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Abstract

PIXE (Proton Induced X-Ray Emission) and PIGE (Proton Induced Gamma Ray Emission) 
have been used to measure the concentration of over 20 elements present in coarse and fine 
atmospheric particle samples. These samples were collected at a semi-residential site at Dhaka, 
Bangladesh from July 2002 to June 2003. The multi-elemental capability of PIXE and PIGE 
enabled the use of these elemental-concentration data to define fingerprints of various coarse and 
fine particle sources in the atmosphere using factor analysis along with linear regression. Biplots 
between a major component of a given source identified by the factor analysis with another 
signature element were prepared. Regression analyses could then be performed on a subset of the 
plot to quantify the relationship between these constituents in this fingerprint. The identified 
fingerprints included anthropogenic sources, such as motor vehicles, Zn source, two-stroke 
engine, and fugitive Pb; as well as natural sources, such as sea spray and soil dust. In this study, 
the chemical compositions of elements of these fingerprints were compared with the results 
obtained from PMF modeling that had been obtained in a previous study. 
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INTRODUCTION

Air pollution has become one of the most serious environmental concerns in urban areas, 
especially in view of the adverse health effects that have been associated with ambient fine 
particles (Dockery et al., 1989, Pope et al., 1992, Dockery et al., 1993, Dockery et al., 1994, 
Pope, 2000, Schwartz, 2001). In the urban environment, the emissions from motor vehicles and 
biomass burning, lead from battery reprocessing, and paint pigment production are all transported 
as fine particles. Epidemiological links have been established between the concentrations of fine 
airborne particles (  2.5 m in diameter) and the morbidity and mortality rates in large 
populations (Dockery et al., 1993) at airborne concentrations in the range 10 to 30 g/m3. Fine 
particles also affect visibility by scattering and absorbing light and influencing the public’s 
perception of pollution. They are transported over large distances and are important in 
geochemical cycling of a number of elements, cloud formation and, ultimately, global climate.  

The identification of various sources of airborne particulate matter (PM) and the assessment of 
their impact on the aerosol composition of an airshed are some of the major goals of 
contemporary atmospheric research. The establishment of national air-quality standards for PM in 
many countries around the world has also created the need to identify the particle sources so that 
effective control strategies could be designed and implemented. Initial efforts at the identification 
of particle sources focused on dispersion models of point sources, and in most cases, resulted in 
substantial reduction in ambient PM levels. However, additional methods were needed to identify 
and quantitatively apportion the particle mass to sources with better resolution. These methods 
are called receptor models that use the measured properties of collected ambient samples to infer 
the contributions of the sources to the pollutant concentrations. These methods require that 
samples be collected at the location of interest, the receptor site, and that the samples so collected 
be analyzed for the properties that are characteristic (generally chemical composition) of the 
pollutant sources. Therefore, the measurements of the elemental composition of atmospheric 
particles are needed for compliance monitoring, studies of environmental deposition, and source 
attribution by receptor-modeling techniques. 

Accelerator-based ion beam analysis (IBA) techniques are particularly well-suited to the fast, 
non-destructive, multi-elemental analysis of air filters collected for ambient aerosol studies 
(Cohen et al., 1998; 2004a, b). Typically, the particle loading on these filters may range from less 
than one hundred g/cm2 to over 1 mg/cm2 thick, and therefore, can be considered to be thin 
targets for energetic proton beams of a few MeV. The filters themselves may only contain a total 
sample mass of just 100 to 500 g, and thus, provide an extremely small sample for analysis by 
conventional methods. Furthermore, the yields of X-rays and gamma rays after just a few minutes 
irradiation by several nanoamps of 2 to 4 MeV protons were sufficient to provide elemental 
concentrations for the majority of elements of interest in air pollution studies. Therefore, PIXE in 
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aerosol studies is receiving renewed interest globally in conjunction with other nuclear methods 
commonly known as ion beam analysis (IBA) technique that are well-suited to particle and 
aerosol filter analysis (Cohen et al., 1996; 1998).  

In this paper, the application of PIXE and PIGE to multi-elemental characterization of both 
coarse and fine aerosol particles in a semi-residential (SR) area of Dhaka from July 2002 to June 
2003 is discussed. Combining elements and estimates of compounds of known chemical 
composition to derive signatures for interesting aerosol components is also presented. 
Multi-elemental concentration data obtained from PIXE and PIGE analysis has also been 
performed to define fingerprints of various sources of atmospheric particulate matter by factor 
analysis (FA) method.   

Factor analysis is a multivariate statistical technique used in environmental studies to identify 
sources from data taken at receptor sites (Hopke et al., 1976; Henry, 1997; Huang et al., 1999).
Factor analysis generates the underlying “factors” that describe groups of variables. In 
environmental studies, each factor is generally treated as a source. The common version of factor 
analysis uses the correlation matrix to calculate a suite of factors that are rotated to generate a 
matrix of “factor loadings” for the variables. The main limitation of factor analysis in 
atmospheric science is validation; it is easy to obtain results, but it is almost impossible to check 
them objectively. 

In this paper, the results obtained from FA were compared with the results obtained from an 
earlier PMF (Begum et al., 2004) analysis. The emphasis of these comparisons is on the common 
crustal and marine factors, whose compositions are well-known and can serve as quantitative 
indicators for the acceptability of the present approach.    

EXPERIMENTAL

Sampling site  

Samples were collected in a semi-residential (SR) area of Dhaka, Bangladesh from July 2002 to 
June 2003 using a 'Gent' type stacked filter sampler (Hopke et al., 1997) capable of collecting air 
particulate samples in the PM10-2.2 and PM2.2 size fractions. The sampling site located at the 
Atomic Energy Centre, Dhaka (AECD) campus (Fig. 1). The site was located about 50 m from a 
road with a moderate traffic density. The site was selected in such a way that it would provide 
pollution levels that are representative of the area. For each 24-hour sampling period, one fine 
and one coarse particle sample were obtained on 47 mm diameter nuclepore filters. At flow rates 
in the range of 15 to 17 Lpm, particles in the 2.2- to 10- m equivalent aerodynamic diameter 
(EAD) range were collected on the coarse filter (pore size 8 m), and particles with EAD < 2.2 

m were collected on the fine filter (pore size 0.4 m). The effective sampling time was varied 
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between 6 and 20 h distributed uniformly over 24 h a day to avoid filter clogging and so that the 
flow rate remains within the prescribed limits of the sampler. This ensures proper size 
fractionation and collection efficiency (Begum et al., 2005a). Samples were collected twice each 
week.

Fig. 1. Location of sites at Dhaka in Bangladesh. 

PM mass and BC determination  

 The samples were transferred immediately to the laboratory for mass and black carbon (BC) 
measurements. The aerosol masses of both the coarse and fine fractions were determined by 
weighing the filters before and after the exposure. A Metler microbalance (Model MT5) having a 
readability of 1 µg was used for the gravimetric analysis and the quality assurance exercises. A 
standard operating procedure (SOP) was followed throughout the study (Begum et al., 2006a). 
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Since the temperature and humidity of the ambient air of the weighing area may affect the 
moisture content of the filters, and thus may affect its weight, filters were equilibrated in the 
conditioned environment for at least 24 hours before being weighed. During this equilibration 
period, the relative humidity and temperature remained constant at typically ~50% relative 
humidity and 22 C. A Po-210 (alpha emitter) electrostatic charge eliminator (STATICMASTER) 
was used to eliminate the charge accumulated on the filters before each weighing. The 
concentration of black carbon in the fine fraction samples was determined by reflectance 
measurements using an EEL (Evans Electroselenium Limited) Smoke Stain Reflectometer. 
Secondary standards of known black carbon concentrations were used to calibrate the 
reflectometer. Details of the method has been described elsewhere (Biswas et al., 2003).  

Multi-elemental analysis 

Accelerator-based ion beam analysis (IBA) methods have been applied throughout the present 
study (Cohen et al., 2002; 2004a, b). Each polycarbonate filter was analyzed using the PIXE and 
PIGE techniques at the Australian Nuclear Science and Technology Organization (ANSTO), 
Australia. Data from these methods were collected simultaneously using a 2.6-MeV proton beam 
from a Van de Graaff accelerator. Beam diameters were typically 8 mm, and currents were kept 
at less than 2 nA/mm2 to avoid beam damage to the filters and to reduce elemental losses. Run 
lengths were typically sufficient to deliver 30 C (100 nA for 300 s) of total charge through the 
filter. Two analytical methods were used (Cohen et al., 1998; 2002): 1) Proton-Induced X-ray 
Emission (PIXE), and 2) Proton-Induced Gamma Emission (PIGE). PIXE was used to analyze 
for 17 elements: Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Cu, Ni, Zn, Br, and Pb.   

After a PIXE spectrum has been measured, there are essentially two steps in the spectral 
analysis. The first step is to analyze the spectrum to determine areas of characteristics of 
elemental peaks. The second step is to estimate the yield of X-rays so that elemental 
concentrations can be estimated from the peak areas and the expected yields. The first step is 
performed by the computer program BATTYPC. The second phase, namely the calculation of 
X-ray yields, is done by THIKPC for both thick and thin target (see Cohen and Clayton, 1987). 
For concentration determinations, a calibration curve was developed from thin-film standards 
excited under the same experimental conditions. Ten MicroMatter thin-film standards of Al, SiO2,
CaF2, SrF2, NaCl and Fe were used to span the X-ray and gamma-ray energy ranges covered by 
this study. 

PIGE spectra were acquired up to gamma-ray energies of 8 MeV; only the peaks in the low 
energy portion were of interest in this study. The dominant peaks were fluorine (F 197 keV) and 
sodium (Na 440 keV). The PIGE detector system was calibrated against the known 
concentrations of aluminum, sodium chloride, calcium and strontium fluoride in the MicroMatter 
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thin-film samples mentioned above. The precision and accuracy of the PIXE and PIGE 
techniques have been discussed in detail elsewhere (Cohen et al., 2002), but they are typically 
less than ± 10% for PIXE and ± 15% for PIGE for those elements whose concentrations are well 
above their minimum detection limits. 

Meteorological conditions 

In Bangladesh, the climate is characterized by high temperatures, high humidity most of the 
year, and by distinctly marked seasonal variations in precipitation. The year can be divided into 
four seasons according to meteorological conditions; pre-monsoon (March-May), monsoon 
(June-September), post-monsoon (October-November) and winter (December-February) (Azad et 
al., 1998; Salam et al., 2003a).Winter season is characterized by dry soil conditions, low relative 
humidity, scanty rainfall, and prevailing winds of low speed from the northwest. Rainfall and 
wind speed become moderately strong, and relative humidity increases in the pre-monsoon 
season when the southwesterly (marine) flow becomes dominant. During monsoon season, the 
wind speed further increases and the air masses are strongly marine in nature. In the 
post-monsoon season, the rainfall and relative humidity decrease, as does the wind speed. The 
wind direction starts shifting to northeasterly. The meteorological data used in this study was 
obtained from a local meteorological station (Fig. 1), located about 5 kilometers north of the 
semi-residential site. 

Reconstructed mass variables (RCM) 

The IBA analysis of PM samples provided opportunities to detect a sufficient number of 
elements, making it is easier to develop fingerprints related to a variety of PM sources. It is useful 
to combine some of these elements and estimate the concentrations of compounds likely to 
represent most of the measured elements; such as estimating the amount of ammonium sulfate 
from the measured sulfur concentration. Other combinations of elements that represent interesting 
aerosol components can be estimated using pseudo-elements, such as “soil” as described by 
Malm et al. (1994). 

Sulfate can exist in the atmosphere as sulfuric acid-producing acid rain, or be partially 
neutralized to ammonium bi-sulfate, or fully neutralized to ammonium sulfate (Lee et al., 2001). 
It is assumed that sulfur occurs in the atmosphere as fully neutralized ammonium sulfate (Malm 
et al., 1994).    

Sulfur, potassium, and calcium occur naturally in sea spray in mass ratios of 0.084, 0.036 and 
0.038, respectively (Wilson, 1975). The ratio of chemical species present in sea spray can be used 
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to define the non-sea salt component of various elements in the standard way: non-sea salt sulfur 
where:

[nssS] = [Stot] – 0.084 [Na] potassium [nssK] = [Ktot] – 0.036  [Na] and 
Ca[nssCa] = [Catot] – 0.038  [Na]. 
[nssS] = [Stot] – 0.084  [Na]             (1) 

Fine potassium is an accepted indicator for smoke from biomass burning/brick kiln. It is 
known that brick kilns in Dhaka burn both wood and coal, so fine potassium is also related to the 
production of bricks. These production facilities operate mainly in winter due to the seasonally 
dry conditions. They are largely situated in the northwest and southeast sides of the city. These 
brick kilns are a major contributor to severe air pollution in winter in Dhaka (Azad et al., 1998). 
In order to obtain a reliable smoke indicator from fine potassium, it is necessary to subtract the 
fine potassium associated with soil and sea salt from the total K concentrations. Hence, smoke K 
is obtained by Smoke K = (Ktot – 0.036 Na-0.6 Fe).

It is assumed that both fine and coarse soil are composed mainly of the oxides of Mg, Al, Si, 
Ca, Ti and Fe, with other many trace elements (Malm et al., 1994). The equation for soil is: 

Soil = 2.20 Al + 2.49 Si + 1.63 Ca + 1.94 Ti + 2.42 Fe.      (2) 

This equation assumes that the two common oxides of iron Fe2O3 and FeO occur in equal 
proportions. The factor of 2.42 for iron also includes the mass of K2O in soil, based on the (K / Fe) 
= 0.6 ratio for sedimentary soils. 

Principal component analysis 

The process of identification and apportionment of pollutants to their sources is an important 
step in air-quality management. Principal component analysis (PCA) (Hopke, 1985) uses 
measurements of pollutant concentrations at a sampling site to identify significantly correlated 
variables. This method extracts components that explain the majority of the variance in the data 
matrix, which are then qualitatively interpreted as possible sources (Hopke et al., 1976; Hopke, 
1985; Wolff et al., 1985). PCA is often useful for providing information regarding source 
characteristics in terms of the elements that are associated with a given source type. These 
methods are based on the analysis of the correlation between measured concentrations of 
chemical species, assuming that highly correlated compounds are emitted from the same source.  
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RESULTS AND DISCUSSION 

Particulate matter mass and black carbon concentrations 

The 24-hour average PM2.2 and PM2.2-10 mass fraction results for the SR site are shown in Figs. 
2 and 3 as monthly box and whisker plots. The box represents 25-75% of the distributions of the 
monthly PM2.2 and PM2.2-10 concentrations. The horizontal bar in the box indicates the median, 
and (+) sign denotes the mean of the distribution for that month. The points lying outside the 
range defined by the whiskers (extreme events) are plotted as outlier dots. The Date axis is 
represented as year and month with, for example, 200207 being July 2002.   

At this site, fine and coarse particulate matter was sampled on 100 days between July 2, 2002 
and June 30, 2003. The average 24-hour fine-mass values ranged from 10 g/m3 to 100 g/m3 with 
a median of 24 g/m3. For coarse particle mass, the values ranged from 10 g/m3 to 190 g/m3 with a 
median value of 44 g/m3 (Table 1).  

The median values presented in Figs. 2 and 3 show that in the premonsoon, monsoon, and 
postmonsoon periods both fine and coarse mass concentrations were relatively low; but in the 
winter period, the mass concentrations were high. Because of the lower temperatures during 
winter, the mixing height becomes lower and the particulate matter was trapped nearer to ground 
level. During the winter, the rainfall is minimal so that dust resuspension increases the PM mass 
concentrations. During the winter season, the prevailing winds in Dhaka are from the north and 
northwest providing transported PM from India. There were other periods of the year when the 
mass concentrations were particularly high. These periods have been identified and discussed in 
previous studies (Begum et al., 2004; Begum et al., 2005b). 

Table 1. Summary of the coarse and fine particulate matter mass concentration at SR site in 
Dhaka for the study period of July 2002 to June 30, 2003. 

Semi residential site, Dhaka 
Parameter 

Coarse particle Fine particle 
Mean (µg/m3) 48 31
Median (µg/m3) 44 24
Standard deviation (µg/m3) 30 21
Maximum (µg/m3) 194 106
Minimum (µg/m3) 9 9
Number of filters exposed 100 100
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Fig. 2. Box and whisker plot for monthly fine mass (PM2.2) concentration at SR site during the 
study period.

Fig. 3. Box and whisker plot for monthly coarse mass (PM2.2-10) concentration at SR site during 
the study period. 

Fig. 4 shows the monthly averaged box and whisker plot for the PM2.2 black carbon 
measurements at the SR site in Dhaka City. BC had strong seasonal variations with higher values 
in the winter where the concentrations were twice the summer (premonsoon) values. The reason 
for the high contribution during the winter period was caused by both the seasonal fluctuations in 
emissions and meteorological effects (precipitation rate and wind direction). During the 
wintertime, the wind comes mainly from the north and northwest. Air mass backward trajectories 
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calculated with HYSPLIT (Draxler and Rolf, 2003) using the vertical mixing model for those 
days which had higher contribution of concentration (both PM2.2 and BC mass) showed that air 
particulate mass concentrations were also influenced by transboundary air pollution (Begum et al.,
2006b). The values of the Air Quality Index (AQI) (Akhter et al., 2004) in winter were very high, 
and the air was classified as extremely unhealthy during this period.    

Fig. 4. Box and whisker plot for monthly black carbon (BC) concentration at SR during the study 
period.

Results of the reconstructed mass (RCM) variables 

The variation of fine- and coarse-soil concentrations are displayed in Figs. 5 and 6, showing 
the monthly box and whisker plots for the coarse- and fine-soil estimates. It can be observed that 
during the premonsoon period, the concentrations of soil were higher than during any other 
period due to reduced soil-moisture effects (Begum et al., 2004).    

The sum of all the composite variables discussed in the previous section should provide a 
reasonable estimate of the total coarse and fine mass for comparison with the measured 
gravimetric mass of both coarse and fine particles on the filters. So, the reconstructed mass (RCM) 
would be the sum of the reconstructed mass variables defined above: 

RCM = (NH4)2 SO4 + Salt + Soil + Smoke + OMH +BC + Zn +Pb      (3)

where OMH represents the term for organic matter. During calculation of RCM, this OHM term 
has been omitted, because organic matter was not measured in this study. The RCM estimates 
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here will be well below 100%, but still sufficient to do reasonable source apportionment 
estimates, as the number of elements measured spans the full range of possible chemical species 
found in most particulate matter collected here. 

Fig. 5. Coarse soil estimates for SR during the study period. 

Fig. 6. Fine soil estimates for SR during the study period. 

Equation (3) contains contributions from most of the major components measured in both 
coarse and fine mass. However, some trace elements, such as Cr, Co, Ni, Cu, and Br, are missing. 
These trace elements contributed on an average less than 1% to the total mass. The RCM was 
compared with the gravimetric weight of the filters, where the least squares fit to the data gave 
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PCM = 0.4 Weight with an R2 = 0.73 in the case of coarse mass (Fig. 7), and PCM = 0.54 
Weight with an R2 = 0.68 in the case of fine mass (Fig. 8). The reconstructed mass is about 50% 
in this study because nitrate and organic matter were not included in the calculation. Table 2 
gives the percentage of RCM components in the calculated RCM values for coarse- and 
fine-particulate matter samples. 

Fig. 7. The plot of RCM vs. Coarse gravimetric mass during the sampling period. 

Fig. 8. The plot of RCM versus fine gravimetric mass during the sampling period. 

Results from principal components analysis 

This data sets include a total of 100 samples each for the coarse and fine fractions. Summary 
statistics for these data are presented in Table 3. In order to produce the best-possible source 
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resolutions, it is important to have accurate and precise measurements of the particulate mass, as 
well as determinations for as many as elements as possible. Of the 17 elements determined for 
each of the 100 samples, two elements, Cr and Sr, had values that were missing or below the 
detection limits in over 50% of the samples. These two elements were thus eliminated from the 
analysis. Since the method cannot use missing or below detection limit data, a value is required 
for assigning to those data values. These values were assigned a random number from a uniform 
random generator to provide a number between zero and the detection limit (Hopke, 1982). 

In order to have an unique rotation, Hopke (1982) suggested a useful empirical criterion for 
choosing the number of retained eigenvectors. In a number of cases in which source identification 
of airborne particulate-matter composition was a problem, a stable solution was provided by 
choosing the number of factors containing a variance greater than one after an orthogonal rotation. 
The total variance in each factor was calculated as the sum of the squared loading for the given 
factor. A plot of these eigenvectors as a function of factor number is given in Fig. 9. There were 
four factors with eigenvalues greater than 1.0 for the fine particle data, and three factors with 
eigenvalues greater than 1.0 for the coarse particle data. However, there are additional 
eigenvalues of 0.85 and 0.56 for fine, and of 0.83 and 0.5 for coarse data. It can be seen that there 
is a smooth decrease from factor 6 up to 13 in the case of coarse data, and from 7 factors up to 14 
in the case of fine data.   

Fig. 9 r number. . Eigenvalues for the fine and coarse data sets as a function of facto

In order to obtain reliable estimates of the different sources contributing to the fine and coarse 
mass measured at the SR site, Principal Components Analysis (PCA) was used to identify major 
elements associated with sources. Tables 4 and 5 show the factor loadings from the PCA analysis. 
Factors with two or more elements having factor loadings above 0.3 have been highlighted. Five 
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factors were required to explain 96% of the sample variance in case of the coarse particulate 
matter and six factors were required to explain 93% of the sample variance in case of the fine 
particulate matter. Factor loadings near 1.0 demonstrate that the element has a strong association 
with that individual factor.  

Factor 1 (Table 4) that explained 58% of the variance, includes high factor loadings for Al, Si, 
Ti

able 3. The mean and standard deviations (elemental concentration in ng/m3) of coarse and fine 

Coarse particulate matter Fine particulate matter 

, Ca, K, Mn and Fe in coarse particles that are identified as typical soil indicators. Factor 2 
explained 17% of the variance and was labeled Sea Spray/Fresh Sea Salt as it included high 
loadings for Na, Cl and Br.  

T
particulate matter of a semi-residential area, Dhaka. 

Parameter 
Mean STD Mean STD 

Mass 48461 2056730134 31037
BC 9134 6844
F 1  1  

N
36 63 58.9 98.3

a 719 708 219 166
Al 1174 1167 248 390
Si 3176 2890 683 918
P 57.5 97.4 19.9 39.9
S 794 698 1111 810
Cl 556 815 83.4 96.7
K 482 411 316 206
Ca 1041 961 151 308
Ti 84.4 69.7 12.8 18.3

Mn 23.0 16.5 8.3 7.0
Fe 1035 786 200 203
Cu 9.38 6.80 4.2 3.9
Zn 350 416 259 274
Br 20.9 16.9 18.0 37.9
Pb 95.7 247 175 478
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Table 4. Principal Components Analysis (PCA) with varimax rotation for all PM2.2-10 data from 

Elt Soil Sea Spray Two-stroke engine Fugitive Pb Motor Vehicle Communality

SR site. 

Al 0.965 0.163 0.069 0.053 0.109 0.977 
Br 0.038 0.675 0.502 0.019 -0.367 0.844 
Ca 0.978 0.128 -0.017 0.012 0.000 0.974 
Cl 0.091 0.962 0.048 -0.006 0.046 0.939 
Fe 0.973 0.106 0.096 0.099 0.113 0.989 
K 0.968 0.073 0.071 0.117 0.153 0.983 

M

% . Total 96% 

n 0.950 0.123 0.096 0.066 0.052 0.933 
Na 0.262 0.939 -0.097 -0.064 0.067 0.968 
Pb 0.162 -0.052 0.068 0.976 0.103 0.996 
S 0.525 0.013 0.261 0.220 0.728 0.922 
Si 0.979 0.113 0.060 0.057 0.127 0.993 
Ti 0.962 0.067 0.072 0.117 0.192 0.985 
Zn 0.126 0.023 0.936 0.067 0.150 0.920 
 Var 58.4 17.21 9.76 6.39 3.85

Eigen 7.59 2.24 1.27 0.83 0.50

Factor 3 explained 10% of the variance and was labeled Zn source. It is anticipated that the 
co

A

ntribution is mainly from motor vehicle, especially two-stroke engines, such as motor 
cycle/motor scooter (Begum et al., 2005b). In two-stroke engine, fuel and lubricant are mixed and 
burnt together in the piston chambers. Zn is an additive in the lubricating oil, and thus, during 
combustion, Zn is emitted from two-stroke engines. In four-stroke engine, oil is not mixed with 
the gasoline and Zn emissions are reduced. Zn could also be emitted from galvanized materials 
production, tire wear and the use of zinc compounds in rubber production (Begum et al., 2004).   

Factor 4 explained 6% of the variance and was labeled as Fugitive or Resuspended Pb source.  
lthough, Pb was eliminated from the gasoline in Bangladesh in July 1999 (Biswas et al., 2003), 

there may be substantial accumulated lead in the dust near roadways. There are also some Pb 
battery recycling plants in the older part of Dhaka. Factor 5 explained 4% of the variance and was 
labeled as Motor Vehicle emissions (both diesel and gasoline engine exhaust) and shows high 
values of S (Begum et al., 2005b). 

348



Begum et al., Aerosol and Air Quality Research, Vol. 6, No. 4, pp. 334-359, 2006 

Table 5. Principal Components Analysis (PCA) with varimax rotation for all PM2.2 data from SR 

Elt Soil Motor Vehicle Two-stroke Engine Zn Source Sea Salt Fugitive Pb Communality

site.

BC 0.24 0.67 0.55 -0.15 0.00 0.22 0.89
Al 0.86 0.29 -0.01 0.29 0.18 -0.08 0.95
Ca 0.96 0.18 0.08 0.01 0.04 0.04 0.96
Cl 0.23 0.08 -0.12 0.90 0.24 0.03 0.95
Cu 0.00 0.14 0.91 0.09 0.07 -0.04 0.86
Fe 0.90 0.21 0.33 0.06 0.12 0.04 0.97
K 0.45 0.82 0.19 0.02 0.11 0.17 0.95

Mn 0.49 0.13 0.73 0.07 -0.08 -0.09 0.81
Na 0.11 0.12 0.01 0.16 0.96 0.01 0.98
Pb -0.04 0.24 -0.06 0.03 0.01 0.96 0.99
S 0.27 0.91 0.05 0.14 0.10 0.12 0.94
Si 0.82 0.42 0.11 0.16 0.30 0.00 0.97
Ti 0.94 0.13 0.05 -0.01 -0.12 -0.04 0.92
Zn -0.02 0.01 0.55 0.80 -0.04 0.01 0.95

% r Total 93%  Va 46.7 13.3 12.1 11.3 6.04 3.96
Eigen 6.54 1.86 1.70 1.59 0.85 0.55

Examining the fine particle results in Table 5, Factor 1 explained 47% of the variance with 
hi

 and 4 explained 12% and 11% of the variance, and were labeled Two-Stroke Engine 
an

ariance and was labeled Sea Spray as it included high loadings 
for Na and Cl. Factor 6 explained 4% of the variance and was labeled as Fugitive or Resuspended 
Pb.

gh factor loadings for crustal elements, including Al, Si, Ti, Ca, K, Mn and Fe. These elements 
are typical indicators of soil. Factor 2 explained 13% of the variance and was labeled as Motor 
Vehicle that shows high values of S and BC (both diesel and gasoline engine exhaust). This 
factor also has a high value of K that most likely comes from biomass/brick kiln along with BC.  
In the PCA results, it was not possible to separate this area source from the motor-vehicle 
emissions. 

Factors 3
d Zn source, respectively. Zn associated with Cu, Mn and BC was identified as two-stroke 

engine exhausts (Begum et al., 2004). Zn could also be contributed from galvanizing factories, 
tire wear, and the use of zinc compounds in rubber production. Thus, the factor with high 
loadings of Zn and Cl was attributed to a Zn source that is likely to be a composite of Zn sources 
other than two-stroke exhaust.   

Factor 5 explained 6% of the v
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So

as previously been identified as a significant component of Asian aerosol in many studies 
 order to 

btain a reliable estimate of the soil mass associated with the PM10-2.2 and PM2.2 mass measured, 
PC

tive to silicon for coarse and fine particulate matter.  

urce related classification of the elements based on PCA analysis: Soil fingerprint  

Soil h
(Holmes et al., 1996; Cheng et al., 2000; Hein et al., 2002; Cohen et al., 2004a, b). In
o

A was used to identify major crustal components associated with the soil fingerprints for this 
site. The seven elements, Al, Si, K, Ca, Ti, Mn and Fe in their oxide form, were used to define a 
soil fingerprint for Dhaka (Table 6).   

Table 6. Slope, standard error (SE) and correlation coefficient (R2) of the biplots of soil cursor 
element identified by PCA analysis rela

Slope SE # Points %SD R2 Constraints
Element 

Coarse particulate matter 

Al 0.383 0.004 100 10.5 0.99  
Ca 0.325 0  0  
K 0.146 0.002 

ine pa te ma

.006 100 16.9 .97
100 12.3 0.99 

Ti 0.025 0.000 100 12.3 0.99
Fe 0.300 0.004 100 13.8 0.98
Mn 0.006 0.000 100 23.2 0.95
O 2.605 0.008 100 2.86 1

F rticula tter

Al 0.3664 0.009 99 24.3 0.94
Ca 0.1974 0.0066 99 33.1 0.90
K 0.300 0.010  0.95 K / Si < 0.5 6 46 23.7
Ti 0.0181 0.0009 99 49.2 0.80
Fe 0.2735 0.0076 99 27.5 0.93
Mn 0.010 0.0007 99 69.3 0.69
O 2.4595 0.019 99 7.6 0.99
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Table 7. Mean elemental fractions in soil obtained from the least squares fit of each element 
against silicon and assuming each element occurs as its common oxide. 

Coarse particle Fine particle 
Element 

Fraction SD Fraction SD
Al 0.080 0.008 0.079 0.014
Si 0.209 0.069 0.215 0.071
Ca 0.068 0.011 0.042 0.014
K 0.031 0.004 0.065 0.015
Ti 0.005 0.001 0.004 0.001
Fe 0.063 0.009 0.059 0.014
Mn 0.001 0.000 0.002 0.001
O 0.544 0.016 0.529 0.220

Fig. 10. Correlation plot for silicon versus non-sea salt potassium (nssK) at SR site for fine 
fraction.

It is important not to include elements in soil estimates that may have significant contributions 
from sources other than soil, because inclusion of these may tend to over estimate the soil 
component. It is possible to minimize this problem by two ways. First, the known components of 
elemental concentrations from sources other than soil are removed. For example, by removing the 
sea-salt component from the total potassium and calcium estimates through a knowledge of the 
[K/Na] and [Ca/Na] ratios in seawater. Second, by plotting the concentrations of each element 
against that of silicon for each sample, the most-abundant crustal species measured in this study, 
it is possible to obtain the minimum least squares fitted slope that excludes the contributions of 

351



Begum et al., Aerosol and Air Quality Research, Vol. 6, No. 4, pp. 334-359, 2006 

this element not associated with silicon. A good example of this problem was potassium.  
Potassium has three possible primary sources: smoke from biomass burning, sea salt, and 
windblown soil. The biplot of nssK against. Si (Fig. 10) exhibits two different correlations that 
confirm K has sources other than soil. By using an appropriate constraint (K/Si < 0.5) to obtain 
the subset of data for the correlation analysis, the soil component was differentiated from other 
sources. The slopes of the least squares fit for silicon to each of the mentioned elements, together 
with standard errors of the fit, were used to compute the fingerprints for soil indicator (Table 7).   

Motor vehicle fingerprint 

The motor vehicle source fingerprint in fine PM included high loadings for BC: S, together 
with resuspended road dust elements, and Si and Al. Historically, lead has been the most reliable 
tracer of traffic. However, since July 1999, lead has been totally banned from gasoline in 
Bangladesh (Biswas et al., 2003). Black carbon is reported to be a significant component of the 
PM2.2 mass fraction in Asian sites (Cohen et al., 2004a, b). It is emitted by motor vehicles, the 
combustion of fossil fuels, animal waste burning, crops and vegetation fires (Salam et al., 2003b; 
Begum et al., 2004; Begum et al., 2005b). Again, sulfur can serve as a tracer for traffic exhaust in 
Bangladesh, as there are no coal-fired power plants in the country. The sulfur content of diesel 
fuel is 0.7%, and for gasoline it is 0.2%. The high sulfate concentrations can also be the result of 
some transboundary transport. For the coarse fraction of PM, the factor associated with high 
factor loading of S was identified as the motor vehicle fingerprint.    

An approach similar to that explained earlier was utilized for the fine motor vehicle 
fingerprints to exclude contributions from sources other than traffic exhaust to the concentrations 
of S, Al and Si. The slope of the least squares fit for black carbon to each of the mentioned 
elements, together with standard error of the fit, were used to develop the motor vehicle 
fingerprint (Table 8). 

Table 8. Mean elemental fractions in motor vehicle obtained from least squares fit of each 
element against black carbon for fine samples.

Fine particle 
Element 

Fraction SD
S 0.074 0.027

BC 0.868 0.521
Al 0.009 0.003
Si 0.035 0.013
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Sea salt / fresh sea salt fingerprint 

Sea spray/fresh sea salt included high loadings for Na, Cl and Br in the coarse fractions. Fine 
fraction sea spray included Na and Cl. It was observed that this source dominated during the 
monsoon season when the wind is normally from the south and southeast. From the PCA 
analyses, it was seen that Na was associated with Cl for the fine-fraction particles, and with Cl 
and Br for coarse-fraction particles. Cl may have sources other than sea salt, and therefore, 
similar constraints have been applied during the least square fits to obtain a source profile 
representing local sea salt contributions. The slopes of the least square fits for sodium to each of 
those elements, together with standard error of fit, were used to produce a fingerprint for sea 
salt/fresh sea salt in the case of both fine and coarse samples separately (Table 9).    

Table 9. Mean elemental fractions in sea spray obtained from least squares fit of each element 
against  sodium for fine and coarse samples respectively. 

Coarse particle Fine particle 
Element 

Fraction SD Fraction SD
Cl 0.471 0.183 0.057 0.030
Na 0.518 0.311 0.249 0.150
Br 0.011 0.008

Two-stroke engine fingerprint 

Two-stroke engine emissions include high loadings for BC, Zn, Mn and Cu for fine fractions 
and Zn and Br for coarse fractions. Zn is characteristic of lubricating oil combustion in 
two-stroke engines. Although three-wheeled taxis with two-stroke engines have been completely 
banned since January 2003, personal two-stroke motorcycles and scooters are still in use, leading 
to continued Zn emissions. Zn can also be emitted from galvanized materials production, tire 
wear, and the use of zinc compounds in the rubber production. Since Cu, BC, Mn, and Br have 
sources other than two-stroke engines, the concentrations of these elements were regressed 
against corresponding Zn concentration with appropriate constraints. The slope of least squares 
fit for Zn to each of those mentioned elements, together with standard error of fit, were used to 
define the fingerprints for the two-stroke engine sources separately for both the fine and coarse 
samples (Table 10).    
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Table 10. Mean elemental fractions in two stroke engine obtained from least squares fit of each 
element against Zinc for fine and coarse samples respectively. 

Coarse particle Fine particle 
Element 

Fraction SD Fraction SD
Cu 0.001 0.0005
Zn 0.507 0.405 0.056 0.033
BC 0.867 0.661
S 0.477 0.237
Br 0.016 0.018
Mn 0.001 0.001

Zinc-source fingerprint 

The PCA analysis for fine fractions showed another factor with high Zn and Cl factor loading.  
The association of Zn with Cl indicates the presence of a source other than two-stroke engine 
emissions, which was defined as an unknown Zn source. The slope of the least squares fit for zinc 
to Cl, together with standard error of fit, were used as a fingerprint for this source (Table 11). 

Table 11. Mean elemental fractions for the Zn source. 

Element Mean elemental fraction with SD 
Fraction SD

Cl 0.080 0.036
Zn 0.790 0.395

Fugitive/resuspended Pb fingerprint 

PCA analysis showed a high factor loading of Pb. Although leaded gasoline was banned in 
Bangladesh from 1999, Pb may come from fugitive sources, for examples paint and pigment, Pb 
acid battery (Begum et al., 2005b), or the resuspended soil dust (Harris et al., 2005). Since Pb 
does not have any strong association with other elements, it is not possible to create a 
multi-elemental fingerprint for this source. 
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Comparison of PCA source fingerprints with PMF 

In an earlier study, source apportionment was performed using positive matrix factorization 
(PMF) (Begum et al., 2004). The PMF method develops its own source fingerprints through a 
least squares fit to the data. These fingerprints are used to obtain the source contributions at the 
receptor site. The source fingerprints obtained from the present study using PCA method have 
been compared with those obtained from PMF analysis in Table 12. It has been observed that the 
relative abundance of different elements obtained by different fingerprinting methods have 
comparable values (Huang et al., 1999). Therefore, it is concluded that source fingerprints 
obtained using the PCA-regression method described above may be utilized for source 
apportionment study using chemical mass balance (CMB) or other similar methods.  
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