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Abstract

The Brownian motion for an aerosol dispersion stating that suspending particles are rigid and 
the surrounding fluid may slip and/or not slip at the solid-fluid interface was investigated 
analytically. Particles were assumed to be close enough to interact hydrodynamically. Based on 
Einstein’s prescription of Brownian motion, the Brownian diffusivities in two different types of 
situation were deduced. The first concerned a homogeneous dilute suspension, and the relative 
diffusivity of two rigid slip/no-slip spheres with a given separation was derived. The second 
concerned a suspension in which there was a gradient in concentration of particles. The 
thermodynamic force on each particle in this case was shown to be equal to the gradient of the 
physical potential of particles, which brings considerations of the multiparticle-excluded volume 
into the problem. Determination of the sedimentation velocity of particles falling through fluid 
under gravity, for which a theoretical result corrected to the first order in volume fraction of the 
particles, was available. The diffusivity of the particles was found to increase slowly as the 
concentration rose from zero. These results were generalized to the case of an (dilute) 
inhomogeneous suspension of several different species of particle with slip/no-slip surfaces, and 
expressions were obtained for the diagonal and off-diagonal elements of the diffusivity matrix. 
Our results, presented in simple closed forms, agreed very well with the existing solutions for the 
limiting cases of no-slip at the particles’ surfaces. Also, the limiting diffusion situations of 
perfect-slip particles in gas or spherical gas bubbles in liquid were considered in this article. 
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INTRODUCTION

The unpredictable motion of small particles suspended in a fluid is known as Brownian motion, 
which is ascribed to the impact of molecules of the suspending medium (more actually, raised 
from the random fluctuations in the density of the fluid molecules). This phenomenon is named 
for Robert Brown, British botanist, who first observed the effect with pollen grain in 1827 (Ross 
and Morrison, 1988). In 1905, Einstein noticed the resemblance between Brownian motion and 
the hypothetical motion of gas molecules according to the kinetic theory of gases. After 
introducing the Stokes resistance law, Einstein derived that the diffusivity due to Brownian 
motion has the uniform value: 
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where  is the Boltzmann constant;  is the absolute temperature; I is the unit dyadic;  is the 
viscosity of the surrounding fluid; and the second-rank tensor b is the particle mobility, which the 
particle velocity impacted by a steady force F can be represented by . Eq. (1) is the 
well-known Stokes-Einstein equation, which is applied to an extremely dilute dispersion of 
no-slip solid spheres and/or a colloidal dispersion without consideration of particle interactions. 
In practical applications, one would be able to calculate the particle sizes by means of Eq. (1) 
from the measurements of the diffusion coefficients of particles in suspension. In addition, the 
equation can be applied to obtain the Avogadro’s number if the diffusion of the molecules in 
solution is measured. Nowadays diffusion coefficients are used to determine particle sizes and 
effective viscosity of a colloidal suspension, or polymer molecular weights (Ross and Morrison, 
1980; Chen et al., 2002). 
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On the other hand, the Stokes-Einstein equation can be extended to the liquid drops situation 
when the modified Stokes resistance law of fluid drops (Hadamard, 1911; Rybczynski, 1911) is 
introduced; i.e., 
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where  is the internal-to-external viscosity ratio of the droplet. Since the fluid viscosities are 
arbitrary, Eq. (2) degenerates to Eq. (1) for the cases of diffusion of a solid sphere (Stokes particle) 
when  and to the same cases for a gas bubble with spherical shape in the limit .
So, the diffusivity of an isolated gas bubble is larger than a solid sphere at the same particle size 
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and environment. 
The classical theory of Brownian diffusion developed by Einstein and many later workers is 

concerning with random migration of isolated colloidal particles or large solute molecules due to 
interaction with molecules of the suspending fluid. The results of this theory are applicable to 
very dilute solution or suspensions in which the particles on average are far apart from each other. 
In most practical applications, multiparticle systems are more important than the single particle 
situation; the latter condition can represent only the limiting case at low dispersed phase hold-up. 
In dispersions, particle interactions could be of primary importance and were related to the 
concentration dependence of the ensemble-averaged settling velocities of the particles (Batchelor, 
1972, 1982; Reed and Anderson, 1980; Keh and Chen, 1997) and of the effective transport 
properties (Batchelor, 1976, 1977, 1983; Chen, 1999; Chen et al., 2002). Problems concerning 
the hydrodynamic interactions between two or more no-slip solid particles and/or fluid droplets 
have been treated extensively in the past (Happel and Brenner, 1983; Kim and Karrila, 1991; Keh 
and Tseng, 1992; Keh and Chen, 1997). 

When one tries to solve the Navier-Stokes equations, it is usually assumed that no slippage 
arises at the solid-fluid interfaces. Actually, this is an idealization of the transport processes 
occurring. That the adjacent fluid (especially if the fluid is a rarefied gas) can slip over a solid 
surface has been confirmed, both experimentally and theoretically (Kennard, 1938; Loyalka, 
1990; Ying and Peters, 1991; Hutchins et al., 1995). Presumably any such slipping would be 
proportional to the local velocity gradient next to the solid surface (Basset, 1961; Happel and 
Brenner, 1983; Chen, 2002), at least so long as this gradient is small. The constant of 
proportionality, /lCm , may be called a “slip coefficient.” Here, l is the average mean free path 
of gas molecules, and Cm is a dimensionless constant related to the momentum accommodation 
coefficient at solid surface. Although  surely depends upon the nature of the surface, 
examination of the experimental data suggests that it will be in the range 1.0-1.5 (Davis, 1972; 
Talbot et al., 1980; Loyalka, 1990). Note that the slip-flow boundary condition is not only 
applicable for a gas-solid surface in the continuum regime (Knudsen number l/a << 1), but also 
appears to be valid for some cases even into the molecular flow regime (l/a 1). Considering 
Stokes law modified by Basset (1961), the Stokes-Einstein equation of diffusivity of aerosol 
particle was formulated as: 
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where  denotes the Knudsen number of the aerosol system. In the limiting situation of 
, Eq. (3) reduces to the Stokes-Einstein formula (1). On the other hand, Eq. (3) can be 
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simplified to the diffusion of a perfect slip sphere mC  (the particle acts like a spherical gas 
bubble in a liquid phase) and be consistent with Eq. (2) by taking . Note that, as a 
comparison between Eqs. (2) and (3), the flow field and corresponding diffusivity of a slip solid 
sphere was the same as the flow pattern and Brownian diffusivity of a fluid drop with a value of 

* equal to  (Chen et al., 1999; Chen and Yang, 2000). However, the hydrodynamic 
interactions between two aerosol particles with finite values of  were, both physically and 
mathematically, different from those between two no-slip particles and/or fluid droplets (Reed 
and Morrison, 1974; Chen and Keh, 1995; Keh and Chen, 1997). 
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The objective of the present work is to analytically study the Brownian diffusion of aerosol 
under consideration of particle hydrodynamic interactions in a general situation. Particles may 
differ in radius and in physical properties, while there are slip velocities existing at the particle 
surface. Both the particles and suspending fluid are assumed to be incompressible, so that there is 
no change of volume accompanying diffusion. In addition, the particles are assumed to be large 
enough with respect to the molecular sizes of the suspending fluid, thus the surrounding fluid can 
be regarded as a continuum. The interaction results between two aerosol particles, which were 
derived analytically by using a method of twin multipole expansions (Keh and Chen, 1997), are 
applied to solve these problems. The analytical formulations are analogue to the related articles 
studied for no-slip solid spheres (Batchelor, 1976) and for liquid drops (Chen, 1999). The result is 
an indirect but general prescription of multiparticle Brownian diffusive flux which is the same as 
if certain steady forces were acting on the particles. 

Interactions between two aerosol particles 
The slow motion of two spherical airborne particles in an unbounded gas medium, which is 

Newtonian and incompressible, is considered. The particles can differ in radius, and there exists 
the hydrodynamic slip at the surfaces of particles. For the quasi-steady situation, the velocity field 
v and dynamic pressure field p satisfy the Stokes equations: 

0v p2                                                        (4a) 

v                                                                (4b) 

where  is the fluid viscosity. The boundary conditions require that there be no relative normal 
flow at the surface of each sphere and that the tangential velocity of the fluid relative to the 
sphere at a point on its surfaces be proportional to the tangential stress prevailing at the point 
(Kennard, 1938); that means a tangential slip boundary. That is, 
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where ) is the viscous stress tensor, eri is the unit vector in the direction ri of
the spherical coordinates,  is the frictional slip coefficient about the surface of particle i, and 
l is the mean free path of the surrounding gas medium. In Eq. (5), Ui and  are the 
instantaneous translational and angular velocities, respectively, of the particle i.
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Discussion of the slow motion problem can be described using either resistance problem or 
mobility problem. The resistance problems are ascribed as those in which the forces acting on the 
particles have to be determined for the particles’ motion in the surrounding fluid. Here the 
particle velocities are settled, and the problem can be solved straightforwardly. While the 
mobility problem is defined as that in which the forces and torques acting on the particles are 
prescribed and the velocities of particles in the ambient fluid are to be determined. The 
presentation of the mobility problem is rather awkward since the boundary conditions involve the 
unknowns, but in many physical problems the force and torque are the prescribed quantities, so 
the particles move accordingly. The result of motion of two interacting particles can be expressed 
as:
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which is the translational velocity of particle i subject to an applied force Fi in the absence of the 
other particle (Basset, 1961). The dimensionless mobility tensor Mij is a function of the slip 
coefficients, orientations, sizes and separation distances of the particles. When one sphere is 
separated far away from the other particle, it is evident that: 

M11 = M22 = I,                                                           (8a) 

and
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M12 = M21 = 0. (8b) 

The dimensionless mobility tensors can be further written as: 

)()()( eeIeeM n
ij
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ijij MM ,                                                (9) 

where i and j equal 1 or 2 and e is the unit vector directing from center of sphere 1 toward the 
center of sphere 2. 

In the following discussion,  is defined and  is assumed for 
simplification (if not, the problem is much more complicated and hard to formulate analytically). 
Using an analytical formulation of a method of twin multipole expansions, the scalar mobility 
functions , ) ,  and  were obtained (Keh and Chen, 1997): 
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where , ai is the radius of particle i and r12 is the center-to-center 
distance of the pair. The other mobility functions , ,  and  can be 
obtained from the above equations by replacing a1 by a2 and a2 by a1. In the limit of 
(no-slip particles), a set of more accurate mobility functions was derived by Jeffrey and Onishi 
(1984).
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When  (perfect-slip spheres), these mobility functions with higher order of 1
12r

than those in Eq. (10) were (Keh and Chen, 19

*
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Using the so-called connector algebra, Geigenmuller and Mazur (1986) obtained the explicit 
formulas for the mobility functions , , )  and )  in power series of 1/r12 up to 

 for the case of identical fluid drops. The above expressions agreed with (and were more 
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accurate than) their results (by taking the relative viscosity of the drops  as zero) for the case 
when . It also found that the interaction between two slip spheres with finite value of 
were different from that between two fluid drops with a value of  equal to 1/ , although the 
flow field induced by an isolated aerosol sphere was equivalent to the external flow field caused 
by an isolated fluid drop under this condition (Chen et al., 1999; Chen and Yang, 2000). 
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*3 *
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The exact solution of the mobility functions  and  for two slip spheres was also 
obtained using bipolar coordinates (Chen and Keh, 1995). As comparison of the asymptotic 
results with the exact solution for the case of two identical spheres (a1 = a2 = a,
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less than 1.7% for cases 2a/r  0.9 or 4.7% for cases 2a/r
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DIFFUSION IN A HOMOGENEOUS AEROSOL 

In this section we consider the relative diffusion of spherical aerosol particles in a dilute 
homogeneous suspension. Also, the particles may differ in radius and are close enough to interact 
hydrodynamically. The pair is regarded to be isolated from the other particles, or the possibility of 
another particle being close to the group in a dilute suspension is small. A steady external 
interactive force with mutual potential energy )( 12r , which depends only on the relative position 
vectors  and not on the location of the pair in space, is assumed to be applied to the 
particles of the group in an equilibrium situation. In addition, there is another interactive force 
with mutual potential energy , which in the case of our rigid spheres is infinite if the two 
particles overlap and zero otherwise. Since the pair of particles is independent of other particles 
in the suspension, the joint probability distribution of the position vectors of the pair particles 
satisfied the Boltzmann distribution (Batchelor, 1976): 

12r )( 12er

)(r

kT
PP exp)( 012r                                                 (13) 

where P0 is a constant determined by the normalization condition  ( is the 
position vector of the center of particle i).

ix1  )( ii dP xx

The diffusive flux of one particle relative to the other in a thermodynamic equilibrium situation 
is equal and opposite to the convective flux produced by a steady applied force. On condition that 
the two fluxes are independent, one can view that the relative diffusion of the pair as if each 
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particle were acted on by a steady force equal and opposite to that derived from . This 
fictitious steady force acting on particle i is: 

i
i

PkT
x

F ln     (i = 1 or 2) (14)

Thus, when the probability density function P for the particle configuration is known, the 
relative diffusive flux can be calculated. Such a calculation involves a consideration of the 
hydrodynamic interaction of two relatively moving particles under the action of the forces 
represented by Eq. (14). 

After introducing the particle mobility defined in Eq. (6) into the relation of local flux balance 
in equilibrium state (Batchelor, 1976; Chen, 1999), the diffusive flux of particle 2 relative to 
particle 1 is: 

),(),()( 21212112 xxDxxUU PP  (15) 

where the relative diffusivity of two slip spheres with separation vector  is: 12r
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This is the diffusivity that is needed in an investigation of pair-distribution function of mobility 
tensor in a dilute homogeneous suspension of spheres subjected to a bulk deforming motion, 
which has been described in the previous section. The corresponding diffusivity  (also 
concerning parameters in following) can be easily derived from the above formula by changing 
the subscripts. 

12D

On substituting the expressions for the mobility tensors defined by Eq. (9) we find: 
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In the limiting case of  (i.e. 0  *
mC 123C ), Eqs. (17) and (18a) describe the relative pair 

diffusion of no-slip particles and are coincident with the work derived by Batchelor (1976), 
which the mobility coefficients were in power series of  up to . When 
(resulting to 

12/1 r )( 7
12rO *
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3
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23C ), there is a pair diffusion system of perfect-slip spheres. Consideration of 
the two spheres are separated by an infinite distance, the mobility coefficients satisfy 

11111 MM , 01212 MM , and it easily results that 1 1 and D21 = D0I.

In this situation, the diffusivity tensor D21 will approach the form of Eq. (3) if the radii of the 
particles are different significantly. That means that the 
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relative diffusivity of two particles is 
do small particle. 

For two identical spheres (a1 = a2 = a, mmm 21
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minated by the diffusion behavior of the 
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iffusion of an aerosol down a concentration gradient 

Here we consider a polydispersed aerosol, which the suspending particles are with different 
particle sizes and physical properties, diffusing down a prescribed concentration gradient. This 
usually happens in nature and manufacturing processes. All the suspending particles are rigid and 
have N different types, which are denoted by the suffix i, and the slippage characteristics at the 
gas-particle interfaces are introduced simultaneously. Based on a thermodynamic analysis and 
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riding on a reference frame in which fluid molecules are force free, the diffusive flux of particle 
and fluid with respect to the fluid molecules is the same as if each particle of type i is acted on by 
a modified  (Batchelor, 1976): *
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ber dwhere ia  and in  are the radius and num ensity of the i-type particle, 3
3
4

ii a  denotes 
the volume of a single particle, and ( ii n ) is the total olume fraction of the particles in 
suspension. The chemical potential of particle i denoted by i

 v
depends on n1, n2, …, and not on 

ni alone. We shall assume that the total volume fraction of the particles  is small, and seek 
expressions for the fluxes of the different kinds of particles which take into account pair 
interactions only. Application of statistical thermodynamics, Eq. (20) can be found with 
pproximation that (Batchelor, 1976): a
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3
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te lum

Because of the particle interactions influencing the movement of particles, the velocities of the 
particles in the suspension moving under the acting steady forces will not all be the same, and 
will depend on the geometrical configuration and the physicochemical properties at the 
particle-fluid interfaces. We are interested in the mean velocity of particles of type i relative to 
axes such that there is zero mean flux of ma rial vo e in the suspension, given that a particle 
of type j are acted on by the external force *

jF . Let iU  denote this average particle velocity of 
type i resulting from the fictitious applied force (or termed a thermodynamic force), and should 
be calculated for a reference frame in which the net particle and fluid flux is zero. This is of 
course the average particle velocity of each type relative to  walls of a vessel containing a 
statistically homogeneous suspension. One can also describe 

 the

iU  as the average velocity of 
type i particle relative to the velocity that they will have if they were acted on by zero force. 
Based on a microscopic model of particle interactions in a dilute dispersion, which comprises 
both statistical and low Reynolds number hydrodynamic concepts (Batchelor, 1972; Reed and 
Anderson, 1980; Keh and Chen, 1997), the mean iU velocity is given by: 
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4 ,  and 23
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0 6/ Caiii FU 1221 /)( raa . After introducing the mobility 

functions of pair-wise interactions formulated in Eq. (10), the average velocity of type i aerosol 
spheres can be derived by recalling that  for the assumption of 

 as (Keh and Chen, 1997): 
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where ij was formulated in Eq. (93) by Keh and Chen (1997). For a suspension of no-slip 
particles ( ) and of perfect-slip particles or spherical gas bubbles ( ), the mobility 

functions in Eqs. (11) and (12), respectively, can be calculated to the order of 
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11r ; thus a more 

accurate expression for ij was obtained in Eqs. (94) and (95) by Keh and Chen (1997). 
The number flux of type i airborne particles relative to zero-volume-flux axes is then 

(Batchelor, 1983): 
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Following from Eqs. (21) and (23), this flux can be presented by: 
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where the isotropic diffusivity tensor  of an extremely dilute dispersion of independent slip 
sphere is defined by Eq. (3) with replacing a by . This expression for the flux of i-type 
particles may also be written as 

0iD

ia

jij nD . The diagonal element of the diffusivity matrix is: 
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where the interaction coefficient  is (Keh and Chen, 1997): 
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8
15)32( CCCCC

2
252327054)1(2)3(23 256

7591160204
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In the limiting case for a suspension of no-slip spheres ( ), the mobility function can be 
calculated more accurately to the order of 

0*
mC

11r  by Eq. (11) (Jeffrey and Onishi, 1984) which 
obtains 553.6  On the other hand, for a suspension of perfect-slip spheres ( , the 
mobility function can be evaluated from Eq. (12) of the same accuracy and results 

*
mC

486.4
(Keh and Chen, 1997). The other coefficient  on the right hand side of Eq. (26), which is related 
to the second virial coefficient for the osmotic pressure of the dispersion, depends on the 
interaction between pairs of particles. Using a standard method of evaluating the configuration 
integral for dispersion in equilibrium, Hill (1960) resulted with 8  for the hard-sphere model 
of our assumption. 

On the other hand, the off-diagonal element is: 
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The off-diagonal contribution to the particles of type i due to a gradient of concentration of 
particles of type j is essentially a consequence of: (a) the movement of i-type particles to regions 
of lower j-type concentration where more sites are available, and (b) the back-flow in the medium 
which is needed to compensate for the volume flux associated with the movement of j-type
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particles down their concentration gradient. In the limited situations of no-slip particles 
and perfect-slip particles , the results of Eqs. (26) and (28) can be formulated to more 
accurate forms by introducing the mobility functions of Eqs. (11) and (12). They are: 
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for the dispersed particles with no-slip boundary, and 
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for the perfect-slip particles situation. 
When one considers the diffusion of a monodispersed aerosol down a concentration gradient of 

particles, the analysis can be simplified straightforwardly by the above derivation of the 
polydispersed situation with setting ji , and the result is: 

0
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where D0 is the diffusivity tensor of a particle without consideration of the effect of particle 
interaction defined by Eq. (3); )(x  is the volume fraction of particles (= na 3

3
4 , where a is the 

radius of a particle and  denotes the particle concentration at position x). It appears that the 
enhancement of the diffusivity due to the greater availability of particle sites in regions of lower 
concentration is greater than the reduction due to hydrodynamic hindrance to the movement of 
particles. 

)(xn

RESULTS AND DISCUSSION 

In Fig. 1, the dimensionless functions of  and  in Eqs. (18b) and (18c) for the 
relative diffusion of two identical spheres at various values of  are plotted verse the 
separation parameter 2a/r12. It indicates that both the values of  and  are decreasing 
monotonically during the increase of separation parameter 2a/r12, which denotes the 
hydrodynamic interaction becomes significant as the two particles move closer and this influence 
of particle configuration retards the diffusion of particles. The existence of the neighboring 
particle acting as an obstacle of particle motion makes the diffusivity small, and this hindrance 
effectively increases with decreasing distances between particles. The decreasing rate of relative 
diffusivity becomes remarkable as the slip coefficient becomes small, since the decrease in slip at 
the particle surface increases the energy dissipation in particle motion. The energy consumption is 
more significant in the axisymmetric motion of the pair than that in asymmetric movement in 
each specified situation, and it results in the value of  always being less than that of .
This also describes that the interacting effect due to the axisymmetric motion of particles 
dominates the relative diffusivity of the pair. 

)( pN )(nN
*
mC

)( pN )(nN

)( pN )(nN

For the relative diffusion of two particles with different radii the values of  and  at 
various a2/a1 and (a1+a2)/r12 for  are displayed in Fig. 2. Again, both the values of 

 and  decrease when the separation parameter (a1+a2)/r12 is increasing, and the value 
of the axisymmetric function  is always less than the values of asymmetric function 
for all cases of the specified variables. Note that  is sustained under our 
consideration of , the values of  and  for , 0.2 and 0.5 
are equal to that for the situations of 

)( pN )(nN
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)( pN )(nN

)( pN )(nN

12
),(

21
),(

12 // aaMM npnp

**
2

*
1 mmm CCC )( pN )(nN 1.0/ 12 aa

10/ 12 aa , 5 and 2, respectively. The plots show that the 
relative diffusivity reaches the minimum value when the particle sizes of the pair are equal 
( ); that is, the increase of particle size difference ( = 21 aa 21 aa ) would increase the relative 
diffusivity of the pair. When the size of particle 1 is relatively larger than that of particle 2 
( ), the motion of particle 1 is the same as if it is isolated. Here, the influence of the 
existence of particle 2 on the motion of particle 1 can be ignored ( ), thus 

21 aa
0),(

12
npM
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1)(
22

)( pp MN  and . On the contrary as 1)(
22

)( nn MN 21   aa is approached, the relations 
 and  result. In these two limiting situations, the largest value 

of diffusivity is reached and equal to the independent diffusivity of the small particle. Again, it 
explains that the behaviors of diffusion are dominated by the small particles. General speaking, 
the interaction effect of particles will decrease the relative diffusion coefficient in all 
configurations of the pair. 

1)(
11

)( pp MN 1)(
11

)( nn MN

Fig. 1. Dimensionless coefficients (a) , and (b)  versus the separation parameter 
 with  as a parameter for the relative diffusion of two identical particles. 

)( pN )(nN

12/2 ra *
mC

Considering the Brownian motion of an aerosol down a concentration gradient of particles, the 
diffusion coefficients are influenced significantly by the mobility function (23), as shown by Eqs. 
(26) and (28). Here, the values of ij  are notably negative (Keh and Chen, 1997). This means 
that the hydrodynamic interactions of airborne particle always hinder particle motions under an 
applied force, and the average velocity of the particles in a suspension of zero-volume-flux is 
smaller than the velocity of an isolated aerosol sphere. This hindrance effect on the bulk behavior 
of particle motion is enhanced with the increase of particle concentration. In the particular 
situation of a monodispersed aerosol, the magnitude of  is in the range between 4.486 and 6.553, 
and it increases monotonically with the decrease of . Here, the combination of the 
hydrodynamic and thermodynamic effects deduces that the value of 

*
mC

)(  is always positive, 
and it increases monotonically with the increase of . So, the isotropic diffusivity of a 
monodispersed aerosol is larger than that evaluated from the modified Stokes-Einstein formula (3) 
for extremely dilute situations. This effect drives the particles to move in the opposite direction of 
the concentration gradient, where there are more free sites for particles. It also explains that the 
effect of bulk diffusion of particles tends to unify the inhomogeneous distribution of particles. 

*
mC
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Fig. 2. Dimensionless coefficients (a) , and (b)  versus the separation parameter 
 with  as a parameter for the relative diffusion of two particles with different 

radii .

)( pN )(nN

1221 /)( raa 12 / aa
)1.0( *

mC

Fig. 3 illustrates the normalized diffusivities of a monodispersed aerosol with respect to the 
variations of  and/or volume fraction of particles. Obviously, if the slippage phenomenon 
occurring at the particle-fluid interface becomes significant (i.e., a larger value of ), the 
Brownian diffusion of the suspension will be increased accordingly at constant volume fraction 
of suspending particles. Owing to the viscous drag of the surrounding fluid nearby, the particles 
are insignificant at large values of , which makes the energy dissipation of particle motions 
decrease, the diffusion of particles is improved. In Fig. 3(a) the dimensionless diffusivity D/D0 is 
linearly proportional to the volume fraction of dispersed particles because of the neglect of the 
higher terms of , which should be important in a concentrated aerosol suspension. It is 
practical in most aerosol systems. The plots of dimensionless diffusivity D/D0 relative to the 
marked variation of  with 

*
mC

*
mC

*
mC

)( 2O

*
mC  as a parameter are displayed in Fig. 3(b). Here, the 

dimensionless diffusivity D/D0 increases monotonically and nonlinearly with the increase of .
In addition, the increase of particle concentration will increase the diffusivity of the 
monodispersed aerosol and drive the Brownian diffusion to be remarkable. It denotes that the 
increase of volume fraction of particles makes the thermodynamic effect much more important 
than the effect of hydrodynamic retardation on the diffusion of particles. 

*
mC

When one considers the movement of a polydispersed aerosol down a concentration gradient, 
the diffusivity is more complicated as shown in Eqs. (26) and (28). The value of the mobility 
parameter ij  is always negative and increases monotonically with the increase of  (Keh *

mC
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and Chen, 1997). The values of ij  can be larger than the thermodynamic parameter  (= 8) 
for the situations of . Here, the hindrance effect of hydrodynamic interactions will 
suppress the thermodynamic effect, and thus the combination effect will retard the diffusion of 
particles. However, this influence should be noted only in a concentrated suspension of airborne 
particles, such as the total volume fraction of particles larger than 0.2, and it is not considered in 
our results of Eqs. (26) and (28) owing to the neglect of . Generally, the particle 
concentration drives the suspended particles to diffuse from the region of more particles to that of 
fewer particles. 

2/ ij aa

)( 2O

Fig. 3. Diffusivities of a monodispersed aerosol down a concentration gradient: (a) versus the 
particle volume fraction  with  as a parameter; (b) versus  with the particle volume 
fraction

*
mC *

mC
 as a parameter. 

Several interesting cases can be approached from examining polydispersed aerosol. First, we 

consider few particles of radius a1 in a suspension containing many particles of radius a2. It is 

common in many experiments to view the particle 1 as tracer particles. This situation can be 

simplified by setting 1i ,  and 2j 21 , and thus the diffusivities of this system are: 
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 (32b) 0D12

In addition if , the numerous particles of type 2 are acting as passive obstacles to 
migration of particles of type 1, and: 

21 aa
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               (33) 

which represents the reduction in the rate of change of mean square displacement of type 1 
particles due to the presence of type 2 particles. Fig. 4. displays the normalized diffusivity 
D11/D10 predicted by Eqs. (32a) and (33) with respect to the volume fraction of particle 2 ( 2 )
and slip coefficient  for several radius ratios ( ). It shows that the increase of the 
volume fraction of particle 2 decreases the diffusivity D11/D10. This is because the increase of the 
volume fraction of particle 2 is the same as the increase of passive obstacles, and this makes the 
movement of the tracer particles (type 1) more difficult. The retardation effects on the diffusion 
of tracer particles (type 1) would be significant if the radius of the tracers were larger than that of 
the obstacles (type 2 particles); however, it is not a monotonic function of . In this 
situation the surface property of the obstacle particle (particle 2) plays an influential role in 
diffusivity, which can be easily understood by setting the limitation of a1>>a2 in Eq. (32a), so the 
reduced diffusivity D11/D10 is not a monotonic function of a2/a1. On the contrary, the influence of 
the presence of type 2 particles, which obstructs the diffusion of type 1 particles, on the diffusion 
of the tracers is insignificant, since the size of particle 2 is much larger than that of particle 1 at 
the same volume fraction of the obstacles, and this hindrance effect decreases monotonically with 
the increase of  for . This denotes that a target particle is easier to diffuse down a 
concentration gradient in a dispersion of larger obstacle particles than to diffuse in the situation as 
the obstacle particles are smaller under the consideration of a same volume fraction. D11/D10

approaches 1, which is independent of the interfacial properties of particles, as a1 << a2. Again, it 
explains that small particles dominate the diffusion behavior.  

*
mC 12 / aa

12 / aa

12 / aa 12 aa

 In Fig. 4(b) the diffusivity D11/D10 is illustrated versus  with  as a parameter 
when the volume fraction of type 2 particles is 10 percent. The increase of the slippage property 
at the particle surfaces decreases the hindrance effect of their diffusion, and the diffusivity 
increases monotonically with the increase of . In addition, the diffusivity, D11/D10, increases 
monotonically with the increase of  when the slip coefficient is not too small (say, 

).

*
mC 12 / aa

*
mC

12 / aa
2.0*

mC
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Fig. 4. Diffusivities  of few particles of type 1 (tracer) in a dispersion of many type 2 
particles down a concentration gradient: (a) versus particle volume fraction 

1011 / DD
 for ,

and: (b) versus  for 
1.0*

mC
*
mC 1.0 , with  as a parameter. 12 / aa

The second special case of Eqs. (26) and (28) considers that there are only two types of 
particles in dispersion and their number densities in the local controlled volume are equal to each 
other. Thus, the volume fractions of each type of particles can be related to the total volume 
fraction ( ) in dispersion by: 
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Substitution of Eq. (34) into Eqs. (26) and (28) results in: 
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The corresponding diffusivities D22 and D21 can be easily obtained by changing the subscripts.  
Results of D11/D10 and D12/D10 calculated from Eq. (35) at various values of  are 

plotted versus total volume fraction of suspending particles in Fig. 5. It can be seen that the 
values of D11/D10 increase with the increase of total volume fraction as , and in contrast, 
they decrease with the increase of 

12 / aa

21 aa
 when 21 aa . Note that the particle size strongly 

influences the diagonal element of diffusivity D11/D10 in the situation of equal-number-density of 

bi-dispersed systems;  for  and 1/ 1011 DD 21 aa 1/ 1011 DD  for . When the 

off-diagonal element of diffusivity is considered, relations of dependence of the diffusivity 
 on the volume fraction 

21 aa

1012 / DD  are much simpler than those of , as illustrated in 
Fig. 5(b). The values of  are always increasing as 

1011 / DD

1012 / DD  increases. Generally speaking, 

 and  are not a monotonic function of . The curves in Fig. 5 are all 

straight, due to the fact that diffusivity is a linear function of .

1011 / DD 1012 / DD 12 / aa

Fig. 5. Diffusivities (a)  and (b)  of an aerosol of two types of particles for 
equal number densities down a concentration gradient versus the total volume fraction of 
particles 

1011 / DD 1012 / DD

 for  with  as a parameter. 1.0*
mC 12 / aa

Another particular case of a polydispersed aerosol with two types of particles can be 
approached by the consideration of equal volume fractions of each type of particles 
( 2

1
21 ), in comparison with the above case. Here, the diffusivities are: 
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In Fig. 6, the diffusivities  and  are drawn versus the total volume fraction 
with  as a parameter. The variations of the diagonal diffusivity , due to the 
changes of volume fraction 

1011 / DD 1012 / DD

12 / aa 1011 / DD
 illustrated in Fig. 6(a), are quite different from the previous 

situation of equal number densities. Here, the diffusivities, both diagonal and off-diagonal 
elements, are always increasing with the increase of total volume fraction of particles, based on 
the assumption of equal volume fraction of the two type particles. In addition, the bulk diffusivity 
of each type of particles is larger than that predicted by modified Stokes-Einstein equation, Eq. 
(3). In general, D and D increase with the increase of 2 / aa /2 aa d
the variations of 11 /D 12 /D insensitive at different values of 12 / aa ases
of / 12 aa

1011 / D  as 1 , an
D  and D  are  for c

.

1012 / D 1 1

10 10

1

Fig. 6. Diffusivities (a)  and (b)  of an aerosol of two types of particles for 
equal volume fraction down a concentration gradient versus the total volume fraction of particles 

1011 / DD 1012 / DD

 for  with  as a parameter. 1.0*
mC 12 / aa
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CONCLUSIONS

In this article, an analytical investigation of Brownian diffusion of a homogeneous and/or 
non-homogeneous aerosol was developed for the consideration of particle interactions. The 
particles could be different in particle size, and there was a slippage feature occurring at the 
gas-particle interfaces. The original argument of Einstein’s was generalized to show that the 
particle flux in probability space due to Brownian was the same as that which would be produced 
by the application of a certain thermodynamic force to each particle. This prescription was then 
applied to deduce the Brownian diffusivities in two different types of situations: (a) a 
homogeneous dispersion which was being deformed; (b) a suspension in which there was a 
gradient of concentration of particles. In the previous situation, the relatively translational 
diffusivity of two slippage particles was formulated from the properties of the low-Reynolds 
number flow due to the two-particle interactions. While the latter addressed the diffusivity, 
expressed by the diagonal and off-diagonal elements of the diffusivity matrix, in a concentration 
gradient which brought considerations of the multi-particle-excluded volume into the problem. 
The diffusivity of the particles was found to increase slowly as the concentration rose from zero. 
In addition, if the slippage characteristic at the particle surface becomes significant, the energy 
dissipation due to particle interactions will decrease, making the bulk diffusivity large. Generally, 
the particles with a small radius dominated the Brownian diffusion. 
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NOTATION 

a = particle radius, m 

ijC  = )1/()1( KnjCKniC mm

mC  = slip coefficient at the particle surface 
*
mC  = KnCm

D = diffusivity tensor, m2/s 

D0 = relative diffusivity defined by Eq. 18a, m2/s

e = unit vector pointing from particle one to particle 2 

F = force exerted on a particle by the fluid, N 
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I = unit dyadic 

k = Boltzmann constant, m N 1/K

Kn = Knudsen number ( = )al /

l = mean free path of the gas molecules, m

Mij = dimensionless mobility tensors defined by Eq. 6 

M ij
p n( , )  = dimensionless mobility coefficient defined by Eq. 9

n = particle number density, 1/m3

p = dynamic pressure, N 1/m2

P = probability density function 

T = absolute temperature, K 

U = translational velocity of a particle, m 1/s 

v = fluid velocity field, m 1/s 

r = vector pointing from particle 1 to particle 2, m 

r = equal to r , m 

r12 = center-to-center distance between particle 1 and particle 2, m 

x = position vector, m 

Greek letters 

 = particle interaction coefficient of O( ) in suspension

 = chemical potential, m N 

 = volume fraction of particles in suspension 

 = energy potential, m N 

 = mutual potential, m N 

 = angular velocity of a particle, 1/s 

Subscripts

0 = particle center 

1 = particle 1 

2 = particle 2 

i = i-type particle 

j = j-type particle 

Superscripts
(0) = infinite dilution 
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