Conversion of Carbonyl Sulfide Using a Low-Temperature Discharge Approach

Cheng-Hsien Tsai^{1*}, Ping-Szu Tsai¹, Chih-Ju G. Jou², Wei-Tung Liao³

 ¹ Department of Chemical and Material Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 807, Taiwan.
 ² Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung 811, Taiwan.
 ³ Department of Chemical and Material Engineering, Southern Taiwan University of Technology, Tainan 710, Taiwan

Abstract

Carbonyl sulfide (COS) are usually yielded from the petrifaction industry or steel-making plants. In this study, a low-temperature radio-frequency (RF) plasma approach was used to destruct COS for removing sulfur. The results showed that at an inlet O_2/COS molar ratio of 3, the removal efficiency of COS reached 98.4% at 20 W and 4000 N/m², with the major product being SO₂ with small amounts of sulfur deposition. The removal efficiency of COS was lower in the H₂-containing condition than in the O₂-containg one. However, when H₂ was added into the COS/N₂ mixtures, the products, including major elemental sulfur with CS₂ as a minor product, were easily collected and recovered.

Keywords: Carbonyl sulfide; RF plasma; Destruction; Acid rain; Sulfur.

^{*} Corresponding author. Tel: +886-7-381-4526; Fax: +886-7-383-0674

E-mail address: chtsai@cc.kuas.edu.tw

INTRODUCTION

Carbonyl sulfide (COS) is an odourless, tasteless and colourless polar gas molecule with a boiling point of -50.2°C, which is relatively different from other sulfur-containing impurities of hydrocarbon feedstocks (Adewuyi and Carmichael, 1987). The major emission sources of COS are the conversion of fossil fuels, steel-making plants, and waste landfills. In addition, during the high temperature stage of the Claus process, the formation of COS results from hydrocarbons being present in the flue gas according to the following reactions.

$$CO_2 + H_2S = COS + H_2O$$
 (1)
 $CH_4 + SO_2 = COS + H_2O + H_2$ (2)

However, COS that is emitted into the atmospheric environment will not only contribute to the formation of SO_2 and promote photochemical reactions, but will also have an effect on the climate (Lelieveld and Heintzenberg, 1992).

The tail gas from Cluas Plants is usually incinerated and COS and CS₂ are converted to the harmful SO₂. CaO is then used as an absorbent to produce CaSO₄ (Borgwardt *et al.*, 1987), though it is not economically viable. An alternative method of reducing the levels of COS involves hydrogenation, which takes advantage of the hydrogen present in the Claus process via reaction (3) by using a Co-Mo-Al₂O₃ type catalyst (Tong *et al.*, 1992; Rhodes, *et al.*, 2000).

$$\cos + 4H_2 = H_2S + CH_4 + H_2O$$
(3)

In addition, the removal of COS can be carried out using SO₂ to oxidize COS to carbon dioxide and elemental sulfur (SO₂ + 2COS = $2CO_2$ + S) (Rhodes *et al.*, 2000). Recently, among the catalytic methods, COS hydrolysis has been recognized as the promising process due to the mild reaction conditions and higher conversion via the reaction (4) (Zhang *et al.*, 2004).

$$\cos + H_2O = H_2S + CO_2 \tag{4}$$

Odorous and toxic H₂S formed from reactions (3) and (4) need to be further removed using the Claus reaction $(2H_2S + SO_2 = 3S + 2H_2O)$ to produce elemental sulfur (Clark *et al.*, 2001). However, some problems that are caused by the catalytic methods, such as the reduction of catalytic activity, the poison of catalysts, and product selectivities, can be further improved.

So far, the discharge process used to recover sulfur from a high concentration of COS has not been studied. A 13.56 MHz radio frequency (RF) source is commonly used in industry for generating energetic electrons (1-10 eV) to drive electron impact dissociation and penning dissociation processes. Therefore, conventional reactions that need to be achieved at higher activation energy can now be done at a relatively low gas temperature. The RF plasma approach has been successfully applied to recover elemental sulfur from SO_2 and CS_2 (Tsai *et al.*, 2002; 2004).

Therefore, the objective of this study is to preliminarily demonstrate the RF discharge approach with a dry, low-temperature, non-catalytic, single removal process to convert COS yielding elemental sulfur and CS_2 that can be easily recovered. Moreover, this discharge approach did not yield the major product as H_2S to avoid the requirement of the sequential Claus reaction which is converted H_2S into elemental sulfur.

EXPERIMENTAL SECTION

The experimental setup (Fig. 1) applied here is similar to that used in previous investigations on the destruction of hazardous air pollutants (Tsai *et al.*, 2004; Wang *et al.*, 2005). A laboratory scale reactor that was wrapped by two external copper electrodes coupled to a 13.56 MHz RF generator (Fritz Huttinger Elektronik Gmbh, PFG 600) with a matching network (Matchbox PFM) was used. The cylindrical glass reactor (length of 15 cm and inner diameter of 4.2 cm) was mounted vertically. An interval of about 0.6 cm-width with 1.73-slope between the two electrodes (5.5 cm-high) of copper material was set up in order to obtain an optimal matching network for the investigation. Also, to avoid their participating in the plasma-chemical reactions, the electrodes were arranged on the outside of reactor so as to create a capacitor that enables capacitive coupling power into the discharge zone.

Fig. 1. Experimental apparatus and flowcharts.

When the reaction experiments were in process, an in-line Fourier transform infrared (FTIR) spectrometer (Bio-Rad, Model FTS-7) downstream of the reactor was used for quantifying compounds including COS, SO₂, CS₂, CH₄, C₂H₂, C₂H₄, CO and CO₂. Moreover, the samples were injected into the gas chromatograph (GC, HP 6890, column is G.S.Q, 30 m \times 0.53 mm) equipped with a pulsed flame photometric detector (PFPD) to identify sulfur-containing compounds and to check the accuracy of the results.

Comprehensive ranges of experimental conditions, including an inlet H₂/COS molar ratio (RH₂) of 0-4.5, inlet O₂/COS molar ratio (RO₂) of 3, applied power (20-90 W) at room temperature (about 300 K), and an inlet COS molar fraction (COS) of 5% with a total flow rate of 200 mL/min (at STP) were probed for COS conversion. The flow rates of high-purity COS (Merck), H₂ or O₂ with balanced N₂, were regulated by mass flow controllers. The gases were introduced into a gas mixer, and then conducted into the RF plasma reactor to perform the experiments. All tests were done at a lower operating pressure (1333 or 4000 N/m²) in order to generate and keep a discharge with a lower effluent temperature.

RESULTS AND DISCUSSION

Removal efficiency of COS at various inlet H₂/COS molar ratios and operating pressures

In order to examine the influences of the inlet H_2/COS molar ratios (RH₂) at two levels of operating pressure on the removal efficiency of COS (RECOS), the experiments were carried out at a fixed 30 W. Fig. 2 shows that a higher RECOS can be achieved at a lower RH₂ and a lower pressure. As RH₂ increased from 0 (without H₂) to 4.5 at 30 W, RECOS decreased slightly from 99.8% to 97.7% at a lower pressure (1333 N/m²), whereas the RECOS reduced significantly from 89.2% to 73.4% at a higher pressure (4000 N/m²) (Fig. 2). At a higher operating pressure, electrons move in a shorter mean free path, resulting in lower mean electron energy that gathers a lower reaction rate of nonelastic collisions (Roth, 1995). Thus, less COS molecules were dissociated and a lower RECOS was achieved. However, because a higher pressure is preferred for practical operation in the future, the sequential experiments were carried out at 4000 N/m² to keep the discharge working. In addition, a higher RH₂ value means a higher feeding concentration of hydrogen, which consumes parts of the energetic species in the discharge zone and decreases RECOS.

Fig. 2. The removal efficiencies of COS for various operating pressures and inlet H_2/COS molar ratios at 30 W.

Removal efficiency of COS at various additives and applied powers

Fig. 3 shows RECOS in the RF plasma with no additive, $RO_2 = 3$, and $RH_2 = 0.6$ and 3, at an applied power of 20-90 W. For the no additive condition, RECOS increased from 88.0% to 98.0% by elevating power from 20 W to 90 W, indicating that the RF plasma process was adequate for converting pure COS in N₂. However, when an additive (H₂ or O₂) was added, different RECOS trends were found. The addition of O₂ resulted in the elevation of RECOS, while adding H2 reduced RECOS because the oxidation of COS and dissociated fragments is rapid and can prevent the recombination of COS. However, when H₂ molecules were added and attached to the energetic species, the reaction rate of H₂ or H reacting with COS or dissociated compounds was not enough to elevate RECOS, especially at a higher inlet H₂ concentration. When the power was increased from 20 W to 90 W, RECOS increased slightly from 98.4% to 99.8% at RO₂ = 3. This was much higher than the increases for RH₂ = 3, where RECOS rose from 64.3% to 97.0% (Fig. 3). Moreover, at RH₂ = 0.6, RECOS decrease only a little less than in the no H₂ condition.

In addition, RECOS at 20 W was apparently lower than that at 90 W except with the addition of O_2 (Fig. 3), which reveals that a higher discharge power results in a higher removal efficiency. This is because the larger plasma density resulted in the elevation the probabilities of electron impact dissociation or penning dissociation. However, the influence of applied power on RECOS apparently weakens at a power greater than 60 W because RECOS was greater than 95% regardless of what additive was added (Fig. 3).

Fig. 3. The removal efficiency of COS for various inlet H_2/COS molar ratios and additives at 4000 N/m^2

Comparisons of sulfur-containing products using different additives

Though the addition of O_2 improved RECOS, the sulfur-containing product patterns in Table 1 revealed that the major product was harmful SO₂ with elemental sulfur (minor) and CS₂ (trace amount, the fraction of sulfur atoms that converted from COS to CS₂ was less than 0.2%). Because the bond dissociation energy for OS = O (131.8 kcal/mol) is much higher than that for SC = S (102.7 kcal/mol), SO₂ is the most dominant S-containing end product in COS/O₂/N₂ plasmachemical reactions and can be formed via the following reactions:

$$COS + O = SO + CO$$

$$O_2 + S = O + SO$$
(5)
(6)

$$SO + ((O+M), O_2, SO) = SO_2 + (M, O, S)$$
(7)

However, SO₂ is still an important air pollutant that causes acid deposition. Hence, adding O₂ to remove COS is not the best choice. A better alternative is to convert COS into mainly elemental sulfur and CS₂, which are easily recovered through solid and liquid form, respectively. Table 1 showed that COS with/without H₂ addition can be removed by yielding elemental sulfur (major, expressed as S1, which was calculated by the mass balance of S atoms) and CS₂ as the minor sulfur-containing product with only trace amounts of SO₂ (the fraction of sulfur atoms that converted from COS to SO₂ was about 0.2-2.96%).

Mixtures			
Sulfur-containing	COS without additive	Inlet H_2/COS ratio = 3	Inlet O_2/COS ratio = 3
products			
Major	Elemental sulfur $(87.1\%-94.1\%)^*$	Elemental sulfur	SO ₂ (86.6%-97.4%)
Minor	CS ₂	CS2	Elemental sulfur
	(2.32%-4.98%)*	(3.48%-10.8%)	(2.24%-13.3%)
Trace	SO_2	SO_2	CS_2
	(1.21%-2.96%) [*]	(0.20%-0.63%)	(0.04%-0.19%)

Table 1. Comparison of sulfur-containing products after different additives were added into the COS/N_2 mixtures at an applied power of 20-90 W.

*: in parenthesis means the mass fraction of sulfur atoms converted from COS into elemental sulfur (S_1) , CS_2 or SO_2 , respectively.

Importantly, no detectable H₂S was found, which is very different from traditional catalytic reactions, such as COS hydrogenation (reaction (3)) and hydrolysis of COS and CS₂ (reaction (4)) that produce H₂S as the major product first, and then remove H₂S via producing elemental sulfur through the Claus reaction. The results indicate that the RF discharge process can directly convert COS into recoverable elemental sulfur or CS₂ with/without H₂ addition. Moreover, no H₂S is yielded because the bond dissociation energy of HS-H (92.0 kcal/mol) and S-H (83.5 kcal/mol) in H₂S was apparently lower than that of SC = S (102.7 kcal/mol) and C = S (170.5 kcal/mol) in CS₂. Hence, CS₂ is more thermodynamic stable than H₂S. In addition, even H₂S was yielded; it would be easily dissociated through reacting with O to form SO as the precursor of product SO₂. These properties favored the existence of CS to the formation of CS₂ other than H₂S in the H₂/COS/N₂ plasma.

However, the difference between H_2 and no H_2 addition conditions is the yield of sulfurcontaining products: more elemental sulfur and SO₂ were found in the no H_2 environment (that is, COS plasmalysis), while more CS₂ was detected when H_2 was added. CS₂ can be easily recovery in liquid form when the temperature is lower than the boiling point (46.25°C); hence, CS₂ can be more easily collected than elemental sulfur, making the H_2 /COS/N₂ plasma approach a potential solution.

CONCLUSIONS

In this study, high concentration of COS was successfully destructed and converted into other sulfur-containing products by adding H₂ or O₂, or without an additive, utilizing a low-pressure RF discharge approach. The important finding is that no H₂S was detected, which is very different from the traditional catalytic removal process, including COS hydrogenation (COS + 4H₂ = H₂S + CH₄ + H₂O) and hydrolysis of COS and CS₂ (COS + H₂O \rightarrow H₂S + CO₂). The discharge approach replaced major product H₂S with elemental sulfur that can be easily recovered with or without H₂, and can avoid the requirement of the sequential Claus reaction in order to convert H2S into elemental sulfur. However, due to the relatively low pressure, this approach is not currently practical.

ACKNOWLEDGMENTS

The authors would like to thank the National Science Council in Taiwan for financially supporting this research work (Grant NSC 92-2211-E-151-002).

REFERENCES

- Adewuyi, Y.G. and Carmichael, G.R. (1987). Kinetics of Hydrolysis and Oxidation of Carbon Disulfide by Hydrogen Peroxide in Alkaline Medium and Application to Carbonyl Sulfide. *Environ. Sci. Technol.* 21: 170-177.
- Borgwardt, R.H.; Bruce, K.R. and Blake, J. (1987). An Investigation of Product-layer Diffusivity for Calcium Oxide Sulfation. *Ind. Eng. Chem. Res.* 26: 1993-1998.
- Clark, P.D.; Dowling, N.I. and Huang, M. (2001). Conversion of CS₂ and COS over Alumina and Titania under Claus Process Conditions: Reaction with H₂O and SO₂. *Appl. Catal. B-Environ*. 31: 107-112.
- Lelieveld, J. and Heintzenberg, J. (1992). Sulfate Cooling Effect on Climate through in-cloud Oxidation of Anthropogenic. *Science* 258: 117-120.
- Rhodes, C.; Riddel, S.A.; West, J.; Williams, B.P. and Hutchings, G.J. (2000). The Low-Temperature Hydrolysis of Carbonyl Sulfide and Carbon Disulfide: a Review. *Catal. Today* 59: 443-464.
- Roth, J.R. (1995) Industrial Plasma Engineering, Vol. 1: Principles, Institute of Physics Publishing: Bristol and Philadelphia.
- Tong, S.; Dalla Lana, I.G. and Chuang, K.T. (1992). Appraisal of Catalysts for the Hydrolysis of Carbon Disulfide. *Can. J. Chem. Eng.* 70: 516-522.

- Tsai, C.H.; Lee, W.J.; Chen, C.Y.; Liao, W.T. and Shih, M. (2002). Formation of Solid Sulfur by Decomposition of Carbon Disulfide in the Oxygen-Lean Cold Plasma Environment. *Ind. Eng. Chem. Res.* 41: 1412-1418.
- Tsai, C.H.; Lee, W.J.; Shih, M.; Chen, C.Y. and Tsai, P.J. (2004). Conversion of SO2 into Elemental Sulfur by Using the RF Plasma Technique. *AIChE J.* 50: 524-529.
- Wang, Y.F.; Tsai, C.H.; Shih, M.; Hsieh, L.T. and Chang, W.C. (2005). Direct Conversion of Methane into Methanol and Formaldehyde in an RF Plasma Environment I: A Preliminary Study. *Aerosol Air Qual. Res.* 5: 204-210.
- Zhang, Y.; Xiao, Z. and Ma, J. (2004). Hydrolysis of Carbonyl Sulfide over Rare Earth Oxysulfides. *Appl. Catal. B-Environ.* 48: 57-63.

Received for review, March 4, 2007 Accepted, May 4, 2007