
delays is initiated by Packard et al. (1980) and 
put on a firm mathematical basis by Takens 
(1981). According to Takens’ time-delay 
embedding theorem (Takens, 1981), if x(t) is a 
scalar time series in discrete time that are 
obtained from a continuous time 
multidimensional deterministic system with an 
attractor contained in a manifold of dimension 
d, there exists an embedding dimension m
2d + 1 such that the vectors with time-delayed 
coordinate

},...,,,{ )1(2 mttttt xxxxX (where t = 1, 

2,…, N - (m - 1) / t;  is a delay time taken to 
be a suitable multiple of the sampling time t)
will trace out a trajectory that represents a 
smooth coordinate transformation of the 
original trajectory of the system. Therefore, 
the trajectory of the delay vectors will have 
the same topological dimension as the 
underlying attractor of the dynamical system. 

Correlation dimension  
For an m-dimensional phase-space, the 

correlation function C(r) is defined by 
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Grassberger and Procaccia (1983a, b) as 
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where H is the Heaviside step function, with 
H(u) = 1 for u > 0 and H(u) = 0 for u  0, 

where jiru XX , r is the radius of the 

sphere centered on Xi or Xj, and N is the 
number of data points. If the attractor for the 
time series data exists, then, for positive 
values of r, C(r) is related to the radius r by 
the following relation:  

rrC
N
r 0

)(                          (2) 

where  is a constant and  is the correlation 
exponent or the slope of the log C(r) versus 
log r plot. If correlation exponent is saturated 
with an increase in the embedding dimension 
m, then the system is generally considered to 
exhibit chaos. The saturation value of the 
correlation exponent is defined as the 
correlation dimension of the attractor, and the 
nearest integer above the saturation value 
provides the minimum number of the 
embedding dimensions of the phase-space 
required to model the dynamics of the attractor. 
For random processes,  varies linearly with 
the increasing embedding dimension without 
arriving at a saturation value.  

One typical plot for the relationship 
between the correlation function C(r) and the 

radius r on log-log scale with the embedding 
dimension m from 2 to 20 is shown in Fig. 2 
for SO2. For each m, this figure indicates a 
clear scaling region that allows fairly accurate 
estimation of the correlation exponents. The 
dependence of the correlation exponents on 
the embedding dimensions for all examined 
APC time series is shown in Fig. 3. As 
demonstrated in Fig. 3, the correlation 
exponent increases with the increasing 
embedding dimension up to a certain value, 
and then saturates beyond that value, which 
may be taken to be an indication of 
deterministic dynamics. The saturation values 
of the correlation exponent (or correlation 
dimension) for NO, CO, SO2, PM10, and NO2

are estimated as 3.42  0.19, 4.71  0.17, 3.98 
 0.20, 4.32  0.25, and 4.25  0.25, 

respectively. The low correlation dimensions 
indicate that these time series exhibit 
low-dimensional chaotic behavior. As the 
nearest integer above the correlation 
dimension value generally provides the 
number of dominant variables influencing the 
dynamics of the underlying system, the 
correlation dimensions for the five time series 
indicate that the minimum number of variables 
essential to modeling the dynamics of NO, CO, 
SO2, PM10, and NO2 process are 4, 5, 4, 5, and 
5, respectively. However, it is difficult to give 
comments on the most probable variables in 
each case, because the concentrations of an air 
pollutant observed in a city often are 
influenced by hundreds or thousands of 
sources in the area, atmospheric variables, 
dilution and chemical reactions in the 
atmosphere, interaction with biological 



Lee and Lin, Aerosol and Air Quality Research, Vol. 8, No.4, pp. 381-391, 2008 

systems, and other phenomena. 
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Fig. 2. Log C(r) versus log r plots for SO2

time series. 
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Fig. 3. The variation of the correlation 
exponent with the embedding dimensions for 
the examined APC time series. 

Lyapunov exponent 
The second measure of the chaotic nature in 

the APC time series is the Lyapunov exponent 
which gives the average exponential rate of 
divergence or convergence of the nearby orbits 
in the phase-space. Because the presence of a 
positive Lyapunov exponent implies the 

divergence of the nearby trajectories, a system 
having at least one positive Lyapunov 
exponent is often considered to be chaotic. In 
this study, the algorithm and the computer 
program given by Wolf et al. (1985) which 
gives the Lyapunov exponents are adopted. 
The largest Lyapunov exponent 1 is defined 
as

)(
)(

log1

1

'

1
21

j

j
M

jm tL
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tN
             (3) 

where t is the time interval between two 
successive observations, M is the number of 
replacement steps, Nm is the total number of 
points in the sequence (Xt), L(tj-1) is the 
Euclidean distance between the point {x(tj-1), 
x(tj-1+ ), …, x[tj-1+(m-1) ]} and its nearest 
neighbor, and L (tj) is the evolved length of 
L(tj-1) at a time tj (Jayawardena and Lai, 1994). 
When 1 > 0, it means that the time series has 
at least one positive Lyapunov exponent and it 
is chaotic. For 1  0 and 1 , the time 
series corresponds to a regular motion process 
(such as periodic systems) and a stochastic 
process, respectively. For the purpose of 
detecting chaos in a time series, it is not 
necessary to determine all the Lyapunov 
exponents. In the calculations based on the 
algorithm of Wolf et al. (1985), it is found that 
all the values of 1 are positive and finite over 
a range of m between 1 and 10. The mean of a 
series of 1 generated in different dimensional 
phase-spaces from m = 1 to 10 is taken as an 
estimated largest Lyapunov exponent for each 
APC time series (see Table 1). It is evident 
that all the examined APC time series can be  



Lee and Lin, Aerosol and Air Quality Research, Vol. 8, No.4, pp. 381-391, 2008 
Ta

bl
e 

1.
 T

he
 d

ep
en

de
nc

e 
of

 t
he

 l
ar

ge
st

 L
ya

pu
no

v 
ex

po
ne

nt
 o

n 
th

e 
em

be
dd

in
g 

di
m

en
sio

n 
fo

r 
th

e 
ex

am
in

ed
 A

PC
 ti

m
e 

se
rie

s. 

ai
r p

ol
lu

ta
nt

 
em

be
dd

in
g 

di
m

en
sio

n 
m

ea
n 

 
1 

2 
3 

4 
5 

6 
7 

8 
9 

10
 

 
N

O
 

0.
57

7 
0.

54
5 

0.
49

8 
0.

39
4 

0.
32

5 
0.

25
9 

0.
21

9 
0.

19
0 

0.
16

1 
0.

13
2 

0.
33

0 
CO

 
0.

52
1 

0.
70

5 
0.

60
6 

0.
46

0 
0.

36
8 

0.
27

2 
0.

21
5 

0.
17

4 
0.

14
1 

0.
12

3 
0.

35
9 

SO
2 

0.
17

5 
0.

17
0 

0.
15

3 
0.

13
4 

0.
12

9 
0.

11
5 

0.
11

3 
0.

10
5 

0.
1 

0.
08

9 
0.

12
8 

PM
10

 
0.

71
5 

0.
49

8 
0.

45
1 

0.
34

2 
0.

27
7 

0.
21

3 
0.

18
0 

0.
15

0 
0.

12
7 

0.
10

2 
0.

30
6 

N
O

2 
1.

10
2 

0.
75

6 
0.

62
6 

0.
48

3 
0.

35
9 

0.
27

3 
0.

21
5 

0.
18

3 
0.

14
7 

0.
12

5 
0.

42
7 

regarded as chaotic series, because the 1

value of each air pollutant is positive. 

Kolmogorov entropy
The Kolmogorov entropy of a time series 

gives a lower bound to the sum of the positive 
Lyapunov exponents. Since the calculation of 
the Kolmogorov entropy K is difficult, an 
approximate estimation for the value of 
Kolmogorov entropy is usually conducted 
with the aid of the second order Renyi entropy 
K2, which may be estimated with the distance 
(in log-log coordinates) between successive 
correlation curves Cm(r) and Cm+1(r)
(Grassberger and Procaccia, 1983c), i.e.,

)]}(log[)]({log[1)( 1
0

2 lim rCrC
t

mK mm
r

 (4) 

and

)]([ 22 lim mKK
m

                  (5) 

The K2 entropy and Kolmogorov entropy 
are thought to have the same qualitative 
behavior, i.e., zero, positive and finite, and 
infinite values corresponding to a regular 
system, a chaotic system, and a stochastic 
process, respectively.  

For a series of embedding dimensions, Eq. 
(4) is used to evaluate the quantity K2(m) for 
each APC time series. The dependence of the 
K2 entropy on the embedding dimension of m
= 2 to 19 is listed in Table 2. Here the chaotic 
behavior in all APC time series is evident with 
the positive and finite K2 values. 
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ISCUSSION AND CONCLUSIONS D
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For the above results, three important 
comments should be addressed. Firstly, since 
the multifractal characteristics in the time 
series used in this study have been detected in 
our previous investigations (Lee, 2002; Lee et
al., 2003a and 2003b), the results shown here 
provide a positive evidence for the coexistence 
of multifractal and chaotic behaviors in the 
APC time series. It is well known that 
multifractal behavior is frequently associated 
with systems where the underlying physics is 
governed by a random multiplicative process 
(Olsson and Niemczynowicz, 1996; Godano et
al., 1997; Ho et al., 2004; Lee et al., 2006b). 
However, the existence of chaos identified in 
this study indicates that multifractal 
approaches may provide positive evidence of a 
multifractal nature not only in stochastic 
processes but also in chaotic processes. A 
possible implication of this may be that the 
APC data characterization can be viewed from 
a new perspective, i.e., the chaotic multifractal 
approach. However, to make chaotic 
multifractal model an efficient tool for 
characterization, analysis, and comparison of 
the APC temporal characteristics, a clear 
relationship between both multifractal and 
chaos parameters and traditional statistical 
quantities is needed. In general, statistical 
analysis of the APC data collected at each air 
quality monitoring station routinely reveals 
high variation of concentration, right-skewed 
frequency distribution, and long term memory. 
In our previous investigation (Lee et al.,
2003b), the relationship between the 
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coefficients of variation and skewness and 
multifractal parameters has been well 
established. However, it is found that the 
correlation between the multifractal 
parameters and the long-range dependence in 
the examined APC data is difficult to identify, 
although it is well known that the existence of 
multifractal characteristics is closely related to 
the long-range dependence in the data set. 
Therefore, it is an interesting and promising 
task in the future to make the relationship 
between the multifractal parameters and the 
long-range dependence of APC data set more 
transparently relevant as well as to establish 
the relationship between the chaos indicators 
and the above mentioned three traditional 
statistical quantities (i.e., the coefficients of 
both variation and skewness and the long term 
memory). Second, although conceptually 
simple, the estimation of the chaotic 
parameters from a time series may be 
significantly influenced by the size of the 
sample, the delay time, and the presence of 
noise (Sivakumar, 2000). Therefore, it is still 
necessary to conduct further investigations on 
the presence of a chaotic nature in the APC 
time series using more APC data and other 
chaos identification methods, in order to 
provide a more solid basis for the application 
of chaos theory on the APC time series 
characterization. Some recent developments in 
the field of nonlinear dynamics may provide 
an insight into the chaotic nature of air 
pollutants. For instance, Barahona and Poon 
(1996) have developed a 
Volterra–Wiener–Korenberg (VWK) series 
approach to detect nonlinearity in a time series. 

This approach is able to detect nonlinearity 
even when data are heavily contaminated with 
noise, or strong periodicity is present. Poon 
and Barahona (2001) developed a novel 
numerical titration technique to detect chaos in 
a non-linear time series, even if the time series 
is short and noisy in nature. Cao (1997) has 
proposed a modified form of the false 
nearest-neighbourhood (FNN) method for 
ascertaining the dimensionality of the system. 
This method overcomes many shortcomings 
of the widely used FNN method and is equally 
powerful when the number of data points is 
less (~1000 points). Recently, the chaotic 
nature of NO2 and CO time series are clearly 
detected with the aid of VWK approach, 
numerical titration technique, and Cao’s 
method by Kumar et al. (2008). Finally, the 
similarity of the chaos nature involved in APC 
time series and rainfall is interesting, although 
their microscopic generating processes may be 
different in a fundamental way. Air pollution 
has an external forcing (emissions of 
pollutants) which has a non-trivial time 
structure connected with human activity, and 
is bound to generate long term correlation or 
periodicity in the data. Rainfall is also 
correlated with periodic forcing, but of 
completely different origin. Therefore, the 
time series of rainfall and APC would have 
significantly different properties although the 
chaos characteristics in their generating 
processes are similar.  
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